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Asymptotic energy concentration in the
phase space of the weak solutions to the
Navier-Stokes equations
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1 Introduction

We consider the asymptotic behavior of the energy of weak solutions
to the Navier-Stokes equations in R", n > 2;

% — Au+uVu =0, inR" x (0,00),
divu = 0, in R™ x (0, 00), (N-S)
U(,O) =a, in Rn’

where u = u(z,t) = (ui(z,t),...,u,(z,t)) and p = p(x,t) denote the
unkown velocity vector and the pressure of the fluid at point (z,t) €
R™ x (0, 00), while a = a(z) = (a1(x), . ..an(z)) is a given initial velocity
vector field.

For existence of weak solutions of (N-S), Leray [4] constructed a turbu-
lent solution on R3 which is a weak solution satisfying the strong en-
ergy inequality and he proposed the famous problem whether or not
lmy—oo ||u(t)|| 2ws) = 0. |

There are many results on the decay property of the energy, that is,
the L?-norm of the solution of (N-S). Masuda [5] first gave a partial
answer to Leray’s problem and clarified that the strong energy inequality
plays an important role for L?-decay of weak solutions. Later, Miyakawa,
Schonbek and et al. investigated the decay rate of the solution of (N-S)
in various domains.
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Kato [3] proved that the L"-decay properties for strong solutions on R”
with small initial data. He also constructed a turbulent solution in R4,
Using the uniqueness criterion for weak solutions given by serrin [8], we
may identify the turbulent solution with the strong solution after some
definite time.

Recently, another aspect of asymptotic behavior of the energy of the
solution has been investigated. We consider the asymptotic behavior in

the following sence:

o B0l .
ML ol Y

where {E)}1>0 is the spectral decomposition of the Stokes operator A,

that is, the identity
A= / AdE)
0

holds. Eju is regarded the lower frequency part of u. Indeed, with Fourier
transformation, we obtain

m(ﬁ) = X{|§|§\/X},&’(€)a

where X</ denotes the characteristic function on the set {£; [{| <
v A}. Hence, we emphasize that the equation (1) means the energy of the
lower frequency part of u(t) dominates the energy of u(t) as t — oo.

Definition 1 (Energy concentration) We say the energy concentra-
tion occurs in the phase X, if the equation (1) holds for .

Skaldk proved the energy concentration for the strong solutions of (N-S)
under the assumption that limsup,_ . [|AY?u(t)|2/||u(t)|2 < oco.

Our purpose of the present paper is to characterize the set of initial
data that causes the equation (1). For this purpose, we consider the set
of initial data that causes a lower bound of the decay rate of the energy
of solutions. More precisely, we introduce the set

for @, 6 > 0 and m > 0. The set K, , is a generalization of the set given
by Schonbek [7]. We prove that if the initial data a belongs to Kj, ,, then
the turbulent solution satisfies the energy concentration. Furthermore, we

obtain the explicit convergence rate of u(t) in (1).
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2 Results

Before stating our results we introduce some function spaces and give
our definition of turbulent solutions of (N-S). Cg°, denotes the set of
all C'*°-real vector functions ¢ with compact support in R™ such that
divg = 0. L is the closure of C§°, with respect to the L™-norm || - ||;
(+,-) is the inner product in L?. L7 stands for the usual (vector-valued)
L"-space over R", 1 < r < 00. Hg , is the closure of C§°, with respect to
the norm ||¢|| g = ||¢||2 + |V o||2, where V¢ = (0¢;/0x;); j=1,..n. When
X is a Banach space, we denote by |- || x the norm on X. C™([t,, t2]; X)
and L™ (¢, to; X) are the usual Banach spaces, where m = 0,1,..., and
t1 and ¢, are real numbers such that ¢; < £;. In this paper we denote by
C various constants.

Definition 2 Let a € L:. A measurable function u defined on R™ x
(0, 00) is called a turbulent solution of (N-S) if

i) ue L>®(0, 00; L2YNL2(0, T; H} ) forall 0 < T < oo.
o 0,0

(ii) The relation

T
[ (=t 8900 + (V. V) + (u- Vu, )] dt = (a, 9(0)
0
holds for almost all T and all ¢ € C*([0, T); Hg , N L") such that
#(-T) = 0.

(ili) The strong enegy inequality

t
u()l} +2 [ [Vu(r)Edr < a2 (3)
holds for almost all s > 0, includeing s = 0, and all t > s.

We call a function u satisfying the above conditions (i) and (ii) a weak
solution of (N-S). We can redefine any weak solution u(t) of (N-S) on a
set of measure zero of the time interval (0, oo) so that u(t) is weakly con-
tinuous in t with values in L2. Moreover, such a redefined weak solution
u satisfies for each 0 < s < ¢,

/ [—(u, 8¢/0t)+(Vu, V) +(u-Vu, )] dr = —(u(t), #(t))+(u(s), ¢(s))
(4)
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for all ¢ € C'([s, t]; H} ,N L"), see Prodi [6]. The existence of turbulent
solutions for n = 3 and n = 4 was given by Leray [4] and Kato [3],
respectively.

Let us define the Stokes operator A, in L7. We have the following
Helmholtz decomposition:

L"=L.8G", 1<r<oo,

where G" = {Vp € L"; p € L] }. P, denotes the projection operator
from L" onto L. The Stokes operator A, is defined by A, = — P, A with
domain D(A,) = H>™N L. A, is nonnegative and self-adjoint operator
on L2. For simplicity, A denotes the Stokes operator A, if we have no
possibility of confusion. {E)}s>0 denotes the spectral decomposition of
the nonnegative self-adjoint operator A .

Let us introduce the definition of strong solution of (N-8).

Definition 3 Let n < r < 00, a € L?. A measurable function u defined
on R™ x (0, 00) is called a global strong solution of (N-8S) if

u € C([0, ) ; L) N C((0, 00); L7),

o, Au € O((0, 00) ; L),
and u satisfies
%%+Au+Pa(u-Vu) =0, t>0.

Now our results read:
Theorem 1 Let 2 <n <4, andletr > 1 and m > 0 be
(i) forn =2,

1<r<é, O§m<f1-'—3,
3 T

(ii) for n =3, 4,

1<r<— : O§m<l—r£——(n—~1).
n—1 T
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is the same as (2). If a € LT N L2 N K¢ _ for some

m, «x

Suppose that K¢,

, (Y
a,0 > 0, then for every turbulent solution u(t) there exist T > 0 and

C(n, r, m, d, a, a) > 0 such that

HE)\U’ ”2 C —(n/r—n+1—-m)
_ 1 < -— n/r—n m [t
| ol =3 (5)

holds for all A and for allt > T

Theorem 2 Let n > 5, and let r > 1 and m > 0 be

l<rc n , 0§m<ﬁ—(n—1).
n—1 r

Then there exists v > 0 such that if a € L, N LN K‘s for some

a,0 > 0 and if a satisfies ||a||, < <y, then there exists a unlque global
strong solution u(t) with the following property. There exist T > 0 and

C(n, r, m, d, a, a) > 0 such that

[Exu(t)]l2
llu(®)ll2

holds for all A and for allt > T.

C
_ ll < Xt~(n/r——n+l—m) (6)

Remark 3 Skaldk [10] proved the enegy concentration (1) under the as-
sumption limsup, ., |AY?u(t)||2/||u(t)||2 < co. From the assumption of
Theorem 1 and of Theorem 2, we can show that lim,_., || A 2u(t)||2/||u(t)]2 =
0. On the other hand, our advantage seems to characterize the set of ini-
tial data which causes an energy concentration. Moreover, we get the
explicit convergence rate of (1). We introduce the set K3, , of initial
data that causes (1), especially, causes the lower bound of the L?-decay
of the solutions of (N-S). (See also Schonbek [7].)

3 Outline of the proof of Theorem 1

3.1 Key lemma

The following lemma plays an important role in the proof of the The-
orem 1.
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Lemma 4 Let 2 <n < 4. Let r and m be as

(1) forn =2,

4 4
1<r<§, 0§m<;—3

(ii) for n > 3,

1<r< "1, 0<m< 2~ (n=1).

n — (4

Ifae LINL2NK?

IVu@l3
lu(®)]3

Then every turbulent solution u(t) of (N-S) satisfies
< O(t-—(n/r—n+1—m)), (7)

ast — oc.

To prove lemma 4, we need to compare the decay rate of ||Vu(t)||; with
the lower bound of the decay rate of ||u(t)||,. We obtain the lower bound
of the decay rate of ||u(¢)||, due to the set K?

m,o’

3.2 Proof of Theorem 1

As we mentioned above, turbulent solutions of (N-S) become strong
solutions after some definite time. So for the turbulent solution u(t) of
(N-8) there exists T, > 0 such that u(t) is strong solution of (N-S) on
[T, o). Hence we have the energy identity:

d f NN
@z + 21 A7 u(@)[l; = 0 (8)

for ¢ > T,. For any fixed A > 0, the second term in (8) is estimated from
below as

(o o] o0
1472 = [ pdllEpulf 2 [ edlBul:
0 o A (9)
> A d||E ul|? > A 2 | Esu(®)||?
et R “ puuz = 2(““(””2 “ At( )Hz)
From (8) and (9) we have

d , , ,
S e@®1z + Mlu@®)z < MEsu®)]3. (10)
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Dividing both sides of (10) by A||u(t)]|3, we obtain

alu®lz | 1Bl

Aelz TS O (1)

On the other hand, by (8), we have (d/dt)||u(t)||2 = —2||AY%u(t)||2 =
—2||Vu(t)||3, from which and (11) it follows that

I Exu(t)|I3 2 IVu(®)ll;

@R S Y e@B

I/\

Hence by Lemma 4, there exists T such that

| Exu(t)ll3 l C —(nfr—nt1-m)
— 1< 2 n r—n ™m
lu(®)ll3 A

for all t > T'. This completes the proof of Theorem 1.
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