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Abstract. In this note, we consider a free boundary problem for the Navier-Stokes equation in
several domains in R" (n > 2) with surface tension. We will state a local in time unique existence
theorem in the space W2, (2 < p < oo and n < ¢ < o0), which is proved by using the maximal
regularity theorem of the corresponding linearized problem. Also, we state the resolvent estimate,

the generation of analytic semigroup and the maximal regularity theorem of the corresponding
linearized problem.

1 Introduction and Results

1.1 Problem. In this note, we consider the motion of a viscous, incompressible fluid with
free surface. The effect of surface tension on free surface is taken into account. Qur problem
considered in this note is to find a time dependent domain €2 for ¢ > 0 occupied by a viscous
incompressible fluid, a velocity vector field v(z,t) and a scalor pressure §(z,t), = € €, which
satisfy the Navier-Stokes equations:

Ov+ (v-V)v—DivS(v,0) = f(z,t) in €y, t >0,

dive =0 in Q, t>0,
S, vy = oMy — goniy onTy, t>0,
Va=v-1 only, t>0,
v=20 on Iy, t >0,
U|t=0 = v in Q. (1.1)

Here, Q2 = Q is an initial domain which is given, I'; and I';, denote the boundary of Q, v; is
the unit outward normal to I';, S(v,60) = uD(v) — 61 is the stress tensor, D(v) = (D(v))ij =
Ovi/0xj + Ov;/0z; is a deformention tensor, H is a mean curvature which is given by Hy, =
Ar()z, Ar() is the Laplace-Beltrami operator on I'y, u > 0 is a vicsous coefficient, ¢ > 0 is a
coefficient of surface tension, and g, > 0 is the acceleration of gravity. V, is the velocity of the
evolution of I'; in the direction of outward normal v.
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1.2 Domains and their Boundaries. Throughout this note, we assume that € is a one of
the following domains in R™ : a bounded domain, an exteriord domain, a lower perturned half-
space, a perturned layer, and a tube. Here, Q is called an exterior domain if the complement
of 2 is a bounded domain; a lower(upper) perturbed half space if there exist positive constans
R and wy, and a function w(z’), 2’ = (z1,...,Zn—1), defined on R*~! such that Q N BR *
= {z = (¢/,zn) € R* | o < w(z') +wo (zn > —w(z’) — wp)} N Bf; a perturbed layer
if there exist a lower perturbed half-space H_ and a upper perturbed half-space H, such
that Q@ = H_ N H.; a tube domain if there exists a bounded domain D in R™"! such that
Q=Rx D ={(r1,2") e R* | —c0o < 1 < 00, " = (z2,...,2,) € D}.

When €2 is a perturbed layer, denoting the boundary of H_ by I' and H; by I'y we assume
that ' C {z = (z',z,) e R" | 2, >wr} and T, C {z = (', z,,) € R" | 2, < —w;} with some
positive constant w;. Let us denote the boundary of 2 by I when 2 is one of a bounded domain,
an exterior domain, an perturbed half-space, and a tube domain. In this case, formally Ty is
defined by the empty set. When 2 is a bounded domain or an exterior domain, we say that
the boundary T of €2 belongs to the class W™ if the bounary T is locally represented by the
graph of a Wi function. When (2 is a perturbed half-space, we say that the boundary I' of Q
belongs to the class W™ if the bounded part I' N By belongs to the class W™ and wy(z') is a
function in Wq’”(R"‘l). When (2 is a tube domain, we say that the boundary T" of 2 belongs to
the class Wi if the section D belongs to the class Wg*. Problem (1.1) contains the following
special cases:

e If 2 is a bounded domain and g, = 0, then (1.1) is a drop problem.
e If 2 is a perturbed layer, then (1.1) is an ocean problem.
o If  is a lower perturbed half-space, then (1.1) is an ocean problem without bottom.

1.3 Some History. Concerning the drop problem, Solonnikov proved a local in time unique

. . - . 24+a,1+5 .
existence theorem of (1.1) in the Sobolev-Slobodetskii space W, T With o € ({,—, 1) when

f=0or f = kVU (k is the gravitational constant and U is the Newtonian potential), and
arbitrary initial data in [28, 29, 35, 32]. In [29], Solonnikov proved a global in time unique
existence theorem of (1.1) in Wf T2 Gith a € (%, 1) for f = 0 provided that initial data
are sufficiently small and the initial domain Q2 is sufficiently close to a ball. Moglilevskii and
Solonnikov [11] proved a local in time unique existence theorem in Holder spaces. Schweizer [21]
proved a local in time unique existence theorem for small initial data by using the semigroup
approach. Padula and Solonnikov [19] proved a global in time unique existence theorem in
Holder spaces by using the mapping of §2; on a ball instead of Lagrangean coordinates.
Concerning the ocean problem, Beale [4] proved a local in time unique existence theorem

£
when o = 0 and n = 3 in the Bessel potential spaces H;” (3 < ¢< ). In [5], Beale proved a

1
global in time unique solvability in H§’2 B<t< %) when o > 0, n = 3 and f = 0 provided that
the initial data 7o and wug are sufficiently small. Beale and Nishida [6] obtained an asymptotic
power-like in time decay of global solutions. A local in time existence theorem for o > 0 and

n = 2 was established by Allain [2]. Tani [41] proved a local in time unique existence theorem

in W'QHQ’HE with a € (%, 1) when 0 > 0 and n = 3. When 0 = 0 and n = 3, using Beale’s

L
method, Sylvester [39] showed a global in time unique exsitence theorem in H;” (3 <t<5)
provided that initial data are sufficiently small. When ¢ 2 0 and n = 3, using Solonnikov’s

*BRf = {zx € R" | |z| > R} = R" \ Br with Br = {z € R" | |z| < R}.
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method, Tani and Tanaka [42] proved a global in time unique exsitence theorem in W2*® with
a € ( %, 1) provided that initial data are sufficiently small. Nishida, Teramoto and Yoshihara
[15] considered the same problem as in Tani and Tanaka [42] under the assumption that the
motion of fluid is horizontally periodic and that spatial mean of the motion of unknown free
surface over the space period is equal to zero. They proved a global in time unique solvability

£
and exponential stability in H;’E (3 < £ < 1) for sufficiently small initial data.

We make some remarks in case ¢ = 0, namely the surface tension is not taken into account.
When (2 is a bounded domain, Solonnikov [27] and Shibata and Shimizu [23], [24] proved a local
in time unique existence theorem for any initial data and external force f, and a global in time
unique existence theorem for small initial data in W' (n < p < oo) and Wi (2<p< o
and n < ¢ < 00), respectively. Mucha and Zajaczkowski [12, 13] proved a local in time unique
existence theorem for any initial data in Wy'' (n < p < c0). Abels [1] proved a local in time
unique existence theorem.

Roughly speaking, a free boundary problem for the Navier-Stokes equation becomes a
parabolic system completely in case o = 0, while some hyperbolic character appears in case
o > 0. These facts reflect the asymptotic behaviour of global in time solutions. In fact, to
obtain a global in time existence theorem with exponential stability in the bounded domain
case we need an assumption that the domain is close to a ball initially in case o > 0 while we
do not need any geometrical assumption on the domain in case o = 0.

Finally, we mention the work due to Priiss and Simonett [20] where they treated two phase
free boundary problem and they proved a local in time wellposedness under the assumptions
that the initial interface with surface tension is close to a half-plane and that the first derivative
of initial data of a height function is small enough. The reason why we mentione the Priiss and
Simonett work is that they used the Dirichlet to Neumann map approach which seems to be
new in the study of free boundary problem for the Navier-Stokes equations.

1.4 Formulation in the Lagrangean Coordinate. Aside from the dynamical boundary
condition, a further kinematic condition for T’y is satisfied which gives Iy as a set of points
z==x(&,t), £ € I, where z(£,t) is the solution of the Cauchy problem:
dz
:1'; ='U(.’L',t), Ilflt:() =£ (1.2)
This expresses the fact that the free surface I'y consists for all ¢ > 0 of the same fluid particles,
which do not leave it and are not incident on it from €.

The problem (1.1) can therefore be written as an initial boundary value problem in the
given region (2 if we go over the Eulerean coordinates x € §2; to the Lagrangean coordinates

€ € (2 connected with z by (1.2). If a velocity vector field u(&,t) = (uy,...,u,)* is known as a
function of the Lagrangean coordinates £, then this connection can be written in the form:
t
r=¢ +/ w(E, 7) dr = Xu(6, 1), (1.3)
0

Passing to the Lagrangean coordinates in (1.1) and setting 8(X,(£,t),t) = 7(&,t), as the same
procedure as o = ( case (cf. Appendix in [23]), we obtain

Oru — Div S(u, m) = Div Q(u) + R(r) + f(Xu(£,t),t) inQ, t>0,

divu = E(u) = divE(u) in Q, t>0,
(S(u, ) + Q(u))vew — oHVty — GaXunliu =0 onl, t>0,
u=0 on I, t >0,

Ult=0 = uo(§) in Q, (1.4)



110

where ug(£) = vo(z). Here vy, is the outer normal to I'y given by vy, = A7 1 /|t A~ 1y, where
A is the matrix whose element {a;x} is the Jacobian of (1.3):

BIL‘J‘ L(I)’u]‘
ajk—?)-é;—(s]k'F/o a_éde

Q(u), R(r), E(u) and E(u) are nonlinear terms of the following forms:

t t
Q(u) = ui( / Vudr)Vu, R(r) = Vi( / Vudr)Vn,
0 0
E(u) = Vg(/t Vudr)Vu, E(u)= v(g(/t Vudr)u (1.5)
0 0

with some polynomials V;(:) of fot Vudr, j = 1,2, 3,4, such as V;(0) = 0.

1.5 A Local in Time Unique Existence Theorem. Let L,(D) and W;*(D) denote the

usual Lebesgue space and Sobolev space on a domain D, respectively. The space qu () for the
pressure term is defined by the formula:

WHR) = {6 € Lg1oc(Q) | D8 € Ly(Q) (G=1,...,n)}

where D;0 = 06/0z;. The space Bg,(,} -l/p )(Q) for the initial data is defined by the real interpo-
lation:
B P(Q) = [Lo(), W (Dh-1/pp-

Given Banach space X, Ly((a,b),X) and Wpl((a,b),X ) denote the sets of all Ly(a,b) and
Wy (a,b) functions with values in X, respectively, and set

W2 x (0,T)) = Ly((0,T), W) N W3((0,T), Lg(S2)).

Given Banach space X, X™ denotes the n-product space of X, that is X" = {u = (uj,...,u,) |
u; € X (i =1,...,n)}. If || - || x stands for the norm of X, then the norm of X™ is also denoted
by || - |[x which is defined by the formula: |jullx = 377, [lu;llx.

1.6 THEOREM Let Q C R™ (n 2 2) be one of the following domains: a bounded domain,
an exterior domain, a lower perturbed half-space, a perturbed layer, and a tube. Assume that
I'e Wq3 and Ty € WqQ. Let2 < p<oo,n< qg< oo and 2(1 — 1/p) > 1+ 1/q. Then for any

up € Bg,(,,l-l/p)

()™ satisfying the compatibility conditions:
divug =0 inQ, D(ug)— (D(uglvo,vo)o =0 onT, wug=0 onT,, (1.6)

and f € Ly((0,00), Lq(R™))" such that D;f € Loo(R™ x (0,00))" for j =1,...,n, where D; =
0/0x;, there exists a T > 0 such that the problem (1.4) admits a unique solution

(u,m) € W25 (9 x (0,T))" x Ly((0,T), W, (2)).

1.7 REMARK If 2(1 — 1/p) > 1 + 1/q, then the regularity of the first dirivative of ug is
greater than 1/q, and therefore the trace of D(ug) — (D(uo)vo, vo)vo on T exists.
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2 Reduction to Linearized Problems
We consider the bondary condition of (1.4):
(S(u, ) + Q(u))vpy — OHVy + gaXunViu = 0. (2.1)

Let II; and IIp be projections to tangent hyperplanes of I’y and I'g which are defined by the
formulas:
IIid = d — (d, vt )V, Hod =d — (d, 0)1p. (2.2)

for an arbitrary vector field d defined on I'; and Iy, respectively. Applying II, to (2.1), we
obtain

L ((S(u,7) + Q)i — 0Hbt + guXumbi) = (D (W) + Q(w)vn =0,  (2.3)

which implies that
IopD(u)vo = MopD(u)vo — Iy (nD(u) + Q(u))vtu. (2.4)
By using the fact that Hyy, = Ar)Xu, and taking the innerproduct of (2.1) with v, we obtain
Veu - (S(u, ) + Q(u))Vy — 0Vty - Ar, Xy + gaXun = 0. (2.5)

Substituting (1.3) for (2.5), we obtain
t 't
via - (5(,7) + Q) = ovta- Ar, £+ [ (e, ) dr) + g (6t [ unten ar) =0,
0 0
which is equivalent to

t
vo - S(u, vy + (m — avoAp)/ vy udr
0

=m‘/ot1/0~ud’7'—-0'{l/0‘(AFAtUdT)—U’:u'(AFILtUdT)}

+vg - S(u, vy — Vi » S(u, m)vg,
v - udT)}

~ v Qe + o {0 - (Ar /Otud'r) - Ar(/o

t
+ (V- Ar,& = v - Ar€) + 0UALE — gubn — ga /0 i - (2.6)

t

where Ar = Ar,. For the notational simplicity, we set
F(u) = a{ug . (Ap /Otud‘r) — Vg (Ap, /Otud'r)}
+0{Ap(/0tuo . ud'r) — vy (/Otudf)} + o(v - Ar€ — g - Ar,€)

t t
H,(u) = m/ v - udt + vy - S(u, Ty — vy - S(U, Ty — Vi * Q(U) V4o — gq/ Uy, dT
0 0
hn(§) = oo Ar€ — gakn (2.7)
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Then, finally we arrive at the equation:
t
v - S(u, ™y + (m — O’V()Ar')/ v - udr + F(u) = Hy(u) + hn(§) onT.
0
In (2.7), since Ar, contains the second derivative with respect to variables on I', in order to

avoid the loss of regularity we apply the inverse operator (m — cAr)~! with sufficiently large
number m to F(u). We proceed that

vy - S(u, vy + (n — oAr) (uo . /Olt udr + (m — oAr)”lF(u)) = Hp(u) + ho(§) onT. (2.8)

We define a new function 7 by the formula:
t
n=1-" / wdr + (m — ocAr)"'F(u) onT. (2.9)
0

From (2.8) and (2.9), we obtain the system of two equations on I as follows:

vo - S(u, m)vg + (m — oAr)n = Hp(u) + hp(€)
A —w-u=(m—ocAr)  F(u), (2.10)

where F'(u) denotes the time derivative of F(u). We conclude that (1.4) is reduced to the
equations

Oiu — Div S(u, 7) = DivQ(u) + R(m) + f(Xu(§,t),t) in Q,

divu = E(u) = divE(u) in Q,
on—1vp-u=G(u) onl,

Iy D(u)vy = H'(u) onT,

v - S(u, m)vg + (m — oAr)n = Hp(u) + hyp(§) onT,

u=20 on I'y,

ul=0 = uo(§) in Q, 7njt=o=0o0nT, (2.11)

where

t

F(u) =0{V0‘ (Ar/()tudT) — Uty - (Ar,/o udT)}

t t
+V0-Ar/ UdT—Vtu'Ar(:)/o udr + vy - Ar§ — 1y - Aré,
0

G(u) = (m — oAr) ™ F(u),
H'(u) = M(HOD(U)VO - HtD(U)Vtu) — pILQ(u)vey,

t t

H,(u) = m/ vo-udrt + vy S(u, M)V — Ve - S(u, Ty — Vi - Q(U)Vgy — ga/ U, dT,
0 0

hn(s) = UV(JAI{ — Guaén,

and Q(u), R(w), E(u) and E(u) are nonlinear terms defined by (1.5).



113

3 Stokes Problem Arising in the Study of the Free Boundary
Problem for the Navier-Stokes Equation with Surface Tension

3.1 Stokes Problem. In view of (2.11), now we consider the following time dependent inear
problem:

Oiru — Div S(u, ) = f, e, t>0,
divu=fd=divfd reN, t>0,
on—1ry-u=d zeTl, t>0,
S(u, Mg+ (m—cAr)nry=h z€T, t>0,
u=0 x €l t>0,
ult=0 = uo, Nlt=0 = 70. (3.1)

Also, we consider the following resolvent problem correspondint to (3.1):

Au — Div S(u,n) = f, z €,
divu=g z €,
AN—-y-u=d zel,
S(u, M+ (m—cApr)pvy=h z€eT,
u=20 z €T (3.2)

3.2 Some Spaces of Bessel Potentials. For the boundary data k in (3.1)we shall introduce
some spaces of Bessel potentials. Given a > 0, we set

< Dy >* u(t) = F7H(1 + 2)°/2 Fu(s)](2),
HY(R, X)={u€ Ly(R,X) :< Dy >* u € Lp(R, X)},
lull pg oy = | < De >* ull @ xy + lull,,@ox)-

Here and hereafter,  and F~! denote the Fourier transform and its inverse formula, respec-
tively. Set

Hgp*(D x R) = Hy/*(R, Ly(D)) N Ly(R, W, (D)),
quy’;/z(D % (0,T)) = {u | there exists a v € H;,’;M(D x R) such that u =v on D x (0,T)},

I|UIIH;:;)/()2(DX(0,T)) = inf {“v”H;"é/z(DxR) | v e S(u)}

where S(u) = {v € Hjp/*(D xR) | v=won D x (0,T)}.

3.3 Maximal Regularity Theorem with Zero Initial Data. Instead of (3.1), we consider
the following linear problem with zero initial data:

Oiu — Div S(u,n) = f, zeN, t>0,
divu = fy =div fy zeN, t>0,
on—1vg-u=d zel, t>0,
S(u,m)vy+ (m—cAr)npry=h zeTl, t>0,
u=20 T €Iy, t>0,

ult=0 = 0, M¢=0 = 0. (3.3)
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To solve (2.11) locally in time by the usual contraction mapping principle, the following maximal
regularity theorem for (3.3) plays an essential role.

3.4 THEOREM Let 2 C R™ (n > 2) be one of domains: a bounded domain, an exterior
domain, a upper perturbed half-space, a perturbed layer, and a tube domain. Let 1 < p,q < oo,

max(q,2) <7 < oo and T >n—1. Assume that T € W2 and T', € W?2. If right members f, fa,
fa, d, h in (3.3) belong to the following spaces:
f € LP((Oa T)) LQ(Q))na fd € LP((OvT)’ W(}(Q))’ fd € W}}((Ov T)a Lq(Q))na

d € Ly((0,T), W, ~/9(T)), he Hyp/*(Q2x (0,T)"
and satisfy the compatibility conditions: fdltzo =0, hls=o =0, and f; - wlr, = 0, then (3.3)
admits a unique solution (u,,n) which belong to the following spaces:

u€ Wey (@x(0,T)), me Ly((0,T), Wy (2)),
n € W, ((0,T), WZ™H/4(D)) N Ly((0, T), W~ V/4(I)).

Moreover, there exists T|r = 7|r such that 7 € H;,’pl/ 2(2x (0,T)). Also, there holds the estimate:
lull L0,y wa) + lullwior).Los) + IVTIL,(01),Le0) + “ﬁHH;_‘;/z(nx(o,T))
+ “n“WI}((O,T),W,?—(U")(F)) + “T]”L,,((O,T),W:_(l/“)([‘))
< C( NNl Lo,y Le(s2y) + “d“LP((U,T),wf“/"(r))

+ I fall Lo wry + 1 fallwiomy.La@) + ||h||H;:;/z(Qx(0’T)))-

3.5 2nd Helmholtz Decomposition and Resolvent Estimates. To state our resolvent
estimate concerning the problem (3.2), at this point we shall introduce the 2nd Helmholtz
decomposition. Let 1 < ¢ < oo and set

Jo(Q) = {ue Ly()" |divu=0 inQ, - ulp, =0},
Go(Q) = {Vr | m € Wi (), 7l =0},

where v is the unit outward normal to I'y. Given f € L,(Q)", let m € qu(ﬂ) be a unique weak
solution to the Dirichlet-Neumann problem for the Laplace operator:

Ar=divf inQ, m=0onT, g—;r:ub-f on I'y,
b

where On/0v, = v, - V7 and Vr = (Dy7,...,D,m). When Q is one of the domains: a bounded
domain, an exterior domain, a upper perturbed half-space, a perturbed layer, and a tube, the
unique existence of such 7 follows, which will be discussed elsewhere. If we define the operators
P, and Qg by the formulas: P,f = f — Vm and Qqf = m, then P, and Qg are bounded linear
operators from Lg(§2)™ into Jg(€2) and qu (€2), respectively. Moreover, we have f = Py f+VQ, f
and this decomposition is unique. Therefore, we have

Lq(Q)" = Jq(Q) 2] Gq(Q)

where @ means the direct sum, which is called the second Helmholtz decomposition.
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3.6 THEOREM Let Q be one of the domains: a bounded domain, an ezterior domain, a upper
perturbed half-space, a perturbed infinite layer, and a tube. Let 1 < q < o0, max(q,2) <r < oo
andr >n—1. Assume that T € W2 and Ty, € W2. Set T 5, = {A € C | |arg\| <7 —¢, |A| >
Ao}. Then, for any € € (0,7/2) there exists a A\g > 0 such that for any A € Lero, [ € Lg()™,

g € Wol’q,(ﬂ)* NWHR), d € Wf—l/q(f’) and h € W)™, (3.2) admits a unigue solution
(u,p,m) € W2(Q)" x WH(Q) x W2 YUT) such that
1 .
A AV, 920, 92, + I v+ 0

4

1
< C[”f”z,q(n) + ”d“wz“l/"(r) + I’\IHQHWJ (6> + [A12]|(g, h)”Lq(n) + ”V(g»h)”Lq(n)]'
4 I
”p”Lq("R) < C[“h ) V0||Lq(r) + ”qu”[,q(n)

- 1
+ AT Nl 0 + Hdllwg_l/qm + l/\l“g”wg Jaye TN WLy + V(G WLy
i)

Here, § = min(1/2,1 - 1/q), ¢ = q/(a~ 1), W}, () = {v € W}(Q) | v|r = 0}, Wi, ()"

stands for the dual space of Wol’q,(ﬂ) with norm || - ||, , - Also, OF is defined as follows:
0,q’

QF = QO when Q is one of the domains: a bounded domain, a perturbed infinite layer and a
tube domnai, QR = QN Br with sufficiently large R > 0 when Q is an exterior domain , and
QF = QnR*1! x (—R, R) with sufficiently large R > 0 when ) is a upper perturbed half-space.

3.7 Generation of Analytic Semigroup. Now, we shall discuss the unique solvability of the
initial value problem:

Oiu — DivS(u,7) =0, divu=0 z€Q, t>0,

On—1p-u=0 zel, t>0,
S(u, Mg+ (m—ocAr)nuy=0 =ze€T,t>0,
u=20 €Ty, t>0,
ult=0 = ug, Nlt=0 = 7o. (3.4)

We shall discuss an analytic semigroup approach to the initial-boundary value problem (3.4).
Since the time derivative of 7 is missing in (3.4) we shall eliminate 7 from (3.4). For a while
instead of (3.4) we shall consider the resolvent problem:

Au—DivS(u,m)=f, divu=0 inQ,

AN —1p-u =g, onT,
S(u, vy + (m — cAr)nvy =0 onT,
u=0 on I'. (35)

and we shall discuss how to eliminate 7 from (3.5).
Substituting the 2nd Helmholtz decomposition f = P,f + VQ,f into (3.5) and using the
fact that Q. flr = 0, we have

Au—DivS(u,m — Qqf) = P f, divu=0 in,
An— 1y u =1y, onT,
S(u,m — Qqf)vo + (m — cAr)nyg =0 on T,
u=20 on Tp. (3.6)
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We note that Div S(u,7) = plAu — Vr when divu = 0. Denoting 7 — Qqf by 7 again in
(3.6), from now on we consider (3.5) under the condition that div f = 0. Then, applying the
divergence to the first equation of (3.5), taking the innerproduct of the boundary condition on
I' with vy and taking the trace of the innerproduct of the first equation with v to I'y, we have

Ar =0 in Q,

. on o ..
mle = {v0 - (WD@)) +0(m — Ay — divalle, o | = un- Aut gdiva)l,,  (3.7)
b

where we have used the facts that dive = 0in Q and 1y -1y = 1 on I'. We decompose 7 into
1 + ™9, where m; and 9 satisfy the following equations:

0 0
Amy =0 in Q, m|r = v - uD(W)ry — divu|r, ——ﬂ—l- = pwy - Au+ —divu]l, , (3.8)
dl/b ry 6Vb b
. omg
Amy =0 in Q, m|r = o(m ~ Ar)nlr, — | =0. (3.9)
Ovy Ty

When 2 is one of the domains: a bounded domain, an exterior domain, a upper perturbed
half-space, a perturbed layer, and a tube domain, we know that given u € qu(Q)" there exists

< Cllu|l Also,

wien — w2sy®

we know that given n € W2~ 2/9(T") there exists a unique m3 € Wq‘ (©2) which solves (3.9) and

enjoys the estimate: H7r2{|v.v(}(m < C’Hnllws_l . From these observations, let us define the
q

a unique m € qu (£2) which solves (3.8) and enjoys the estimate: |||

maps
Ki WX > W} (Q) by m =Ky forue WXQ)",
Ky : W3H4(I) - W)(Q) by mp = Kon for n € W3~V/9(T),

respectively. We set m = K u + Kon. By using these symbols, the equation (3.5) is rewritten in
the form:

A~ pAu+ V(Kiju+ Kon) = f in Q
AM—1ru=g on I
S(u, Kiyu+ Kon)vo+o(m — Ap)nqrg =0 on T
u=0 on [, (3.10)

for f € J4(2). We set

my _ 0 -9 - R n
Aa <U) N (VKZ —uA+VK1) (u> for (u,7) € D(Ay),

D(Ag) = {(u,n) € (W)™ N Jo(R)) x WS™V4(T)]
S(u, K1u + Kan)vo + o(m — Ar)nvolr =0, ulp, = 0},
X = {(f.9) € Jo() x W/}

oa0 ()= ().

Applying THEOREM 3.6, we obtain the following theorem:.

Then (3.10) is formulated
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3.8 THEOREM Let Q be one of the domains: a bounded domain, an exterior domain, a
upper perturbed half-space, a perturbed infinite layer, and a tube domain. Let 1 < q < 0o and
max(¢,2) <7 < o0, r >n—1. Assume that ' € W3 and T, € W2. Then, Aq generates an
analytic semigroup {T(t)}i>0 on J,(Q).

By analytic semigroup theory and THEOREM 3.6, we have
IT(E)(f, 9l )< CetY|(f, 9)
ITE)(f, 9)ll Ce?[|(f, 9)l

for (f,g) € X,
for (f,g) € D(A,).

w2ymxwi- /D Ly(s0). x w2~ /D)

. < .
weynxwd- /@y we(2xwd= /4 )

Therefore, by the real interpolation method, we have the maximal regularity theorem for the

initial-boundary value problem (3.4), which was proved in [25].

3.9 THEOREM Let Q be one of the domains: a bounded domain, an exterior domain,
a upper perturbed half-space, a perturbed infinite layer, and a tube domain. Let 1 < ¢ < oo
and max(¢,2) < r < 0o, 7 > n— 1. Assume thatT' € W3 and T, € W2. Set D,, =
[Xq,D(Aq)]l_l/p’,,, where [, ]gp stands for the real interpolation functor. Let us T(t)(f,g) =
(u,m) for (f,g) € Dpq. Then, we have

u € Woip (2% (0,00)", 1€ Wy ((0,00), Wi~ /9(I) N Ly((0, 00), W3~ V/a(T)).
Moreover, there exist positive constants C and v such that

lle™"u| + lle™ | + [le™ ]

Lp((0,00), W2(62)) W3 ((0,00),Lq(52)) Lp((0,00), w3~ (/9) 1y

—t
T oy S OO o+ 190 e )
Here, we have set

Bg,(z:-(l/p))(r) = [Lq(92), qu(Q)ll—(l/P),p
BypO=UP(T) = (W M(@), i (I)] -1 /) pr

3.10 REMARK The compatibility condition is hidden in the definition of the space Dyp-
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