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1 Problem
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(1.1) $u_{t}(x, t)+u(x, t)u_{x}(x, t)=F_{x}(x, t)$ ,

where the forcing term $F_{x}$ is the partial derivative of a given $C^{2}$-function $F$ which
is periodic in both $x$ and $t$ with the period 1. The problem is to find $\mathbb{Z}^{2}$-periodic
(weak) solutions of (1.1), namely periodic solutions with the period 1 in both $x$ and $t$ ,
in constructive ways. Our basic tool is the Lax-Friedrichs difference scheme. We present
two methods of constructing $\mathbb{Z}^{2}$-periodic solutions of (1.1): Tlie one is based on the long
time behavior of the Lax-IFlriedrichs difference scheme. The other is based on Newton’s
method, regarding $\mathbb{Z}^{2}$-periodic solutions as fixed points of the Poincar\’e map derived from
the $Lax- Riedric\cdot hs$ scheme. We give convergence proofs to these methods and simulate
$\mathbb{Z}^{2}$-periodic solutions.

It is known that there is an interesting connection between the forced Burgers equa-
tion and Hamiltonian dynamics. One of the central issues in the theory of Hamiltonian
dynamics is to look for their invariant manifolds. The graph of a $\mathbb{Z}^{2}$-periodic solu-
tion to (1.1) plays an important role in the issue. We also simulate trajectories of the
Hamiltonian dynamics corresponding to the forced Burgers equation and $vis^{\backslash }ualize$ their
connection.

2 Background

In this section we state the history of our problem. Let us go back to Boltzmann’s
statistical mechanics. Boltzmann tried to derive thermodynamics from the dynamics of
particles. The dynamics of particles is governed by Hamiltonian systems

(2.1) $x’(s)=\mathcal{H}_{y}(x(s), y(s))$ , $y’(s)=-\mathcal{H}_{x}(x(s), y(s))$ ,

where the Hamiltonian $\mathcal{H}(x, y)$ : $\mathbb{R}^{2n}arrow \mathbb{R}$ is the total energy of particles. Because
of the energy conservation law, each trajectory $(x(\backslash 9), y(s))$ of (2.1) is trapped on the
$2n-1$-dimensional energy level set

$\Sigma_{h};=\mathcal{H}^{-1}(h)$ , $h=\mathcal{H}((x(0), y(0)))$ .
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In order to derive thermodynamical variables such $u$ entropy, temperature, pressure,
etc., it is required that for each function $G(x, y)$ the following equality holds:

$<$ time-average of $G$ along any trajectory on $\Sigma_{h}>=$ $<$ space-average of $G$ on $\Sigma_{h}>$ .

This is possible, if each trajectory on $\Sigma_{h}$ passes through all the points of $\Sigma_{h}$ (Boltzmann’s
ergodic hypothesis). After this hypothesis was presented, many mathematicians started
to analyze the ergodic problems and improved Boltzmann’s ergodic hypothesis (see [4]),

Although $tI_{1}e$ consequences of tlie ergodic properties of the equations (2.1) come out,
it is not easy to find Hamiltonian systems with the ergodic properties. As an example,
let us consider harmonic lattices, which are a model of crystals. In the case of the
l-dimensional harmonic lattice with fixed end points, its total energy is given by

(2.2) $\mathcal{H}(x, y)=\sum_{i=1}^{r\iota}\frac{1}{2}y_{i}^{2}+\frac{1}{2}\kappa^{i}x_{1}^{2}+\sum_{i=1}^{n-1}\frac{1}{2}\kappa(x_{i+1}-x_{i})^{2}+\frac{1}{2}\kappa^{r}x_{r\iota}^{2}’$ .

We can find $t\mathfrak{l}_{1}e$ symplectic transform: $(x, y)\mapsto(\tilde{x},\tilde{y})w1\downarrow ic\cdot\}_{1}$ decornposes the motions of
the system (2.1) into the normal modes. The new Hamiltonian $\tilde{\mathcal{H}}$ takes the simpler form

$\tilde{\mathcal{H}}(\tilde{x},\tilde{y})=\sum_{i=1}^{r}\frac{1}{2}\omega_{i}(\tilde{x}_{i}^{2}+\tilde{y}_{i}^{2})$ ($\omega=(\omega_{1},$ $\cdots,$
$\omega_{n})$ is constant).

By the symplectic polar coordinates $(q,p)\in T^{n}\cross(\mathbb{R}_{+})^{n},$ $T^{n}:=\mathbb{R}^{n}/2\pi \mathbb{Z}^{n}$ defined by

$\tilde{x}_{i}=\sqrt{2p_{i}}\sin q_{i}$ , $\tilde{y}_{i}=\sqrt{2p_{i}}\cos q_{i}$ ,

$\tilde{\mathcal{H}}$ changes into

$H(q,p)= \sum_{i=1}^{n}\omega_{i}p_{i}:T^{n}\cross(\mathbb{R}_{+})^{n}arrow \mathbb{R}$ .

Therefore each trajectory is given by

$(q(s),p(s))=(\omega s+q(O),p(O))$ niod $2\pi$ ,

which implies for any $s\in \mathbb{R}$

$(q(s),p(s))\in \mathcal{I}:=T^{n}\cross\{p(0)\}$ .

$Eac\cdot I\iota$ trajectory is $traI$)$ped$ on an $r\iota$-dirnensional torus and cannot be ergodic!

Fermi, Pasta and Ulam [2] made numerical siniulatioiis to anharmonic lattices which
have non-quadratic potential energy in addition to (2.2). In the anharmonic cases, the
above reduction yields the Hamiltonian of the form

$H(q,p)= \sum_{i=1}^{n}\omega_{i}p_{i}+H_{1}(q,p):T^{n}\cross(\mathbb{R}_{+})^{n}arrow \mathbb{R}$,

where $H_{1}$ is a perturbation due to the anharmonic potential energy. Since $H_{1}$ depends
on $q$ , it is difficult to give expression of each trajectory $(q(s),p(s))$ . They expected
that small anharmonic perturbations would make trajectories ergodic. Their numerical
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results, however, suggested strongly that $7nar\iota y$ trajectories of anharmonic lattices are
still trapped on slightly deformed n-dimensional tori and not ergodic.

Nishida [7] showed that the $KAM$ theory, stated later, is applicable to the anharmonic
lattices and proved that there exist the deformed n-dimensional tori on which trajectories
are trapped.

Existence of such deformed n-dirnensional tori is significant to an understanding of
the stability or instability of Hamiltonian dynamics. Now we give a brief description of
the problem of the search for such deformed n-dimensional tori.

We consider $C^{2}$-Hamiltonians

(2.3) $H(q,p):T^{r\iota}\cross Darrow \mathbb{R},$ $T^{n}:=\mathbb{R}^{n}/\mathbb{Z}^{n},$ $D\subset \mathbb{R}^{n}$

and Hamiltonian systerns

(2.4) $q’(s)=H_{p}(q(s)\}p(s))$ , $p’(s)=-H_{q}(q(s),p(s))$ .

The solution (trajectory) of (2.4) with an initial value $(\theta, I)\in T^{n}\cross D$ is denoted by

$\phi_{H}^{s}(\theta, I)$ ,

where $\phi_{H}^{s}$ is the flow of (2.4). A manifold $\mathcal{I}$ is called a $\phi_{H}^{S}$ -invariant manifold diffeomor-
phic to $T^{n}$ or just $\phi_{H}^{s}$ -invariant $n$ -torws, if $\mathcal{I}$ is an ernbedded $n$-dimensional torus by a
smooth embedding: $T^{n}arrow T^{n}\cross D$ and satisfies for each $s$

$\phi_{H}^{s}(\mathcal{I})\subset \mathcal{I}$ .

First, we consider the simple case where Hamiltonians are of the form

$H(q,p)=H_{0}(p)$ .

It is proved that, in “general”, Hamiltonians of integrable Hamiltonian systems can be
brought into the above form by an appropriate symplectic transform (e.g., see [6]). The
harmonic lattice is an example of integrable Hamiltonian systems. Each trajectory is
represented by

$\phi_{H}^{s}(\theta, I)=(\partial_{p}H_{0}(I)s+\theta,$ $I)mod 1$ ,
where $\partial_{p}H_{0}$ is the gradient of $H_{0}$ . Hence we can find $\phi_{H}^{s}$-invariant n-torus for each $I\in D$

$\mathcal{I}:=T^{n}\cross\{I\}$ ,

which implies that the phase space $T^{n}\cross D$ is foliated by these tori, namely

$T^{n}\cross D=\cup \mathcal{I}$.

Each $\mathcal{I}$ carries trajectories $(q(s), p(s))$ , which are just straight lines with the same slope

$\lambda:=\lim_{|s|arrow\infty}\frac{\tilde{q}(s)}{s}=’\partial_{p}H_{0}(I)$ ,

where $q(s)=\tilde{q}(s)mod 1$ . $\lambda$ is called the frequency vector of the trajectory $(q(s),p(s))$ .
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Next we consider the perturbed Hairiiltonians

$(2_{\iota}^{r}))$ $H(q,p)=H_{0}(p)+H_{1}(q,p)$ : $T^{n}\cross Darrow \mathbb{R}$ ,

where $H_{1}$ is a perturbation. Because of the so-called small divisor problem, people had
difficulties in proving existence of $\phi_{H}^{\theta}$-invariant $r\iota$-tori for (2.5). In 1954, Kolmogorov
brouglit the great progress. His arguments were completed by Arnold arid Moser, which is
now well-known as the KAM theory. One of the main assertion of the KAM theory is that
there exist the $\phi_{H}^{s}$ -invariant n-tori carrying trajectories with the strongly nonresonant
frequency vectors:

The KAM Theorem ([5][1]). Let $D$ be a bounded connected closed domain of $\mathbb{R}^{n}$ .
Suppose $(A 1)-(A3).\cdot$

$(A1)H(q, p)=H_{0}(p)+H_{1}(q,p)$ is analytic $or\iota$ a complex neighborhood $G$ of $T^{n}\cross D$ ,

$(A2)H_{0}$ is nondegenerate, namely the Hessian matrix of $H_{0}$ has rank $n$ on $D$ ,

(A 3) $\Vert H_{1}\Vert=\sup_{G}|H_{1}(q,p)|$ is sufficiently small.

Then there exists a family of $KAM$ n-tori $\mathcal{I}wf\iota ose$ union satisfies the following measure
estimate:

mes $[\cup \mathcal{I}]arrow$ mes $[T^{n}\cross D]$ as 1 $H_{1}\Vertarrow 0$ ,

where a $KAM$ n-torus $\mathcal{I}$ is a $\phi_{H}^{8}$ -invariant manifold diffeomorphic to $T^{n}$ which is a
Lagrangian sub-manifold and $ca$rries quasi-periodic trajectories with the same frequency
vector $\lambda$ satisfying the Diophantine condition.

The developments of the KAM theory within half a century are collected in [9]. The
KAM theory leaves interesting questions: What is going on in the region $I^{n}\cross D\backslash \cup \mathcal{I}$?
What happens for large perturbations? Nurnerical studies tell us that tliere are irregular
trajectories called “chaos”, which sometimes seem to be ergodic in Boltzmann’s sense.

Finally we search for $\phi_{H}^{\delta}$-invariant n-tori in the general case with $C^{2}$-Hamiltonians
(2.3). We restrict ourselves to the manifolds diffeomorphic to $\nu_{J1^{n}}$ which are of the form

(2.6) $\{(q, \partial S(q))|q\in T^{r\downarrow}\}$ ,

where $S$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is a $C^{2}$-function with the $\mathbb{Z}^{n}$-periodic gradient $\partial S$ . Note that they
are Lagrangian sub-manifolds. It is easily proved that each KAM n-torus takes the form
(2.6) with a real analytic function $S$ satisfying the Hamilton-Jacobi equation

(2.7) $H(q, \partial S(q))=h$ in $\mathbb{R}^{n}$ ( $h$ is constant)

with the real analytic Hamiltonian $H(q,p)=H_{0}(p)+H_{1}(q,p)$ . Let us consider the
Hamilton-Jacobi equations (2.7) with general $C^{2}$-Hamiltonians. Note that each solution
of the Hariiiltoniari system (2.4) is part of the characteristics of (2.7). The following
assertion is well-known: Let $H$ : $T^{n}\cross Darrow \mathbb{R}$ and $S:\mathbb{R}^{n}arrow \mathbb{R}$ be a $C^{2}$ -function. Then
the graph of $\partial S(q)$

$\mathcal{I}_{\partial S}:=\{(q, \partial S(q))|q\in T^{n}\}$

is a $\phi_{H}^{S}$ -invariant manifold diffeomorphic to $\mathbb{T}^{n}$ , if and only if $S$ is a $C^{2}$ -solution of
the Hamilton-Jacobi equation (2.7) with the $\mathbb{Z}^{n}$ -pertodic gradient $\partial S(q)$ . Particularly we
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have the following: Let $S$ be a $C^{2}$ -solution of the Hamilton-Jacobi equation $(6l.7)$ with
the $\mathbb{Z}^{n}$ -periodic gradient $\partial S(q)$ . If $n=2$ and $H$ satisfies the relation

$H(q_{1}, q_{2_{7}}p_{1},p_{2})=h\Leftrightarrow p_{2}=f(q_{1)}q_{2},p_{1};h)$ ,

then $u(q)$ $:=S_{q_{1}}(q)$ is a $\mathbb{Z}^{2}$ -periodic $C^{1}$ -solution of the scalar conservation law

(2.8) $\partial_{q_{2}}’u(’.q_{1}, q_{2}, u(q_{1}, q_{2}’))\}$ in $\mathbb{R}^{2}$

and the graph $\mathcal{I}_{\partial S}$ is represented by

$\mathcal{I}_{\partial S}=\{(q, u(q), f(q, u(q);h))|q\in T^{2}\}$ .

A $C^{1}$ -solution of (2.8) yields a $C^{2}$-solution of the corresponding Hamilton-Jacobi equa-
tion. Of course we cannot always expect classical solutions of the Hamilton-Jacobi
equations (2.7) or tfie scalar conservation laws (2.8). This implies that we may have no
universal methods of searching for the $\phi_{H}^{s}$ -invariant n-tore we are concemed with, even
no such tori.

An interesting question arises: what is the relation among regular/chaotic properties
of the Hamiltonian systems (2.4), viscosity solutions of the Hamilton-Jacobi equations
(2.7) and entropy solutions of the scalar conservation laws (2.8).

We consider this question taking a simple example of a nonlinear pendulum in the
extended phase space with the Hamiltonian of the form

(2.9) $H(q_{1}, q_{2},p_{1},p_{2})= \frac{1}{2}p_{1}^{2}+p_{2}-F(q_{1}, q_{2}):T^{2}\cross \mathbb{R}^{2}arrow \mathbb{R}$ .

We assume that $F$ is a $C^{2}$-function. The corresponding scalar conservation law (2.8)
becomes the forced Burgers equation (1.1):

$u_{t}(x, t)+u(x, t)u_{x}(x, t)=F_{x}(x, t)$ ,

replacing the variables $(q_{1}, q_{2})$ with $(x, t)$ . The Hamiltonian system for (2.9) is reduced
to the nonautonomous Hamiltonian system

(2.10) $X’(s)=U(s)$ , $U’(s)=F_{x}(X(s), s)$ ,

which gives the characteristics of (1.1). We focus our attention on the connection between
$\mathbb{Z}^{2}$-periodic entropy solutions of (1.1) and the dynamics of (2.10).

Jauslin, Kreiss and Moser [3] obtained $\mathbb{Z}^{2}$-periodic solutions of (1.1) by the vanishing
viscosity method. They also pointed out several interesting open problems on the forced
Burgers equation and the corresponding Hamiltonian dynamics. They considered the
parabolic equations with the periodic boundary condition

(2.11) $u_{t}^{\nu}(x, t)+u^{\nu}(x, t)u_{x}^{\nu}(x, t)=F_{x}(x, t)+\nu u_{xx}^{\nu}(x, t)$ in $T\cross \mathbb{R}_{+}$ ,

where $\nu>0$ is an artificial viscosity. Using the long time behavior of solutions to (2.11),
they proved the following: For each $\nu>0$ and $C\in \mathbb{R}$ there exists the unique $\mathbb{Z}$-periodic
in $t$ solution $\overline{u}^{\nu}\in C^{2}$ to (2.11) such that for all $t\in \mathbb{R}$

$< \overline{u}^{\nu}>:=\int_{0}^{1}\overline{u}^{\nu}(x, t)dx=C$ .
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Moreover there is a sequence
$\overline{u}^{1}$

ノ
$t\in\{\overline{u}^{\nu}|\nu>0, <\overline{u}^{\nu}>=C\}$

with $\nu_{i}arrow 0$ which converges to a $\mathbb{Z}^{2}$ -penodic entropy solution $\overline{\iota\nu}$ of (1.1) $with<\overline{u}>=C$

in the $C^{0}(T;L^{1}(T))$ -topology.
Takeno [10] also obtained $\mathbb{Z}^{2}$ -periodic solutions of (1.1) by the Lax-Friedrichs differ-

ence scheme and Brouwer’s fixed point theorem. He regarded approximate $\mathbb{Z}^{2}$-periodic
solutions of (1.1) as fixed points of the Poincar\’e map derived from the Lax-Friedrichs
difference scheme and showed existence of these fixed points by Brouwer’s fixed point
theorem.

$E[11]$ made clear the connection between $\mathbb{Z}^{2}$-periodic solutions of (1.1) and regular
motions of the corresponding Hamiltonian system. His results include a flow version of
the Aubry-Mather theory for twist maps. Let $\overline{u}$ be a $\mathbb{Z}^{2}$-periodic entropy solution of (1.1)
with $<\overline{u}>=C$ and $c(s)$ $:=(\tilde{X}(s), s, U(s))mod 1$ be characteristic curves derived from
the equations (2.10). He proved the following: Each characteristic curve $c(s)$ which is
defined on $(-\infty, \tau]$ with $\tau\in[0,1]$ and satisfies the initial condition

$c(\tau)\in graph(\overline{u})$ $:=\{(x, t,\overline{u}(x, t))|(x, t)\in T^{2}\}$

is trapped on graph $(\overline{u})$ and never absorbed by the shocks of $\overline{u}$ . The motion of $c(s)$ on
graph $(\overline{u})$ is characterized by the asymptotic slope

$s arrow-\infty 1i_{IIl}\frac{\tilde{X}(s)}{s}=\alpha(C)$ ,

where $\alpha(C)$ depends only on the average C. Moreover there exist charactertstic curves
$c^{*}(s)=(\tilde{X}^{*}(s), s, U^{*}(s))mod 1$ defined on $\mathbb{R}$ with the same asymptotic slope

$\lim_{|s|arrow\infty}\frac{\tilde{X}^{*}(s)}{6}=\alpha(C)$

which are trapped on $gr\cdot apf\iota(\overline{u})$ and never $absor\cdot bed$ by the shocks. For any given $\alpha\in \mathbb{R}$

there exists $C\in \mathbb{R}$ such that $\alpha(C)=\alpha$ . Note that if $\overline{u}$ is a $C^{1}$ -function, then any $c(s)$

with an initial condition on graph $(\overline{u})$ is trapped on it for any $s\in \mathbb{R}$ . In the original
$pha\backslash e$ space $T^{\prime z}\cross D$ with the Hamiltonian (2.9), these results mean that for each $h\in \mathbb{R}$

the set
$\mathcal{I}_{\overline{u}}:=\{(q,\overline{u}(q), h-\frac{1}{2}\overline{u}(q)^{2}+F(q))|q\in T^{2}\}$

is $\phi_{H}^{s}$-backward-invariant. Moreover there exists a $\phi_{H}^{S}$ -invariant closed set $\Gamma^{*}\subset \mathcal{I}_{\overline{u}}$ , on
which each trajectory has the frequency vector

$\lambda=(\alpha(C), 1)$ .

Note that if $\overline{u}$ is a $C^{1}$ -function, then $\mathcal{I}_{\overline{u}}$ is a $\phi_{H}^{S}$-invariant manifold diffeomorphic to $T^{2}$ .

3 Main Results

Analytical results. We make use of the two-step $Lax- R\dot{n}edr\dot{v}chs$ difference scheme on
$T\cross \mathbb{R}_{\geq 0}\ni(x, t)$ : Let $N,$ $K$ be natural numbers. We define the mesh sizes as

$\triangle x:=\frac{1}{N}$ , $\Delta t:=\frac{1}{K}$ , $\Delta x\Delta t$ .$\lambda:=-$
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We set $x_{n};=r\iota\Delta x\in[0,1](n=0,1,2, \cdots, N)$ arid $t_{k}:=k\Delta t\in[0, +\infty)(k=$

$0,1,2,$ $\cdots)$ . The solution to the initial value problem of (1.1)

$\{\begin{array}{l}u_{t}(x_{1}t)+u(x, t)u_{x}(x, t)=F_{x}(x, t) in T\cross \mathbb{R}_{+},u(x, 0)=g(x) on T\end{array}$

is replaced with the vectors

$u^{k}=(u_{0}^{k}, u_{1}^{k}, \cdots, u_{N-1}^{k})\in \mathbb{R}^{N}(k=0,1,2, \cdots)$

called the difference solution with the initial value

$u^{0}=(g(x_{0}), \cdots, g(x_{N-1}))$ .

Each difference solution $u^{k}$ with an initial value $u^{0}\in \mathbb{R}^{N}$ is determined in the following

$\tau_{l}=l\Delta\tau\in[0,$
$+ \infty(l\prime_{=}0, 1,2,\cdot\cdot).Weway:Let\Delta y:=\frac{1}{2,)}\Delta x_{\dot{1}}y_{m}:=.m\triangle y\in[0_{J}l](mdefine=0,1,2, \cdots, 2N),$

$\Delta\tau:=\frac{1}{2}\triangle t$ and

$u_{n}^{k}:=lt_{2n}^{r2k}$ノ,

where $W_{rn}^{l}$ are computed for $l+rn=even$ by the difference equation

$\{\begin{array}{l}\frac{W_{rr\iota+1}^{l+1}-\frac{(W_{rr\iota+2}^{l}+W_{rr}^{\ell})}{\Delta\tau 2}}{}+\frac{1}{2}\frac{(\prime}{2\Delta y}=\frac{F(\tau_{l},y_{rn+2})-F(\tau_{l},y_{rr\iota})}{2\Delta y},W_{2N\pm m}^{l}=W_{\pm m}^{l},W_{2n}^{0}=u_{n}^{0}.\end{array}$

We put $u_{N\pm n}^{k}=u_{\pm n}^{k}$ . The maps: $u^{0}\mapsto u^{k}$ arid $W^{0}\mapsto W^{l}$ are denoted by

$\psi^{k}:\mathbb{R}^{N}arrow \mathbb{R}^{N}$ , $\Psi^{l}:\mathbb{R}^{N}arrow \mathbb{R}^{N}$

respectively. Since $F$ is $\mathbb{Z}^{2}$-periodic, we have the Poincar\’e map (or the time-l map)

$\phi:=\psi^{K}=\Psi^{2K}$ .
Note that $\psi^{k},$ $\Psi^{l},$ $\phi$ are $C^{2}$ and $\psi^{KT+k}=\psi^{k}0\phi^{T}$ for each $T\in \mathbb{N}$ , where $\phi^{T}$ is the
T-iteration of $\phi$ . We call the following step function an approximate solution of (1.1):

$u_{\Delta}(x, t):=u_{n}^{k}$ for $x\in[x_{n}, x_{n+1}),$ $t\in[t_{k}, t_{k+1}),$ $\triangle=(\triangle x, \Delta t)$ .
It follows from a simple calculation that the average in $x$ of each difference solution $u^{k}$

at each $k$ and therefore that of the approximate solution $u_{\triangle}(x, t)$ is conservative, namely

$C(u^{0}):= \sum_{n=0}^{N-1}u_{n}^{0}\Delta x\equiv\sum_{n=0}^{N-1}u_{n}^{k}\Delta x\equiv\int_{0}^{1}u_{\Delta}(x, t)dx$.

The value $C=C(u^{0})$ is called the momentum of solution. $u^{k}(C),$ $u_{\Delta}^{C}(x, t)$ denote
$u^{k},$ $u_{\Delta}(x, t)$ with the momentum $C$ . We say that $u^{k}$ is a periodic difference solution,
if for all $k=0,1,2,$ $\cdots$

$u^{k+K}=u^{k}$ ,
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which is equivalerit to $t\}_{1e}$ relation

$\phi(u^{0})=u^{0}$ .

For each $v=(v_{0}, \cdots, v_{N-1})\in \mathbb{R}^{N}$ we set

$\Vert v\Vert_{\infty}:=\max_{1\leq n\leq N-1}|v_{n}|$ , $\Vert v\Vert_{1}:=\sum_{n=0}^{N-1}|v_{n}|$ , $Var.[v]:= \sum_{n=0}^{N-1}|v_{n+1}-v_{n}|(v_{N}=v_{0})$ .

We state analytical results.

Theorem. Let $M$
$:=\sqrt{\max_{(xt)\in R^{2}}F_{xx}(x,t)},$ $r>0,\tilde{r}\geq M$ and

$B_{r,\overline{r}};=\{v\in \mathbb{R}^{N}|$ $-r \leq\sum_{n=0}^{N-1}v_{n}\Delta x\leq r,\max_{0\leq n\leq N-1}\frac{v_{n+1}-v_{n}}{\Delta x}\leq\tilde{r}(v_{N}=v_{0})\}$ .

Initial values $u^{0}ar\cdot e$ restncted to $B_{r,\overline{r}}$ . Fix $ar \cdot bitrar\eta_{1}ly\Delta x=\frac{1}{N},$ $\Delta t=\frac{1}{K}$ so that

(3.1) $0< \lambda_{0}\leq\frac{\Delta t}{\Delta x}=\lambda<(r+\tilde{r})^{-1},\tilde{r}<K,$ $\triangle t\leq\Delta x$

for some wnstant $\lambda_{0}$ . Then

1. For each $u^{0}\in B_{r,\overline{r}}$ , there exists the unique difference solution $u^{k}=\psi^{k}(u^{0})$ , which
satisfies for any $k$

rriax $\underline{u_{n+1}^{k}-u_{n}^{k}}\leq\overline{r}$, $\Vert u^{k}\Vert_{\infty}\leq|C(u^{0})|+\tilde{\gamma\cdot}$ , Va$7^{\cdot}$ . $[u^{k}]\leq 2\tilde{r}$ .
$0\leq n\leq N-1$ $\Delta x$

2. For each $C\in[-r, r]$ , there exists the unique pert,odic difference solution $\overline{u}^{k}(C)$

with the momentum $C$ , which satisfies for any $k$

$\max_{0\leq n\leq N-1}\frac{\overline{u}_{r\iota+1}^{k}(C)-\overline{u}_{n}^{k}(C)}{\Delta x}\leq M$, $\Vert\overline{u}^{k}(C)\Vert_{\infty}\leq|C|+M$ , $Var.[\overline{u}^{k}(C)]\leq 2M$.

3. The stability of $\overline{u}^{k}(C)$ ; For any other difference solution $u^{k}(C)$ with the momen-
tum $C$ , we have $\Vert u^{k}(C)-\overline{u}^{k}(C)\Vert_{1}arrow 0$ $(karrow\infty)$ .

4. The asymptotic behavior: For any two difference solutions $u^{k}(C),$ $v^{k}(C)$ with the
same momentum $C$ , we have 1 $u^{k}(C)-v^{k}(C)\Vert_{1}arrow 0$ $(karrow\infty)$ .

5. The decay rate of the asymptotic behavior: There exist constants $a>0$ and $\rho<1$

depending on $\triangle x$ such that for any two difference solutions $u^{k}(C),$ $v^{k}(C)$ with the same
momentum $C$ and $T\in N$ , we have $\Vert u^{TK}-v^{TK}\Vert_{1}=\Vert\phi^{T}(u^{0})-\phi^{7^{}}(v^{0})\Vert_{1}\leq a\rho^{T}$ .

6. Newton’s rnethod is applicable to the equation $\phi(u)=u$ .

7. There exists a sequence $\overline{u}_{\Delta}^{C},$ $\in\{\overline{u}_{\Delta}^{C}(t, x)|\Delta x>0, \Delta t>0, (3.1)\}$ with $\triangle_{i}arrow 0$ as
$iarrow\infty$ which converges in the $C^{0}(T;L^{1}(T))$ -topology to a $\mathbb{Z}^{2}$ -periodic entropy solution
$\overline{u}^{C}$ of (1.1) haveng the momentum C. (The $\mathbb{Z}^{2}$ -periodic entropy solution of (1.1) having
the momentum $C$ is not unique in general.)
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Idea for proof of Theorem. Basically we follow the same way as Oleinik’s in [8],
where the $\triangle$-independent one-sided estimate for

$\frac{?\iota_{r\iota+1}^{k}-u_{r\iota}^{k}}{\Delta x}$

is established and then the argument on the functions of bounded variation is used.
However we need some modifications, since we deal with $tI_{1}e$ long time behavior of our
difference scheme in $T\cross \mathbb{R}_{\geq 0}$ with the fixed mesh $\Delta=(\triangle x, \Delta t)$ , namely we consider the
limit $t_{k}arrow\infty$ with the fixed mesh $\Delta$ at first and then take the limit $\Deltaarrow 0$ . The above
difference scheme has the $numeri\cdot cal$ viscosity. This causes, like the artificial viscosity in
the parabolic equation (2.11), the $\Vert\cdot\Vert_{1}$ -contraction for the difference scheme.

Numerical results. We simulate $\mathbb{Z}^{2}$-periodic solutions $\overline{u}$ of (1.1) and characteristic
curves $c(s)$ derived from (2.10). We use the long time behavior of the two-step Lax-
$\mathbb{R}iedriclis$ difference scllerrle for the computation of $\overline{u}$ and tfie Rurige-Kutta method for
$c(s)$ . Note that Newton’s method is also available for the computation, since we can
calculate the derivative $D\phi(u^{0})$ through the linearized difference equation along $u^{k}$ . We
take the following function as an example of the forcing term:

$F(x, t)=- \frac{1}{10}\cos(4\pi x)\sin(2\pi t)$ .

The following figures show the intersections of graph$(\overline{u})=\{(x, t,\overline{u}(x, t))|(x, t)\in$

$T^{2}\}$ or curves $c(s)=(\tilde{X}(s), \backslash \backslash 1, U(s))mod 1$ (of course approximate ones) onto the
Poincar\’e sectiori: $Y=0$ in the three-dirnensional space $T^{2}\cross \mathbb{R}\ni$ $(X, Y, Z)$ , where
$(x, t),$ $(\tilde{X}(s), s)mod 1$ correspond to $(X, Y)$ and $\overline{u}(x, t),$ $U(s)$ to $Z$ .

Figure 1.

Figure 1 shows a $\mathbb{Z}^{2}$-periodic solution $\overline{u}^{C}$ with the momentum $C=1.O$ . Since graph(ti)
seems to be smooth, we expect that any characteristic curve $c(s)$ with the initial condition
on graph $(\overline{u})$ is trapped on it forever.
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Figure 2.

Figure 2 is formed by a characteristic curve $c(s)$ with an initial condition on the graph
in Figure 1. The set formed by $c(s)$ numerically coincides with the graph in Figure 1.
This implies tliat $\overline{u}^{c}$ is really smooth.

$N$

X

Figure 3.

Figure 3 shows a discontinuous $\mathbb{Z}^{2}$-periodic solution $\overline{u}^{C}$ with $t1_{1}e$ mornentum $C=1.501$ .
We took $N=60000$ as the number of meshes on x-axis in oder to make the shocks
sharpen. The dynamics of characteristic curves around this graph is visualized in Figure
4.
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Figure 4.

In Figure 4, we see two characteristic curves forming a curve-like set and in between
three characteristic curves forming a pair of islands. The dynamics may have on the
Poincar\’e section a pair of elliptic points with elliptic islands and a pair of hyperbolic
points with the stable/unstable curves. We put Figure 3 and 4 together in Figure 5.

$N$

X

Figure 5.

We can say that Figure 5 indicates the situation where the smooth parts of the discon-
tinuous graph are pieces of the unstable curves arid the shocks are across the elliptic
islarids.
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Figure 6.

Figure 6 illustrates discontinuous $\mathbb{Z}^{2}$-periodic solutions $\overline{u}^{C}$ with the momentum $C=$

0.7, 0.05, $-0.2$ . The dynamics around their graph is “chaotic”. The scattered dots are
formed by a characteristic curve $c(s)$ wandering wide range of the space. The previous
relation between $t1_{1}e$ discontinuous graph and $t$}$)e$ unstable curves is not so clear.

References

[1] V. I. Arnol’d, Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-
periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv.
18 (1963), No. 5, 9-36.

[2] E. Fermi, J. Pasta, S. Ulam, Los Alamos report LA-1940. (In E. Fermi, Collected
Papers II (1955), Univ. Chicago Press (1965), 977-988.)

[3] H. R. Jauslin, H. O. Kreiss, J. Moser, On the forced Burgers equation with periodic
boundary conditions, Proc. Sympos. Pure Math. 65 (1999), 133-153.

[4] A. I. Khinchin (trans. by G. Gamow), Mathematical foundations of statistical me-
chanics, Dover (1949).

[5] A. N. Kolmogorov, Preservation of conditionally periodic motions for a small change
in Hamilton’s function, Dokl. Akad. Nauk SSSR 98 (1954), No. 4, 527-530.

[6] J. Moser, E. J. Zehnder, Notes on dynamical systems, Courant Lecture Notes in
Mathematics 12 (2005),

[7] T. Nishida, A note on an existence of conditionally periodic oscillation in a one-
dimensional anharmonic lattice, Mem. Fac. Engrg. Kyoto Univ. 33 (1971), 27-34.

158



[8] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, A. M. S.
Transl. (ser. 2) 26 (1957), 95-172.

[9] M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century
(To V. I. Arnold on the occasion of his 65th birthday), Mosc. Math. J. 3 (2003), no.
3, 1113-1144, 1201-1202.

[10] S. Takeno, Time-periodic solutions for a scalar conservation law, Nonlinear Anal.
45 (2001), no. 8, 1039-1060.

[11] W. $E$ , Aubry-Mather theory and periodic solutions of the forced Burgers equation,
Comm. Pure Appl. Math. 52 (1999), no. 7, 811-828.

159


