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ABSTRACT. The theory for the (..orner singularity of solutions to ellip-
tic $pr(\})]ems$ on domains with corners has been well est,ablished over
last fifty years }$)y$ several mathematicians: for instance, Dauge, Gris-
vard, Kellogg, Kondrat’ev, Mazya among the references given in this
note. The coefficient of the corner sirigularity in tbe singular and regu-
lar decomposition of solution at a corner of boundary is called $tI_{1}e$ stress
intensity factor in mechanics because it is named from measuring the
unboundedness of the flux variable. Recently the theory has been in-
vestigat,ed to the compressible viscous Stokes or Navier-Stokes equatioris
on polygonal domains, particularly fo$(:u|;ing$ on the singular behaviors of
solutions near concave corners. The compressible viscous Navier-Stokes
equations are of mixed type that is neither elliptic nor hyperbolic. A
rnain mathematical and physical observation in this direction is that the
corner singularity is propagated along the streamline eriiariating frorn
corners and rnay generate certain interior layers or discontiriuities in $t1_{1}e$

considered domains because of the hyperbolic character in density of the
continuity equation.

In this note we will describe and survey the corner singularities of
solutions to compressible viscous Navier-Stokes equations on bounded
domains with corners, based on the results obtained by Kweon and
Kellogg so far.

1. Introduction
Since the compressibility is a pivotal aspect of high speed flows, the den-

sity is an important variable to be resolved and can have certain jump or
discontinuity propagations of corner or edge singularities into the region
provided that it is governed by the continuity equation. Because, if the con-
tinuity equation (derived from the rnass conservation) is integrated along
the streamline emanating from corners or edges, then the density function
is an integral of the divergence of the velocity and is not free from propa-
gation of corner singularities into the region (from the hyperbolic character
of the continuity equation) because the velocity has the ones. So the cor-
ner singularities in compressible viscous Navier-Stokes flows preserve not
only the corner singularity generated from the diffusion terms but also the
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transporting phenomena of corner singularities. Definitely they have more
interesting properties to be resolved than the corner singularities of ellip-
tic equations. Also, from numerous literatures of fluid dyiiamics one can
observe such singular behaviors, for instance, see [2].

In particular, in fluid mechanics, flow separations, internal recirculations
and discontinuities are technologically and mathematically important issues
to be resolved [3, 31, 34, 37]. Such phenomena are often generated by sharp
corners and edges of body contours of flow regions like driven cavities [3, 34].
Tlley also can be observed eitller in the front portions of aircrafts or near
the junctions of body and wing [2, 3].

Throughout this note tfie variables $u,$ $\rho$ and $p$ denote the velocity vector,
density and pressure functions in the fluid flows, respectively; $\rho=\rho(p)$ is
a strictly increasing smooth function of pressure; $/\iota,$ $\nu$ denote the coefficient
of viscosity with $\mu>0$ and $\mu+\nu>0;f$ and $g$ are given functions; $\Omega$ is
a bounded polygon in the plane $\mathbb{R}^{2}$ with boundary $\Gamma;Q$ $:=\zeta$) $\cross(0, T)$ ,
$\Sigma$ $:=\Gamma\cross(0, T)$ where $T$ is a positive number.

We here describe $tI_{1}e$ geometry of $\Omega a_{\wedge}\backslash \backslash$ follows. Let the polygon $\zeta l$ have
only one concave vertex $P$ , placed at $t\}_{1e}$ origin. Let $r$ denote the distance
of a point in $\Omega$ to $P$ . With the vertex $P$ we associate two numbers $\omega_{1}$ and
$\omega_{2}$ , with $\omega_{1}<\omega_{2}<\omega_{1}+2\pi$ , which give the directions of the two sides to the
polygon at the vertex $P$ . The interior angle of $\Omega$ at $P$ is $\omega=\omega_{2}-\omega_{1}$ and
we set $\alpha=\pi/\omega$ . We assume that $0<\omega<2\pi$ , thus excluding slit domains.
Let $\chi$ be a smooth cutoff function which is 1 near the vertex $P$ and which
vanishes outside a small neighborhood of $P$ . The singular function of the
Laplacian at $t_{l}$he vertex $P$ is defined by the formula [4, 9, 17]

$\phi(x, y)=\chi r^{\alpha}\sin[\alpha(\theta-\omega_{1})]$ . (1.1)
A picture for such polygon and polyhedral cylinder is given in Fig. 1.1.

FIGURE 1. A polyhedral cylinder $Q$ and a polygon $\Omega$ .
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2. The stationary case
It is well-known in [9, 11, 13, 15, 16] that the solution $u\in H_{0}^{1}(\Omega)$ of the

Dirichlet problem for the Laplace equation $-\Delta u=f$ on a bounded domain
$\Omega$ with only one concave corner placed at $t\}_{1e}$ origin can be written as follows:
There is a continuous linear functional $\Lambda$ on $H^{6-2}$ such that if $f\in H^{6-2}$ is
assumed for $s>1+\alpha$ , then

$u=\Lambda(f)\chi r^{\alpha}\sin[\alpha(\theta-\omega_{1})]+w$ , $w\in H^{8}(\Omega)$ , (2.1)

satisfying the following regularity estimate

$\Vert w\Vert_{s}+|\Lambda(f)$ I $\leq C\Vert f\Vert_{s-2}$ (2.2)

for a constant $C$ . In [18, 19] Kweon and Kellogg extended the above results
to the following stationary barotropic compressible viscous Navier-Stokes
system with inflow boundary condition for pressure:

$-\mu\Delta u-\nu\nabla divu+\rho(u\cdot\nabla)u+\nabla p=f$ in $\Omega$ ,
$\rho divu+\rho’(p)u\cdot\nabla p=g$ in $\Omega$ , (2.3)

$u=0$ on $\Gamma$ ,

and later generalized to the whole compressible Navier-Stokes system con-
taining the energy equation [20]. The first attempt of the corner singularity
expansion to compressible viscous Navier-Stokes equations is from the paper
[18], in which a simple compressible Stokes system was considered and the
essential main idea is motivated. So we will sketCh its idea here. The simple
corripressible Stokes system that is obtained by a linearization of the system
(2.3) around an ambient flows is given by

$-\mu\Delta u+\nabla p=f$ in $\Omega$ ,
divu $+U\cdot\nabla p=g$ in $\Omega$ ,

(2.4)
$u=0$ on $\Gamma$ ,
$p=0$ on $\Gamma_{in}$ ,

where $U=[1,0]$ and $\Gamma_{in}=\{(x, y)\in\Gamma : U. n<0\}$ .
We }lere state the corner singularity result for the solution $[u,p]$ of (2.4)

on the polygon $\Omega$ described above. The proof is shown in [18, 19].

Theorem 2.1. If $[f, g]\in L^{2}\cross L^{2}$ , then there is a unique solution $[u,p]\in$
$H_{0}^{1}\cross L^{2}$ of (2.4), satisfying the inequality $\Vert u\Vert_{1}+\Vert p\Vert_{0}\leq C(\Vert f\Vert_{0}+\Vert g\Vert_{0})$

where $C=C(\Omega)$ .
On the other hand, let $\omega>\pi$ and $2 \leq q<\frac{1}{1-(y}$ . Assume that $[f, g]\in$

$L^{q}\cross H^{1,q}$ . Suppose $\mu$ is sufficiently large. Then the velocity solution of
(2.4) can be split as follows:

$u=w+C\phi$ , $w\in H^{2,q}$ , (2.5)
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where $C$ is the stress intensity factor which can be explicitly expressed in
terms of data $[f, g]$ . Furthermore, the triple $[w,p, C]$ satisfies the a priort
$er\tau or$ estimute

$\Vert w\Vert_{2,q}+\Vert p\Vert_{1,q}+|C|\leq C(\Vert f\Vert_{0,q}+\Vert g\Vert_{1,q})$ (2.6)

where $C=C(\Omega, \mu)$ .

Here we briefly summarize the main idea.$ and procedures used in ob-
taining Theorem 2.1. We consider two solution operators. First we define
$B:L^{2}\mapsto L^{2}$ by $q=BG$ where $q$ is $t\}_{1}e$ solution of

$q_{x}=G$ $in$ $\Omega$ , $q=0$ $on$ $\Gamma_{in}$ . (2.7)

The solution $q$ of (2.7) is given by integrating the equation (2.7) in the $x$

direction, more explicitly,

$q(x, y)= \int_{\delta(y)}^{x}G(s, y)d.s$ .

Second we let $A:H^{-1}\mapsto H_{0}^{1}$ be defined by $AF=u$ where $u$ is the solution
of

$-\Delta u=F$ $in$ $\zeta l$ , $u=0$ $on$ $\Gamma$ . (2.8)

Using the operator $B$ , the solution of the continuity equation is given by
$p=B$ ( $g$ –divu). So, if $F=\mu^{-1}(f-\nabla p)$ , then

$F=\mu^{-1}(f-\nabla Bg+Bdivu)$ . (2.9)

If (2.9) is applied to (2.8), one has a generalized convection-diffusion equa-
tion that involves the operator $B$ :

$-\triangle u-\mu^{-1}\nabla B$ (divu) $=f_{1}$ in $\Omega$ ,
(2.10)

$u=0$ on $\Gamma$ ,

where $f_{1}$ $:=\mu^{-1}(f-\nabla Bg)$ . The problem (2.10) is a reformulation of the
problem (2.4).

We apply the basic theory of the corner singularity for the Laplacian to
the equation (2.10). We split the velocity by

$u=C\phi+w$ .
For the justification of the decomposition a crucial step is to show that $t\}_{1e}$

function $C$ is well-defined and expressed in terms of the known data. By
Theorem 2.1 one has $C=\Lambda(f_{2})$ where $\Lambda$ is defined in (2.1) and

$f_{2}$ $:=f_{1}+\mu^{-1}\nabla B$ (divu). (2.11)

In order to show tfiat $C$ is well-defined we must show that $f_{2}\in L^{q}$ . In doing
this a main difficult step is to prove that

$C\cdot\nabla B\nabla\phi\in L^{q}$ ,

which is shown in [18, Lemma 2.2] for the $L^{2}$ space and in [19, Lemma 2.5]
for the $L^{q}$ space.
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On the other hand, from $-\Delta w=f_{2}+C\Delta\phi$ with the function $f_{2}$ of (2.11)
and in view of Theorem 2.1, one must have

$\Lambda(f_{2}+C\triangle\phi)=0$ . (2.12)
This vector equation gives two linear equations whose solution is the stress
iritensity factor C. The solvability of the linear systern is sIlowrl in Lerrlma
3.1. With this $C$ , an increased regularity for the remainder $[w,p]$ is estab-
lished.

For a finite element analysis one may need a weak formulation which can
give a computable form. The weak form for the regular part $w$ of (2.5)
can be formulated as follows. Since the pressure function in the continuity
equation of (2.4) can be integrated along the horizontal line and using the
inflow boundary condition we consider the following integration formula: for
given $G$ ,

$(BG)(x, y)$ $:= \int_{\delta_{-}(y)^{G(9}}^{x}’ y)ds$ , (2.13)

where $(\delta_{-}(y), y)$ is tlie graph of the $\inf!$ow boundary $\Gamma_{ir\iota}$ , so $t\}_{1}e$ pressure
solution $p$ is given by

$p=B$ ($g$ –divu). (2.14)

Using (2.14) and letting $f_{1}=f-\nabla Bg$ , system (2.4) becomes a single vector
equation

$-\mu\triangle u-\nabla B(divu)=f_{1}$ in $\Omega$ ,
(2.15)$u=0$ on $\Gamma$ .

Inserting the decomposition $u=w+C\phi$ into (2.12), the coefficient vector
$C$ can be expressed by (see [9, 10])

$C=(\mu\pi)^{-1}\int_{fl}(f_{1}+\nabla Bdivu)\phi_{-}$$dx$ $+ \pi^{-1}\int_{fl}u\Delta\phi_{-}$ $dx$ . (2.16)

Replacing the function $u$ of (2.15) by $u=w+C\phi$ arid using the fact

$/\zeta l\phi\Delta\phi_{-}dx=0$ ,

the coefficient vector $C$ can be expressed by (see Lemma 2.2 in Section 2)

$C$ $=$ $\mathcal{M}^{-1}(/\zeta)^{\mu w\Delta\phi_{-}-B}$divw$\nabla\phi-$ dx $+ \int_{\zeta l}f_{1}\phi_{-}$ dx$)$ (2.17)

$;=$ $C_{1}(w)+C_{2}(f, g)$ ,

where

$\mathcal{M}=\mu\pi I+\int_{\Omega}B\nabla\phi\otimes\nabla\phi-$dx is the (2,2)-matrix,

$C_{1}(w)=\mathcal{M}^{-1}[-(Bdivw, \nabla\phi_{-})+\mu(w, \Delta\phi_{-})]$ , (2.18)
$C_{2}(f, g)=\mathcal{M}^{-1}[(f, \phi_{-})+(Bg, \nabla\phi_{-})]$ ,

where I is the identity matrix and $\otimes$ denotes the tensor product.
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The theory of the corner singularity for the compressible Stokes system
was extended to the one of the edge singularity for the compressible Stokes
system [21]. The result is

Theorem 2.2. Let $\Omega$ have only one concave corner, which coincides with
the sector $S$ near the origin. Suppose $\nu=0$ . If $[f, g]\in H^{-1}\cross L^{2}$ , then
there is a unique solution $[u,p]\in H_{0}^{1}\cross L^{2}$ of (2.4), satisfying $\Vert u\Vert_{1}+\Vert p||_{0}\leq$

$C(\Vert f\Vert_{-1}+\Vert g\Vert_{0})$ where $C=C(\Omega, \mu, \kappa)$ . Also, if $\mu$ is large enough and if
$[f, g]\in H^{s-2}\cross H^{s-1}$ for $1\leq s<\alpha+1$ , then $\Vert u\Vert_{s}+\Vert p\Vert_{s-1}\leq C(\Vert f\Vert_{s-2}+$

$\Vert g\Vert_{v-1})$ for a constant $C=C(\Omega, \mu)$ . Finally, if $\mu$ is large enough and if
$[f, g]\in L^{2}\cross H^{1}$ , the velocity $u$ can be split as follows:

$u=(\mathcal{E}\star c)\phi+w$ , $w:=u-(\mathcal{E}\star c)\phi$ , (2.19)

$\mathcal{E}(r, z)=\frac{r}{\pi(r^{2}+z^{2})}$ , (2.20)

$c(z)$ $:= \frac{1}{2\pi i}\int_{\gamma}\langle\Lambda(\lambda);(\lambda I-c^{r})_{zz})^{-1}h^{*}(z)\rangle d\lambda$ , (2.21)

where $\star$ is the convolution in the $z$ variable, $\Lambda(\lambda)$ is a continuous linear
functional on $L^{2}(\Omega)$ (see (2.10)), $h^{*}$ is a known vector function with the
components $h_{i}^{*}$ and $\gamma$ is a vertical axis satisfying $\mathcal{R}e\lambda>0,$ $\lambda\in\gamma$ . Fur-
$thermo\gamma e$ , we have $c\in H^{1-\alpha}(\mathbb{R}),$ $\Delta[(\mathcal{E}\star c)\phi]\in L^{2}$ , and the $t_{7}\cdot iplet[u_{R},p, c]$

satisfies
$\Vert w\Vert_{2}+\Vert p\Vert_{1}+\Vert c\Vert_{H^{1-\alpha}(\mathbb{R})}\leq C(\Vert f\Vert_{0}+\Vert g\Vert_{1})$ , (2.22)

where $C=C(\Omega, \alpha, \mu, \kappa)$ . If $\Omega$ is convex, then $u=w$ satisfies (2.22).

3. The time-dependent case

In this section we will introduce some known results for the corner singu-
larity expansion for the time-dependent compressible viscous Navier-Stokes
fluid flows on a bounded domain having only one concave corner. However,
the only known results, as far as we know, are the ones shown in [22, 23]. In
[22] a corner singularity expansion for a linearized problem is derived and in
[23] the expansion for the nonlinear problem is derived. Here we state main
results for the corner singularity expansion and give some motivations used
and related backgrounds.

As mentioned in the stationary case the regularity issue of solutions to
the compressible Navier-Stokes system on domains with singular boundaries
is very important problem to be resolved. Mostly the un-stationary com-
pressible Navier-Stokes systems have been considered either in the wliole
space $\mathbb{R}^{n}$ or in the half space of $\mathbb{R}^{n}$ or in $tI_{1}e$ exterior domains of bounded
regions or in bounded domains witli sniooth boundaries. In [29] a global ex-
istence of classical solution for the un-stationary system of polytropic ideal
fluids was proved in $\mathbb{R}^{d}$

’

assuming the data has }$iigh$ regularity order and is
close to a stable equilibrium. The case of the half space or of an exterior
domain was studied in [30] and the one of a bounded domain with smooth
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boundary in $\mathbb{R}^{3}$ was studied in [36], showing the existence of a global in
time solution. Furthermore, in [27, 28] the global in time existence of weak
solutions in tlie sense of distributions with bounded physical eriergy in the
spirit of Leray’s weak solutions is studied and in [8] integrability up to the
boundary is studied in a bounded domain with Lipschitz boundary in $\mathbb{R}^{3}$ .
Also, in [7] regularity of weak solutions is proven in the plane $\mathbb{R}^{2}$ under pe-
riodic boundary condition, and in [5] an optimal regularity of global strong
solutions is investigated under initial data close to a stable equilibrium, and
in [6] uniqueness for compressible flows with data having critical regularity
is stated.

However, if one try to understand such properties of solutions in doinains
with singular boundaries, the issues related to the singular boundaries have
to be dealt with. Besides, the issues have been involved and critical in the
corriputational fluid mechanics [2, 31, 34, 37]. Not only stresses and pressure
singularities but also many interesting $pI_{1}ysica1$ phenomena occur around the
comers; for instance, eddy, recirculation, flow separation and discontinuity,
etc. Hence it will be worthwhile to give a rigorous mathematical analysis
for the occurrence of the singularities.

Main issues not resolved were to give an explicit description for the singu-
lar behaviors of solution to the system in domains with singular boundaries
having corners, edges, turning points, etc, and to establish an increased reg-
ularity for the smoother part. However, known results for the unsteady case
are very few in the literature; we refer to [10, 11, 12] for for the Laplace prob-
lem with parameter or the heat equation and [24] for the time-dependent
incompressible Navier-Stokes system. In the unsteady case the coefficient of
the corner singularity is a function of time, so the space of singular functions
is infinite dimensional. However the coefficients of singularities at corners
decay exponentially as the distance to corners increases.

The time-dependent compressible Navier-Stokes system (see [2]) to be
considered in a bounded polygon $\zeta$ } $\subset R^{2}$ is

$\rho u_{t}-\mu\Delta u-\nu\nabla divu+\rho(u\cdot\nabla)u+\nabla p=0$ in $Q$ ,
$\rho_{t}+div(\rho u)=0$ in $Q$ ,

(3.1)
$u=0$ on $\Sigma$ ,

$u(0)=u_{0},$ $\rho(0)=\rho_{0}$ on $\zeta\}$ ,

where $Q:=\Omega\cross(0, T)$ with a number $T>0,$ $\Sigma$ $:=\partial\Omega\cross(0, T)$ is the lateral
boundary of $Q;u$ and $p$ are the velocity and pressure variables; $\mu$, and $\nu$ are
the coefficients of viscosity with $\mu>0$ and $\mu+\nu>0;\rho=\rho(p)$ is a strictly
increasing smooth function of pressure $p_{7}\cdot u_{0}$ and $\rho 0$ are given initial data
with $u_{0}|_{\partial\zeta\}}=0$ and $\rho_{0}=\rho(p_{0})$ . We shall take the simpler case $\nu=0$ .

We define a function $\mathcal{E}$ by

$\mathcal{E}(r, t)$ $:=re^{-r^{2}/ct}/\sqrt{c\pi t^{3}}$ , $t>0$ , (3.2)
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where $c$ is a number. We here state a rnain regularity result for (3.1), which
is shown in [23].

Theorem 3.1. Let $2<q<1/(1-\alpha)$ . Assume $u_{0}\in H^{2,q}\cap H_{0}^{1}$ and $p_{0}\in H^{1,q}$ .
Suppose the Reynolds number $R_{e}$ is sufficiently small. Let $0<T\leq R_{e}^{-1}$ be
a number. For any positive constant $C_{1}$ , there is a constant $C_{2}$ such that if
$\Vert u_{0}\Vert_{2,q}+\Vert p_{0}\Vert_{1,q}\leq C_{1}$ and for some constant $\tilde{\rho}>0$

$|1\nabla u0\Vert_{1,q}+\Vert\nabla p_{0}\Vert_{1,q}+\Vert\tilde{\rho}-\rho_{0}\Vert_{\infty}\leq C_{2}^{Y}$ ,
$tf\iota en$ there is a unique solution $[u, p]\in L^{q}(0, T;H_{0}^{1,q})\cross L^{q}(0, T;H^{1,q})$ of sys-
$tem(3.1)$ . For each $n\in \mathcal{I}$ there is a vector function $c(t)$ on the half interval

$\mathbb{R}^{+}$ , with zero outside $(0, T)$ , such that the velocity $u$ can be split as follows:
$u=(\mathcal{E}\star c)\phi+u_{R}$ , $u_{R}:=u-(\mathcal{E}\star c)\phi+u_{0}$ ,

where $\star$ denotes convolution in time $t$ . Also the function $c\in H^{1/q’-\alpha/2,q}(0, T)$

where $1/q+1/q’=1$ , and the pair $[u_{R},p]\in L^{q}(0, T;H^{2,q})\cross L^{q}(0, T;H^{1,q})$ ,
satisfies the inequality

$ess\sup_{0\leq t\leq T}\Vert u_{R}(t)-u_{0}\Vert_{1,q}+\Vert u_{R}-u_{0}\Vert_{L^{q}(0,T;H^{2,q})}$

$+\Vert u_{R}’\Vert_{L^{q}(0,T;L^{q})}+\Vert c\Vert_{H^{1}/q’-\alpha/2,q(0,T)}$

(3.3)
$+\Vert p-Po\Vert_{L^{q}(0,T;H^{1,q})}+||p’\Vert_{L^{q}(0,T;Lq})$

$+\Vert p-p_{0}\Vert_{L^{\infty}(0,T,H^{1,q})}\leq C_{3}$ ,
whem, $C^{v,}\backslash \backslash =C(C_{1}, C_{2})$ . If $1<q<2/(2-\alpha)$ , so $\mathcal{I}=\emptyset$ , then $u=u_{R}$ sati sfies
(3.3).

Remark 3.1. With the restriction $T\leq R,$ 1 the Jacobian determinant of the
streamline function directed by the velocity vector field will not vanish. The
smallness condition of the Reynolds number $R_{e}$ implies that the considered
flow can be thought of a little perturbation around a laminar constant flow.
The coefficient function in the singular part of the velocity is convolution
integral in time $t$ as follows:

$( \mathcal{E}\star c)(t)=\int_{0}^{t}\mathcal{E}(\sigma)c(t-\sigma)d\sigma$ ,

so it is not zero for all time $t>0$ (provided that $c\neq 0$) and decays expo-
nentially as the distance $r$ to the vertex $P$ increases.

In the lowest order level the corner singular2$ty$ corresponding to the pres-
sure does not have to be split. However, if $u_{s}(x, t)$ $:=(\mathcal{E}(x, \cdot)\star c)(t)\phi(x)$ is
defined, the pressure $sir\iota gular\dot{z}ty$ is $defir\iota ed$ by

$p_{6}( x, t):=\int_{0}^{t}(\kappa^{-1}divu_{s})(h(\varphi, s), s)ds$ ,

where $h$ is the particle trajectory mapping and $\varphi$ its inverse function. Hence
by the $fo7Ynula$, we $obser\cdot ve$ that the $co\gamma\cdot\gamma\iota er$ singular$\vee ity$ is propagated along
the streamlines emanating from the comers and the derivatives of $p_{s}$ can be
infinite near the concave vertices.
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The reason of choosing the interval $(2, 1/(1-\alpha))$ in Theorem 1.1 is as
follows. If $q\geq 2/(2-\alpha)$ , the velocity $u$ is split. To bound the pressure $p$ near
the $cor\iota cave$ vertices in the $L^{q}(0, T;H^{1,q})-nor\cdot rr\iota_{f}$ the $ir\iota dexq$ is required to be
strictly less than $1/(1-\alpha)$ with $\alpha<1$ and the inequality $q>2$ is required to
guarantee that the density function is well-defrned. Near the convex vertices
$(\alpha>1)$ , the index $q$ is chosen in the interval $($ 1, $\infty)$ and so $q$ can be chosen
in the $rar\iota ge2<q<\infty$ .

To show Theorem 1.1 we transform the problem (3.1) into the one with
zero initial data and linearize the resulted one in a suitable way. We ex-
plain some main procedures of showing Theorem 3.1. First, we consider a
linearized problem for the system (3.1) (see [22, 23]) but here introduce a
simple linearized version, for simplicity:

$R_{e}^{-1}(u_{t}-\nu\Delta u)+U\cdot\nabla u+\nabla p=f$ in $Q$ ,
$R_{e}^{-1}p_{t}+U\cdot\nabla p+$ divu $=g$ in $Q$ ,

(3.4)
$u=0$ on $\Sigma$ ,

$u(\cdot, 0)=0,$ $p(\cdot, 0)=0$ on $\Omega$ , .

where $R_{P}$ is the Reynolds number for the given ambient flow $U,$ $\nu$ is the
viscous number, the functions $U,$ $f$ and $g$ are given.

From the system (3.4) we see that the first equation is parabolic(or elliptic
in the steady case) in the velocity variable and the second one is hyperbolic in
the pressure one. So it is of mixed type. To solve this problem one has to use
methods(schemes) considering these two characters. Therefore we consider
two solution operators: One is the solution operator $A$ : $L^{2}(0, T;H^{-1})\mapsto$

$L^{2}(0, T;H_{0}^{1})$ , defined by $u=Af$ , with $u_{t}\in L^{2}(0, T;H^{-1})$ , where $u$ is the
solution of

$u_{t}-\triangle u=f$ in $Q$ ,

$u=0$ on $\Sigma$ , (3.5)
$u(0)=0$ on $\Omega$ ,

where $Q=\Omega\cross(0, T)$ and $\Sigma=\Gamma\cross[0, T]$ . The other one is the operator
$B$ : $L^{2}(0, T;L^{2})\mapsto L^{2}(0, T;L^{2})$ , defined by $q=BG$ , where $q$ is the solution
of

$q_{t}+U\cdot\nabla q=G$ in $Q$ , $q(\cdot, 0)=0$ on $D$ , (3.6)

where $U$ is a given vector field.
Since the corner singularity expansion to the problem (3.5) can be ob-

tained by taking the inverse Laplace transform to the corner singularity
expansion for the Laplace problem with parameter, we consider

$-\triangle v+\lambda v=g$ in $\Omega$ ,
(3.7)

$v=0$ in $\Gamma$ ,
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where $\lambda$ is not a real negative number to stay away from the eigenvalues of
the Laplace operator $\Delta$ . The corner singularity result (see [10, 11, 12]) of
the solution ) of (3.7) can be stated as follows:

Lemma 3.1. Let $1<q<2/(1-\alpha)$ . Let $g\in L^{q}$ or $g\in H^{-1,q}$ . Let $v=A^{\lambda}g$

be the solution of (3.2). Then $A^{\lambda}$ is a bounded opemtor from $H^{-1,q}$ to $H^{1,q}$ ,
satisfying I $A^{\lambda}g\Vert_{1,q}+|\lambda|\Vert v\Vert_{-1,q}\leq C\Vert g\Vert_{-1,q}$ . (i) If $q<2/(2-\alpha)$ then
$v\in H^{2,q}$ and satisfies

$\Vert v\Vert_{2,q}+|\lambda|^{1/2}\Vert v\Vert_{1,q}+|\lambda$ I II $v$ lo, $q\leq C\Vert g\Vert_{0,q}$ .

(ii) Let $2/(2-\alpha)<q<1/(1-\alpha)$ . Tfiere $ex$ist a continuous $lir\iota ea7^{\cdot}fo7^{\cdot}\tau r\iota$

$\Lambda(\lambda)$ , which is denoted by $\Lambda^{\lambda}$

$:=\Lambda(\lambda)$ , on $L^{q}$ and a function $\psi(\lambda)\not\in H^{2,q}$ .
Then the solution $u$ of (3.2) may be split as follows:

$v=\Lambda^{\lambda}[g]\psi(\lambda)+v_{R}$ , $v_{R}$
$:=v-\Lambda^{\lambda}[g]\psi(\lambda)$ . (3.8)

Furthermore, there is a $con9tantC$ such that
$|1v_{R}\Vert_{2,q}+|\lambda|^{1/2}\Vert vR\Vert_{1,q}+|\lambda$IlI $v_{R}$ Io, $q\leq C\Vert g\Vert_{0,q}$ , (3.9)
$|\Lambda^{\lambda}[g]|\leq C(1+|\lambda|)^{\alpha/2-1/q’}\Vert g\Vert_{0,q}$ . (3.10)

The singular function $\psi$ can be given by
$\psi(\lambda)=e^{-r}\phi\sqrt{\lambda}$ , if $\alpha>2/q’-1$ ,

(3.11)
$\psi(\lambda)=(1+r\sqrt{\lambda})e^{-r\sqrt{\lambda}}\phi$ , if $\alpha\leq 2/q’-1$ .

In order to cast the corner singularity result of the Laplace problem with
parameter irito the one of the Heat equation (3.5) we apply $t\mathfrak{l}\iota e$ inverse
Laplace transform to the expansion given in Lemma 3.1 and can forrnulate
the following theorem (see [10, 11, 12]):

Theorem 3.2. Let $1<q<2/(1-\alpha)$ and $\mathbb{R}+=(0, \infty)$ . If $f\in L^{q}(\mathbb{R}_{+};H^{-1,q})$

then there is a unique solution $u$ of (3.5), satisfying the inequality
$\Vert u\Vert_{L^{\infty}(\mathbb{R}+;L^{q})}+\Vert u\Vert_{L^{q}(\mathbb{R}_{+};H^{1,q})}+\Vert u’\Vert_{L^{q}(\mathbb{R}_{+};H^{-1_{1}q})}$

$\leq C\Vert f\Vert_{L^{(}l(\mathbb{R}+;H^{-1}l)}(.$ (3.12)

On the other hand, let $2/(2-\alpha)<q<1/(1-\alpha)$ . If $f\in L^{q}(\mathbb{R}_{+};L^{q})$ , then
the solution $u$ is split as follows:

$u(t)=(\mathcal{E}\star\Phi(f))(t)\phi+u_{R}(t)$ ,

$\Phi(f)(t)=\frac{1}{2\pi i}\int_{\gamma}\{\Lambda(\lambda);(\lambda I-\partial_{t})^{-1}\}d\lambda f(t)$ , (3.13)

$u_{R}(t)=u(t)-(\mathcal{E}\star\Phi(f))(t)\phi$ ,

satisfying $\Phi(f)\in H^{1/q’-\alpha/2,q}(\mathbb{R}_{+})$ and $\Lambda(\lambda)$ is defined in Lemma 2.1. Here
the curve $\gamma$ is a vertical axis satisfyirt,$g\mathcal{R}e\lambda<0,$ $\lambda\in\gamma.$ Furthervnore the
regular part $u_{R}$ and the function $\Phi(f)$ satisfy

$\Vert u_{R}\Vert_{L^{\infty}(\mathbb{R}+:H^{1,q})}+\Vert u_{R}\Vert_{L^{q}(\mathbb{R}+;H^{2,q})}+\Vert u_{R}’||_{L^{q}(\mathbb{R}+;L^{q})}$

$+\Vert\Phi(f)\Vert_{H^{1/q’-\alpha/2,q(\mathbb{R}_{+})}}\leq C\Vert f\Vert_{L^{q}(\mathbb{R}+;L^{q})}$ . (3.14)
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If $q<2/(2-\alpha)$ , the solution $u=u_{R}$ satisfies the inequality (3.14),

Next we will discuss about roles of the transport equation (3.6). As no-
ticed from the continuity equation in (3.4), to understand the transport
equation (3.6) well is very important because it describes physical phenom-
ena carrying fluids in one place over sorne otIier places, for example, in this
contents, carrying fluids having a corner singularity into the region. Hence
the role of the vector field $U$ appearing in the equation is critical since it
gives direction to the considered fluid flows and also it is related to the comer
singularity expansion because it comes from a liriearization of the velocity
vector field. Hence one needs to specify a Banach space for the vector field
U. We set, for $q>2$ ,

$W:=L^{q}(0, T;H_{0}^{2,q})\cap L^{\infty}(0, T;H^{1,q})\cap H^{1,q}(0, T;L^{q})$ ,
$Z:=H^{1/q’-\alpha/2,q}(0, T)$ .

Let $\Vert$ . lw and $\Vert\cdot\Vert_{\mathcal{Z}}$ be the norms induced by the spaces $W$ and $Z$ , re-
spectively. For handling nonlinearity later it is assumed that the vector $U$

vanishes on $\Sigma\cup\partial\Omega$ , and has the corner singularity decomposition of the
form

$U=(\mathcal{E}\star d)\phi+U_{R}$ , (3.15)

where $U_{R}\in W$ , and $d\in Z$ is a given function of only $t$ variable, with zero
outside $(0, T)$ , and $\mathcal{E}$ is given in (3.2).

By a particle trajectory mapping by the vector field $[$ 1, $U]$ , for each fixed
$\overline{x}$ we consider a curve $(h(\overline{x}, t), t)$ where $h$ is the solution of

$h_{t}(\overline{x}, t)=U(h(\overline{x}, t), t)$ , $h(\overline{x}, 0)=\overline{x}$ . (3.16)

Since $U=0$ on $\Sigma\cup\partial\Omega$ , the curve $(h(\overline{x}, t), t)$ emanates from the points
in $\zeta\}\cross\{0\}$ . From the theory of the ordinary differential equations, if the
vector function $U(x, t)$ is Lipschitz continuous in $x$ , the solution $h$ to (3.16)
exists, is unique, and is continuous differentiable in $t$ and continuous in $\overline{x}$ .
For fixed $t$ the equation $x=h(\overline{x}, t)$ has a well-defined solution $\overline{x}$ , where
we write $\overline{x}=\varphi(x, t)=(\varphi^{1}(x, t), \varphi^{2}(x, t))$ for a vector function $\varphi$ . Under
a suitable condition on $U$ the Jacobian determinants $J_{h},$ $J_{\varphi}$ of $h$ and $\varphi$ ,
respectively, will not be zero on the interval $[0, T]$ for a number $T>0$ .

Next we give a Lemma (see [23]), which gives some criteria for the particle
trajectory mapping $h(\overline{x}, t)$ under the condition that the vector $U$ has the
decomposition (3.15).

Lemma 3.2. If $1<q<2/(2-\alpha)$ , let $U\in$ W. If $2<q<1/(1-\alpha)$ ,
let $U$ have the decomposition given in (3.15). Then the vector functions
$h$ and $\varphi$ are well defined and continuously differentiable on the cylinder
$Q=\zeta\}\cross(0, T)$ . The Jacobian $deter\gamma\gamma\iota inantsJ_{h},$ $J_{\varphi}$ do not vanish on the
interval $[0, T]$ and are estimated by a constant that depends only on $\Omega$ and
the quantity $\gamma_{0}:=|U_{R}||_{W}+|d||z$ .
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By Lemma 3.2 a criteria for the trajectory mapping $h(\overline{x}, t)$ is given. Based
on this we give a solution formula for the transport equation (3.6). In fact
it can be obtained by integrating alorig tfie trajectories gerierated by the
vector $[$ 1, $U]$ . Using the trajectory mapping $h(\overline{x}, t)$ and its inverse $\varphi(x, t)$ ,
tfie solution of (3.6) is given by

$(BG)( x, t)=\int_{0}^{\downarrow}G(h(\varphi, \sigma\cdot), s)ds$. (3.17)

Note $t$}$iat$ regularities of the function $BG$ are essenti\‘al in $estat$)$lishirig$ the
corner singularity expansion of solution of (3.4) and its regularity for the
reniainder (for details, see [23]): Let $1<q<\infty$ . For $0\leq s\leq 1$ the mapping

$B$ : $L^{q}(0, T;H^{s,q})arrow L^{q}(0, T;H^{s,q})$

is a bounded operator, satisfying $\Vert BG\Vert_{L^{q}(0,T;H^{A},q})\leq C\Vert G\Vert_{L^{q}(0,T;H^{s,q})}$ where
$C=C(D, \gamma_{0})$ .

We next cite a result for the corner singularity expansion result of (3.4),
which can be derived by the property of the transport operator $B$ and the
corner singularity result of the Heat equation (see [23] for details):

Theorem 3.3. Let $0<T\leq R_{e}^{-1}$ and 1 $<q<2/(1-\alpha)$ . Let $f\in$

$L^{q}(0, T;H^{-1,q})$ and $g\in L^{q}(0, T;L^{q})$ . Suppose that the Reynolds $\gamma\iota u\gamma’\iota ber$.
$R_{P}$ is sufficiently small. There is a unique solution $[u,p]$ of (3.4). Ad-
$diti_{0\gamma}\iota ally$ , if we assume that $f\in L^{q}(0, T;L^{q})$ and $g\in L^{q}(0, T\cdot H^{1,q})$ for
$2<q<1/(1-\alpha)$ , then the velocity solution $u$ can be split as follows:

$u=(\mathcal{E}\star c)\phi+u_{R}$ , $u_{R}:=u-(\mathcal{E}\star c)\phi$ ,

where $c(t)$ is a vector function of the time variable $t$ . Also the function
$c\in H^{1/q’-\alpha/2,q}(0, T)$ and there is a constant $C_{4}=C(\Vert U_{R}\Vert_{W}, \Vert d\Vert_{Z})$ such
that

$ess\sup_{0\leq t\leq T}\Vert u_{R}(t)\Vert_{1,q}+\Vert u_{R}\Vert_{L^{q}(0,T;H^{2,q})}$

$+\Vert u_{R}’\Vert_{L^{q}(0,T;L^{q})}+\Vert c\Vert_{H^{1}/q’-\alpha/2,q(0,T)}$

(3.18)
$+\Vert p\Vert_{L^{q}(0,T;H^{1,q})}+\Vert p’\Vert_{L^{q}(0,T;L^{q})}+\Vert p\Vert_{L^{\infty}(0,T;H^{1_{\mathfrak{l}}q})}$

$\leq C_{4}R_{e}(\Vert f\Vert_{L^{q}(0,T;L^{q})}+\Vert Bg\Vert_{L^{t}l(0,T;H^{1,t\prime})})$ .

If $1<q<2/(2-\alpha)$ , so $\mathcal{I}=\emptyset$ , then $u=u_{R}$ satisfies (3.18).

Finally we review the procedure of showing Theorem 3.1 for the corner
sirigularity expansion of (3.1). First a suitable linearized version of (3.1) is
needed, and second the known results for the Heat equation (3.5) and the
transport equation (3.6) are used (see Tlleorem 3.2 and the properties of
$tI_{1}e$ operator $B$ ). Third, a similar result like $T$}$leorem3.3$ for $t\mathfrak{l}_{1e}$ considered
linear problem need to be $S\mathfrak{l}ioWn$ and finally tlie Schauder fixed I)oint theory
can be applied to get the solution of (3.1), having the corner singularity
expansion. All these details are given in the paper [23]. $\square$
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