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1 Introduction

To discuss geometries with metrics induced by unitarily invariant norms, let A
be a unital C*-algebra on a finite dimensional Hilbert space H. The manifold in
discourse is A™, the positive invertible elements. In 1990’s, Corach-Porta-Lecht
[7, 8, 9] discussed Finsler geometry on it, which we call the CPR geometry: The
tangent space (and bundle) is the selfadjoint elements .4*. The invertible elements
G in A defines the principal fiber (frame) bundle: For a fixed A € A, the projection
74(G) = GAG*, the structure group Uy = {V € G | VAV* = A} = AV2YA-?
with the action Ly A = VAV*, which shows A* is homogeneous and hence A can
be assumed the identity element /. In this case U; is nothing but the unitary group
U. A itself is considered as the tangent space of G and it has the connection induced
by the horizontal space Hg = GA". Then, the parallel displacement of a tangent
vector X along v from 0 to ¢ is

P.X =T@)T(0)"1 X (T(0)*) "I (¢)*.
So the covariant derivative D, of a tangent field X (¢) along the curve ¥(t) in A* is
given by )
| DX =X — (77X + Xy7H).
Then the geodesic equation O = D,y = 4 — 4y~1% implies that the geodesic from A
to B is the path of geometric Kubo-Ando means [14]:

v(t) = A#,B = A3 (A" BA~3) A%,
Moreover the above manifold .A* is the Finsler space with a Finsler metric
L(X;A) = |X]la = |A7/2X A7V

at each point A € A and the distance between two points defined as the shortest
length of a path is so-called Thompson metric d(A, B) = || log A=1/2BA-1/2| .

The CPR geometry does not always determine a unique Finsler metric. In fact,
we show each unitarily invariant norm ||| ||| also gives a Finsler metric for the CPR
geometry:



Theorem 1. For a unitarily invariant norm ||| ||| on A. a function
Ly y(X;4) = [IX |4 = |42 X A2
determines a Finsler metric on A* for the CPR geometry.

Proof. Since Uy = +(t)~'/?T'(¢) defines a unitary for each ¢ by v = I'T*, we show the
Finsler condition by

IPX My = NTLG(0) ™2 X7 (0) V2T || = lllv(0) 72X 4(0) /2| = I X llaco)-
O

A Finsler metric Ly j(X; A), which is called a unitarily invariant Finsler one, is
homogeneous like L(X; A):

Theorem 2. For any invertible operator Y,
Ly y(Y*XY;Y"AY) = Ly y(X; A).
Proof. Since [|Z|| = 11ZIll = IVZ*Z||| = IVZZ*|||, we have

Ly y(Y"XY;Y"AY) = ||[(Y*AY) V2Y* XY (Y*AY) ™Y 2”' |

=1y (Y*AY)‘1/2Y*XY(Y*AY)_IY*XY(Y*AY)—W“l

= \/(Y*AY)"1/2Y*XA‘1XY(Y*AY)‘1/2”I

= |[Vaxyr=ay)y-xa-va||

= \/A‘1/2XA_1XA“1/2|“ = “lA'l/zXA‘l/zm = Ly 1(X; A).
a

2 Metric space of Thompson’s type

The geodesic A#,B is one of the shortest paths with respect to this metric: The
length £(-y) of path ~(¢) is defined by

1 1
()= [ Lo @t = [ 1o Ot e
If () is a path from A to B, then |

d(A, B) = inf £(y) = ((A#.B) = || log(A™/*BA~12)|

= log (max{[|A"2BA™?|, || B~*2AB~/?||})
= log (max{r(A™'B), r(B'A)}).
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The homogeneity of A™ implies
d(A,B) =d(Y"AX.X*BX) =d(I,A"V?BA~Y2)

for invertible X. The metric d makes A™ a complete metric space and it is called
the Thompson (part) one [19].

Also, Corach et.al. [8, 3] showed the convexity for the metric: For geodesics v
and 9, the followings are equivalent:

(i) F(t) = d(v(t),8(t)) = log [l7(t)~/26(t)v(t)~*/?||: convex:
(i) d(v(t).6(t)) = (1 —)d(+(0),6(0)) + td(v(1),6(1)).

The above equivalence is guaranteed by the interpolationality for the path A#;B
This convexity suggests that the curvature of A* is negative. In Riemannian geom-
etry, the above convexity implies exactly the negativity of the curvature. But, in
Finsler geometry, the notion of it has not been completely established yet.

Now we show the above properties also hold for the metric

dy y(4,B) = / Ly y('@); () dt

EP(A B)

for a unitarily invariant norm ||| || where P(A, B) denotes the (differentiable) paths
from A to B. To see the path A#.B is one of the shortest paths directly, recall the
following ‘logarithmic-geometric mean inequality’ due to Hiai-Kosaki [13):

Hiai-Kosaki inequality. I / 1 XKt 2 I1H2X K2,
0

Theorem 2 implies the homogeneity of dy y:

Lemma 3. dy y(A, B) = dy y(X*AX, X*BX) holds for invertible X.

Proof. Note that X*P(A, B)X = P(X*AX, X*BX) holds for all invertible X. Since
Ly y (X' (0) X5 X*v(£) X) = Ly y(¥'(£); 7(2)), we have

1
dy y(X*AX, X*BX) =-,ep(x$)£,x-m¢)/o Ly y (' (£); (1)) dt

1
= i L *./ . » X
%}ng/ B §(X™Y ()X X (1) X) dt

‘7@(,, B) / Ly g (7' (2); (1)) dt = dy y(A, B)

by Theorem 2. a

The following formula is parallel to Bhatia's one [6, (6.42)].
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Lemma 4. Let H(t) = log~(t) fory € P(A, B). Then

d , 1 |
—~(t) = — (t) — / euH(t)Hl t e(l—u)I{(t)d )
dt () dte A (t) u
Proof. Since
__a_d___euH(t)e(l—u)H(t-hs) — euH(t) (H(t + E) _ H(t))e(l—u)H(t+s),
U

we have
1
/ euH(t) (H(t + E) _ H(t))e(l*u)ﬂ(t+€)du - [euH(t)e(l-—u)H(t+e)]; — eH(t+€) _ eH(t)_
0 .

The require formula is obtained by multiplying 1 and € — 0. O

Now we show that it is a metric of Thompson type, which is mentioned also in [5],
and moreover that the geodesic A#;B is the shortest path in almost all cases. To
see this, recall that the norm ||| ||| is strictly convez if

1=tz +tyl| <1 for all ¢ € (0,1) and all distinct unit vectors z and y.
Then the strict triangle inequality holds (cf. [17]):

llz +ylil < flill + Myl

unless one of the vectors is a nonnnegative multiple of the other.

Note that we identify v(f(t)) with (¢) if f is increasing function with f(0) = 1
and f(1) = 1 since they are the same as sets; {v(f(t))|t € [0,1]} = {7(t)|t € [0,1]}
and give the same length: £(v(f(?))) = £(~(t)).

Theorem 5. A function dy  is a metric on A* and

dy (A, B) = /O 1 Lyy (%A#tB’A#tB> dt = “| log A™/2BA™Y 2”]

Moreover, if the norm ||| ||| is strictly convez, then the geodesic A#.B is the shortest
path.

Proof. First we see dy (A, B) 2 “l log A‘1/2BA“1/2|H. In fact, by Lemma 4 and the
Hiai-Kosaki inequality,

1
|||’y(t)‘1/2'y’(t)'y(t)"1/2||| - IHe—H(t)/2 (/ euH(t)H/(t)e(l—u)H(t)du> e-—H(t)/Q“I
0

([ o e o)
0
g l” (el‘l(t))l/2 e—H(t)/2Hl(t)e—H(t)/2 (e}':f(t))l/2 m = mHl(t)m
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holds and hence the required inequality is obtained by
() = /01 =12 ()2 () lat
2 [Cnarenia z || [ # ]| = los 5~ tog Al
Let C = A~Y2BA~Y/2 and I'(t) = C*. Then
b = [ et og et = iog il = l1og C - 1og 11

and hence I' attains the shortest length and d(I,C) = ||log C||. By Lemma 3, we
have the geodesic v(t) = AY2T'(t)AY? = AV/2CtAY2 = A#,.B. Moreover,
dy y(4, B) = dy y(I,C) = || log C|| = |H log A™/2BA/2|
= IH log B—1/2AB*1/2IH =dy (B, A).

Thus the symmetry of dy (A, B) holds. It is clear that dj (A4, B) = 0 if and only if

A = B and that the triangle inequality for dj y holds, which shows dj y is a metric.
Next suppose the norm is strictly convex and v attains the shortest. By home-

geneity, we may assume y € P(I, B). Then, for H(t) = log~(t), it must satisfy

/01 & @it = | /01 H'(t)at| = llog BII.

Thereby we have H'(t) is a nonnegative scalar multiple of log B for each t. In fact,
we use the broken line approximation to obtain the length of H(t):

/ B @)t = lim 3 I (bna) = eI

teA

Take the following monotone increasing sequence converging to fol |H'(t)]|dt:

,é o (&) -2 (50 + [ neremee
Then all the triangle inequalities are equal: e.g.,
Il (%) - # (52) |
<7 (7%) -2 (5=) 1+ 7 (=) - # (B42) |1

For n = 0 and k = 1, we obtain H(1) — H(1/2) = s(H(1/2) — H(0)) = sH(1/2),
that is, H(1) = (s + 1)H(1/2). Putting f(1/2) = 1/(1 + s), we have H(1/2) =
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f(1/2)H(1) = f(1/2)log B. Since H is continuous, we can define f for all ¢t € [0, 1]
and

H(t) = f(t)log B = log Bf® ie., ~(t)=B®.
Then f(1) = 0 and f(1) = 1 and moreover f must be monotone, hence increasing,

so that + is the same as the geodesic B?. O

Remark 1. If the norm is the operator one or the trace one, then it is not strictly
convex and indeed the shortest path is not uniquely determined. In fact, take a
path IV,B = (1 —t)I +tB € P(I, B) for B > I. Then, considering

Ly ytrsv) = (B = DI +t(B - D)||
and a function F(z) = (z/(1 +tz)) is monotone increasing, we obtain ¢(IV;B) =
| log BJ|| in both cases.

Remark 2. In the above metric dj j, it is easy to see that AT is also complete. In
particular, if a unitarily invariant norm is normalized; ||P|| = 1 for projections of
rank one, then || X| £ [ X|| holds and hence the convergence is reduced to the
original Thompson metric.

Next we see the following equivalence:
Theorem 6. For geodesics v and &, the followings hold and they are equivalent:
(©) F(t) = dy y(1(8),6()) = || 1ogv(t) /26t (5)72|| i conves.
(i) dy y(A% B') = tdy y(A, B).
(iil) dy y(v(8),6(8)) = (1 = t)dy y(+(0),6(0)) + tdy y(7(1),6(1)).
Proof. 1t suffices to show the case of matrices. Then Araki [2] showed

k k
H )‘j(B—t/2AtB—t/2) g HA;(B—1/2AB~—1/2)

Jj=1 Jj=1

for 0S¢t =1and 1<k < n where ) is the j-th eigenvalue (singular value in this
case) under the decreasing order. Thus we have the weak-majorization

(1) log B~4/?A'B~%? < tlog B-Y/2AB1/2,
On the other hand, Araki’s inequality also holds for A~! and B~!;
k k
H ’\j ((B—t/2AtB—t/2)—1) — II )\j(Bt/2A—tBt/2)
Jj=1 j=1

k
= H)\;(Bl/2A—1B1/2) = H,\; ((B’l/2AB‘1/2)~1) ’

j=1 Jj=1
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so that
(2) —log B~1?AtB/? < —tlog B~Y2AB7Y?,
Combining (1) and (2), we have the majorization

log B™2AtB~"2<tlog B~Y/2AB~/2
and consequently we have (ii) by the convexity of f(z) = |z|:

dy (4%, B') = ”l log B’t/QAtB“””I < t”l log B“/2AB‘1/2H| = tdy y(4, B).

Then, the triangle inequality and the homogeneity (Lemma 3) and (ii) show (iii):
For y(t) = Am B, 6(t) = C m ;D and {(t) = C m B,

dy y(v(2),6(2)) = dy y(v(2), C(2)) + dy y(<(2), 6(¢))

=dy | (B2AB~%)1~t (B~3CB~%)'"Y) + dy y(C~¥BC-4)t, (C~4 DC~3)t)
S (1—t)dy y(B~3AB™2,B"iCB %) + tdy y(C~#BC~%,C~#DC4)

= (1 =t)dy y(A,C) +tdy y(B, D) = (1 — t)dy y(7(0), 8(0)) + tdy y(v(1),8(1)).

Let I'(t) = (Am pB) m ;(A m (B) and A(t) = (C m ,D) m 4(C m ;D). Then, by the
interpolationality, we have

F(t) = A m (1—t)p+th a.nd A(t) = C m (l—t)p—i-tqD,
so that,
F0)=Am,B, T(1)=Am,B, A0 =Cm,D and A(l)=Cm,D.

Thus, we have (iii) for I' and A implies (ii) for v and 6. Considering geodesics
v(t) = A* € P(I, A) and 6(t) = B* € P(I, A), we have (i) implies

dy y (A%, B*) = F(t) = F(1 =)0 +t) £ (1 — t)F(0) + tF(1)
= (1 = t)dy y(I, 1)+ tdy y(A, B) = tdy (A, B).

Thus all the relations hold and they are equivalent. O

3 Extreme Finsler geometry

Only two metric d.; are derived from Finsler metrics since
AV:B =Am l,tB = Aml,tB and A 'tB =Am —l,tB = Am_l,tB.

Here we observe Finsler geometries and metrics for r = +1. First we see the trivial
fiber bundle (A* xU, A*,U, 7;) where U is the unitary group of a unital C*-algebra



A where m((A,U)) = A and the action is Ly B = UBU*. Then the fiber is
7 1(A) = A x U and the horizontal lift T of a curve v is ['(¢) = (y(t). U) for a fixed
U € U. So the parallel displacement P, and the covariant derivative are trivial:

PX=X and DX(t)= %(t).

Thereby the geodesic equation is 0 = D,% = %(t). Thus we have the geodesic from
A to B is the arithmetic mean AV,B = (1 — t)A + tB. Here we define a trivial
Finsler metric L;(X; A) = || X||| and then

| 6@ = [ 1s@lde= [ 18- alla =15 - ).

We can verify AV,B attains the shortest: For any v € P(A, B), we have

i LGOnmae || Ji 5e)at]| = W@l = 1B - Al = a4, B)
0 0

Remark 3. Like Theorem 5, if the norm is strictly convex, then the geodesic is a
unique path attaining the shortest. Suppose the norm is the operator one or the
trace one, a path B* also attains the shortest length for B > I.

Next we consider the trivial bundle (A* x U, A+, U, m;) which is the same as the
preceding case except the action L(A,U)B' = AUBU*A. Then the parallel displace-
ment is

P.X = 4()U (U)X (U*¥(0))™) U*x(2) = 7(£)1(0) X~(0) "+ (2)
and hence the covariant derivative is obtained by
DiX(®) = lim - (+(607(¢ + €)X (¢ + )y(t + ) (t) — X(0)

=7(y Xy 4 ()
= 7( =YXy (@) T+ Xy =y 7'177‘1) (t)
- (X —4yX — X'y‘lf'y) (t).

The geodesic equation is

0=4(t) — 2¥(t)r' (#)3(2)
and thereby

779 =TT = T T
=2y T YT =T T =T (29T = A) v =0

35
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So there exists a self-adjoint operator C' with
C= ="'ty He) = (7))

and consequently. D +tC = ~~1(t) for some positive operator D. Since A = ~(0) =
D',B=%(1)=(D+C)!,wehave D=A"! C=B"1'-D=B"1!—- A"} that
is,

v@t) = (A +t(B A = (1 -t)A +tB) T = ALB.
Define L_;(X; A) = |||[A"*X A~Y)|. Then it is a Finsler metric. In fact,

Loy(PXi (1) = 170 X7(©0) " 1l = [17(0) ™ X7(0) 7| = L1(X37(0)).
Now, for f(t) = v~!, we have
G= (Y = =y (BT - AT
Therefore

/ LG = / = (= Ay

1
= [ 137 = a7 et = = -

and moreover it attains the shortest:

/ LaGrmde 2| I byt = - e = B — A
0 0

Remark 4. Like Theorem 5, if the norm is strictly convex, then the geodesic is a
unique path attaining the shortest. Suppose the norm is the operator one or the
trace one, a path B! also attains the shortest length for B < I.
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