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Nonlinear problems with singular diffusivity
and inhomogeneous terms

Hirotoshi Kuroda (Hokkaido University)

In this talk we consider a singular diffusion equation associated with total variation with
inhomogeneous terms as follows

v:[0,1] x[0,T7) - R™ (n > 1) : unknown function

U — lT(%L‘_)— div (a(x)’léfl') =0, (CI}, t) € (0’ 1) x (0, T)" (1)
(P) u(z,0) = uo(x), z €(0,1), (2)
'u,(O, t) = gp, u(l,t) =0, te (0: T), (3)

where a(z), b(z) are given positive, continuous functions on [0, 1] and uo is an initial data and
90,91 € R™ are boundary condition. This equation (1) is written as the gradient system by
taking energy '

1
E(u)z/0 a(z)|uz| dz

with respect to the norm || f||2 = [ b(z)|f(2)|>dz. The equation (1) describes the motion of
multi-grain problem studied in [3].

In the scalar valued case with boundary condition u(0) = 0,u(1) = 1, if a(z) has a unique
minimum point zg, then

1 1
B(u) = fo a(2)|ug| dz > a(z0) /O uz dz = a0)(u(l) — u(0)) = alzo).

If u is a step function and jumps only at zg, then the equality holds. So global minimizer is
unique [2]. In general case, a global minimizer quite naturally has a discontinuity since it makes
the energy low by concentrating its variation at the point where a(x) is minimal. It follows that
many global minimizers may be piecewise constant functions.

We consider stationary problem of (P) in the vector valued case. Suppose that inhomoge-
neous term a(z), b(x) satisfy ”concave condition” (cf [1]). We characterize stationary piecewise
constant solutions.
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