0000000000
016340 20090 55-61 55

Topological Spaces of Discrete Distributions
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Let f be a real-valued function defined on a non-empty set S. If f satisfies the following
conditions, then we call that f is a discrete distribution on §:

(1)o0< f(s)<1lforanyse€S.

(2) Z{f(s):s€ 5} <1

In case Z{f(s) : s € S} =1 is satisfied in (2), f is called to be a discrete probability
distribution on S. Let the support spt(f) of f be the set {s € §: f(s) > 0}. Obviously,
spt(f) is a countable subset of S for any discrete distribution f.

Let DD(S) and DPD(S) be the set of all discrete distributions and the set of all
discrete probability distributions on a set S respectively. DPD(S) is sometimes denoted
by 5. We consider the topology of pointwise convergence on DD(S). This topology on
DD(S) is the relative topology induced by naturally embedding DD(S) into the power
space I'S! of the unit interval I = [0,1].

It is obvious that DD(S) is a closed subset of I'5l, and hence DD(S) is compact. DD(S)
is Fréchet as a subspace of a Z-product of the unit intervals. A cardinal « is considered
as the topological space with the usual interval topology.

Let us call a non-decreasing continuous function f : x — [0,1] with f(0) = 0 to
be a cumulative, discrete distribution on x. Let CDD(x) be the set of all cumulative,
discrete distributions on k. On CDD(x), we consider also the topology of pointwise
convergence. The space CDPD(k) is the subspace of CDD(k) consisting of functions
satisfing lim,,. f(a) =1

Fact 1 (Dydak). A topological space X is metrizable if and only if X is embedded in
DPD(S) for some set S. In other words, for a cardinal x, DPD(k) is universal for

metrizable spaces of weight < k.

Theorem 1 The spaces DPD(x) and CDPD(K) are homeomorphic.
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Proof. For f € DPD(k),let F : x — [0,1] be the function defined by

F(0)=0,F(a Z{f(ﬂ) B<a} for 0<a<k.
Then the map ¥ : DPD(x) - CDPD(x) defined by ¥(f) = F is obviously one-to-one

and onto.
Claim 1. ¥ is continuous.
Let f be an arbitrary point in DPD(x) and let ¥(f) = F. For any € > 0, there is a

finite subset A of spt(f) such that Zf(a) >1-— 2 Assume that A is composed of n

a€A
elements. Let § = £ and g € DPD(x) be an arbitrary point such that jg(a) — f(a)| < ¢

for every a € A. Then
1——<Zg

and hence Z g(a) < —. Further, for any BC A
agA

1Y a8y = > F®) <) la(b) — f(B)] < |B|__ <%

beB beB beB

Then for any a < «,

g =D BN D dBI+1 Y B+ D 9B - D FB)

B<a B<a B<a,BgA B<a,B¢A B<a,B€A B<a,BEA
€ € €
< 2 + 2 + yi €.

This means that for G = ¥(g), |G(a) — F(a)| < € for every a < k, and hence ¥ is
continuous.

Claim 2. ¥~! is continuous.

Let F € CDPD(x) and f = ¥7!(F). Notice that f(a) = F(a + 1) — F(a). For
-any € > 0, there is a subset A of spt(f) such that Zf(a >1-— 2 We can assume

acA
that A consists of n elements. Let § = 5. Suppose that G € CDPD(x) satisfies that

|G(a)— F(a)| < é forany a € AUA+1, where A+1 = {a+1:a € A}. Theng = ¥ }(G)
satisfies

l9(a) — f(a)| = |(G(a + 1) — G(a)) — (F(a + 1) — F(a))|
< |G(a+1) = F(a+1)| + |G(a) — F(a)| < 26 = z—; <e

Yola) 2 3 fla) —mae > 1,

a€A acA
lg(b) — £(B)| < lg(®)| + |f(b)] < & + £ = € for any b ¢ A. This shows that ¢! is

continuous.

for any a € A. Since
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We assume that all topological spaces considered here are Tychonoff. What is the class
of topological spaces embedded in DD(S) for some set S ? This is the theme of this
note. If S is an uncountable set, then the constant zero function 0 is in DD(S) and the
pseudo-character at 0 in DD(S) is uncountable. That is, DD(S) is not metrizable. It
is obvious that DPD(S) is a dense metrizable subspace of DD(S). A space embedded
in DD(S) for some set S is called a DD-space here. That is, X is a DD-space if and
only if there exists a family {f, : @ € s} of continuous functions from X to I such that
Y{fa(z) : @ € k} < 1 for each z € X and the topology of X coincides with the topology
induced by {f. : a € x}.

Theorem 2 (0) Every metrizable space is a DD-space.

(1) If Y is a subspce of a DD-space X, then Y is a DD-space.

(2) If {Xa : a € A} is a family of DD-spaces, then the topological sum @{Xa : a € A}
18 a DD-space.

(3) If {Xa : n € w} is a countable family of DD-spaces, then the product space [[{X, :
n € w} is a DD-space.

(4) Every DD-space has a compactification which is also a DD-space.

Theorem 3 Let X be a DD-space. Then there is a real-valued function ¢ : X — I such
that the topology induced by the topology of X and {¢~*((u,v)) : (u,v) is an open interval
in [0,1]} is metrizable. Especially, let ¢ : DD(S) — I be the function defined by ¢(f) =
1 — X{f(s) : s € S}. Then the space with the topology induced by the topology of DD(S)
and inverse images of open intervals by ¢ is homeomorphic to DPD(S).

Let us recall that a compact space K is called uniformly Eberlein compact if it is homeo-
morphic to a weakly compact subsets of a Hilbert space. The space co(T'), for a set T' # 0,
is defined by

o) ={z e R : |{y €T : |z(7)| > €}| < w,Ve > 0}.

The norm on ¢o(I') is the sup norm. The weak topology on a weakly compact subset of
co(T") is exactly the topology of pointwise convergence.

Fact 2 (Benyamini-Starbird). A compact space K is uniformly Eberlein compact if and
only if K is homeomorphic to a subset K' of co(T') for some I' with the property that for
every € > 0 there exists N(e) € w such that for everyz € K',

[{y € T': [2(7)] > €} < N(e).
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We say that a family A of subsets of a set X is boundedly point finite if there exists some
n € w such that for every z € X ord(z,A) < n. A family A of subsets of X is said to
be o-boundedly point finite if A = | J,, Ar such that each family A, is boundedly point
finite. A family A of subsets of a set X is called Ty-separating if whenever z,y € X are
distinct, then some A € A4 contains exactly one of z and y.

Fact 3 (Benyamini-Rudin-Wage). A compact space K is uniformly Eberlein compact if
and only if K has a o-boundedly point finite Tj-separating family by cozero-sets.

Theorem 4 The space DD(S) is uniformly Eberlein compact for any set S.
In fact, let Q' be the set of all rational numbers in [0,1]. For each ¢ € Q' and s € §,
let .
U.(q) = {f € DD(S) : f(s) > q}.
Then
A, ={U.(q) : s € S}
is a boundedly point finite family by cozero-sets in DD(S). Further, let
A= |J 4.
q9€Q’

Then A is a o-boundedly point finite Ty-separating family by cozero-sets.

Theorem 5 FEvery uniformly Eberlein compact space ts a DD-space.

Let A = |J, ., An be a o-boundedly point finite Tp-separating family by cozero-sets in
a uniformly Eberlein compact space X. For each n € w, let k, be a positive integer such
that ord(z,A,) < k, for any z € X. For each U € A, we take a [0, 1]-valued continuous
function fy on X with f;!((0,1]) = U. Further, the function gy is defined by

1
gu = 2'*k,,fU'

Let 7, = {gv : U € A,} and F = {J,,,, Fn- Then the map & : X — [0,1]4 defined by
®(z) = {gu(=) : U € A}
is a topological embedding of X into DD(.A). Note that

g =) 2"1kﬂ > fulz) <1

UeA n=1 UeAn
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Corollary 1 DD(k) is universal for uniformly Eberlein compact spaces of weight < x.

The following two theorems may be proved under more general conditions. But, we give
direct proofs here.

Theorem 6 Let X be a DD-space. If X is countably compact, then X is compact.

Proof. For each r < 1, let D, (resp. D,) be the subset of of DD(S) consisting of
all f with X{f(s) : s € S} < r (resp. {f(s) : s € S} < r). It suffices to show that
X is Lindelof. Assume that X is not Lindeléf. Then there is an open cover ¥ with no
countable subcover. Let X<, = X N D¢, and X, = XN D, for 0 < r < 1. Then there
exists

ro = sup{r : X, is covered by a countable subfamily of &/}.

It follows that there exists a countable subfamily 2/ of &/ which covers X,, It is also true
that X<,, is covered by Uy, since X-,, = X<,, — X<,, is metrizable. Further, let

= inf{r : (X — Ulp) N X<r # 0}

Then 7y = r; must be satisfied. Let F,, = X<(ro41/n) — Ulp for n = 1,2,---. Then this
is a decreasing sequence of closed subsets of X such that N{F, :n =1,2,..-} = 0. This
contradicts the countable compactness of X.

Theorem 7 For a DD-space X, the cardinalities ¢(X),d(X) and w(X) are all the same.

Proof. Let d(X) = X and D be a dense subset of X such that |[D| = A. Then the
cardinality of A = U{spt(z) : z € D} is A. Since D is a subset of the compact set

(DD(S8) N I4) x {0}5-4

in DD(S), X must be a subspace of I4 x {0}5-4 whose weight is A. It follows that
d(X) = w(X).

Next, we will show that d(X) < ¢(X). Of course, we can assume that d(X) is uncount-
able. Let k < d(X) be an arbitrary uncountable regular cardinal. then there exists a trans-
finite sequence {z, : a < x} of points in X such that spt(z.) — U{spt(zs) : B < a} # 0.
Further, we can fix a positive integer k such that there exists u, € spt(z,) — U{spt(zg) :
B < a} with z4(us) > 1/k for any a < . Let Uy, = {z € X : z(ua) > 1/k}. Then
the family U = {U, : a < k} satisfies that each intersection of k¥ members of U is empty.
Hence there must be a disjoint family consisting of « non-empty open subsets.

As mentioned previously, the spaces DPD(x),CDPD(x) are homeomorphic for any
cardinal number x. However DD(x) and CDD(x) are not homeomorphic for an uncon-
table cardinal x. In fact, DD(k) is compact. On the other hand, CDD(k) is not compact.
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Moreover, let IDDy(x) be the space of all non-decreasing [0, 1]-valued functions f (which
need not be continuous) such that f(0) = 0, with the topology of pointwise convergence.
Then IDDy(k) is a compactification of CDD(k). Further,

Theorem 8 CDD(k) is not a DD-space for any uncountable cardinal k.
For each a < &, let f, € CDD(k) be the function defined by

fa(B)=0 for B<a, fulf)=1 for B> a.

Then A = {f, : @ € x} is a discrete subset of CDD(x) and the constant zero function 0
is in the closure of this set. But there is no sequence in A converging to 0, which means
that CDD(k) is not Fréchet. Hence CDD(k) is not a DD-space.

Theorem 9 There is a one-to-one continuous map from CDD(x) onto DD(x).

In fact, the map ¥ : CDD(x) — DD(x) defined by ¥(F)(a) = F(a+ 1) — F(a) is

one-to-one, onto and continuous.

Let us call a topological space X to be a CDD-space if X is homeomorphic to a subspace
of CDD(k) for some cardinal x.

Theorem 10 (1) Every metrizable space is a CDD-space.

(1) If a CDD-space X is compact, then X is a DD-space.

(2) If X is a CDD-space, then there is a o-boundedly point-finite, Ty-separating cozero-
famaly.

Hence, it follows that there is a CDD-space X such that every compactification of X is
not a CDD-space.
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