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1 lntroduction

Gentzen’s Hauptsatz [2], which has been stated in the systems of sequent calculi, was reconstructed by

Prawitz [5] as normalization theorem in the systems of natural deduction. Conceming the modal logic

S4, Prawitz introduced three formulations in natural deduction, and noticed that the third one enjoys

normalization theorem. Later, Medeiros [3] mentioned that Prawitz’s proof does not work, and gave a

new proof of normalization theorem with another formulation of S4 in natural deduction. But her proof

also contains gaps, as we have seen in our previous technical report [1].

In this paper, we prove the normal form theorem of natural deduction for S4 in the formulation of

Medeiros. Notice that it is not the normalization theorem of the system in a narrow sense. It means

that we can show the existence of a normal derivation for any given derivation, but we do not define

non-trivial normalization procedure $in$ the system. Our proof depends on the cut-elimination theorem

of sequent calculus for S4 proved by Ohnishi and Matsumoto [4].

First, we recall the formulation of Medeiros, and give the definition of the maximal formula, the redex

of a derivation. Second, we define the transformation of a given cut-free derivation in sequent calculus

for S4 to a normal derivation in natural deduction for the same logic.

2 The system NS4

In [3], Medeiros introduced a new formalization of the system in natural deduction for classical propo-

sitional modal logic $S4$ , called NS4. It has $\wedge,$ $\vee,$ $\supset,$
$\perp$ , ロ as logical constants, and the inference rules for

introduction and elimination of $\wedge,$ $\vee,$ $\supset$ are defined as usual. The rules for introduction and elimination

of the modal operator a are defined as below.. Introduction rule for ロ is:
$[$ロ $B_{1}]\ldots[$ロ $B_{n}]$

$\frac{\text{ロ}B_{1}\ldots \text{ロ}B_{n}A}{\text{ロ}A}($ロ $I)$

,.

where $A$ depends on no assumptions other than ロ $B_{1},$
$\ldots$ ロ $B_{n}$ , and these assumptions are all

discharged at the rule $($ロ $I)$ . For the assumption (as formula occurrence) ロ $B_{i}$ discharged at the

rule, we call the premiss (as formula occurrence) ロ $B_{i}$ the corresponding premiss of the assumption
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Notice that one assumption ロ $B_{i}$ has exactly one corresponding premiss, and that one premiss ロ $B_{i}$

may have arbitrary many (possibly zero) assumptions of the form ロ $B_{i}$. Elimination rule for ロ is:
$\frac{\text{ロ}A}{A}$ $(aE)$

.

Further, the system has the inference rule so called classical absurdity rule:

$[A\supset\perp]$

$\frac{\perp}{A}(1_{c})$

.

We define the notion of maximal formula as below. Our definition is slightly different from that of

Medeiros’, but we can see that if a derivation has no maximal formula in our sense, it has no maximal

segment (therefore no maximal formula) in the meaning of Medeiros’ definition.

Deflnition (Maximal formula). A formula-occurrence $A$ in a derivation $\Pi$ is called a maximal formula
in $\Pi$ , if $A$ satisfies one of the following conditions (a) or (b):

(a) $A$ is the conclusion of an introduction rule, a V-elimination rule, or a classical absurdity rule.

Moreover, $A$ is the major premiss of an elimination rule.

(b) $A$ is an assumption discharged at a O-introduction rule and it is also the major presiss of an

elimination rule. Moreover, the corresponding premiss of $A$ is the conclusion of an introduction

rule, $a\vee$-elimination rule, or a classical absurdity rule.

Definition (Normal derivation). A derivation $\Pi$ is called normal if it has no maximal formula.

3 The normal form theorem

We show the normal form theorem of the system NS4, by using the cut-elimination theorem of the

sequent calculus for the same propositional modal logic S4, which have been proved by Ohnishi and

Matsumoto [4]. The inference rules of the sequent calculus for S4, which we shall call LS4 after this, are
those of propositional fragment of Gentzen’s LK [2], and the rules for modal operator ロ as follows:

. O-left rule is:
$\frac{A,\Gammaarrow\Theta}{\text{ロ}A,\Gammaarrow\ominus}($ ロ $L)$

. O-right rule is:
$\frac{\text{ロ}\Gammaarrow A}{\text{ロ}\Gammaarrow \text{ロ}A}($ロ $R)$

For the sake of normal form theorem of NS4, we introduce another system of sequent calculus called

LS4’. It is obtained from NS4 by adding the logical constant $\perp$ and the axiom:
$\perparrow$

Fact 1. If a NS4-dcrivation $\Pi$ of a formula $A$ from assumptions $\Gamma$ is givcn, wc can construct a LS4’-

derivation $\Pi’$ of the sequent $\Gammaarrow A$ .
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Proof. By induction on the length of $\Pi$ . $\blacksquare$

Theorem (Cut-elimination theorem of LS4’). If a $LS4$ ” $derivation$ is given, we can construct a cut-free
LS4’-derivation of the same end-sequent.

Proof. We can prove the theorem similarly to the proof in [4] of the cut-elimination theorem for LS4,

which is an extension of Genzten’s Hauptsatz [2]. $\blacksquare$

Fact 2. If a cut-free LS4’-derivation $\Pi$ of a sequcnt $\Gammaarrow\Theta$ is given, we can constnict a normal NS4-

derivation $\Pi’$ such that:

(a) In $t\}_{1}e$ case that $\Theta$ is cmpty, $\Pi$ ‘ is a derivation of the formula $\perp$ froin assumptions $\Gamma$ .

(b) Otherwise, here we suppose $\Theta$ is the concatenation of $\Theta^{-}$ and $C$ where $\Theta^{-}$ is a (possibly empty)

sequenoe of formulae and $C$ is a formula, $\Pi’$ is a derivation of the formula $C$ from assumptions
$\Gamma$ and $\neg\Theta^{-}$ , where the formulae in $\neg\Theta^{-}$ are obtained from the formulae in $\Theta^{-}$ by applying the
negation.

Proof. By induction on the length of $\Pi$ . Notice that the condition of the dependence of the upper formula

of the introduction rule for ロ are preserved at each induction step $\blacksquare$

Theorem (Normal form theorem of NS4). If a NS4-denvation $\Pi$ of a formula $A$ from assumptions $\Gamma$

is given, we can construct a normal NS4-derivation $\Pi$ ‘ of $A$ from $\Gamma$ .

Proof. By the cut-elimination theorem of LS4’ and the above two facts. $\blacksquare$
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