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Abstract. A real number $\alpha$ is called recursively enumerable if there exists
a computable, increasing sequence of rational numbers which converges to $\alpha$ .
The randomness of a recursively enumerable real $\alpha$ can be characterized in
various ways using each of the notions; program-size complexity, Martin-L\"of
test, Chaitin’s $\Omega$ number, the domination and $\Omega$-likeness of $\alpha$ , the universality
of a computable, increasing sequence of rational numbers which converges to $\alpha$ ,
and universal probability. In this paper, we generalize these characterizations
of randomness over the notion of partial randomness by parameterizing each
of the notions above by a real number $T\in(0,1]$ . We thus present several
equivalent characterizations of partial randomness for a recursively enumerable
real number.
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1 Introduction

A real number $\alpha$ is called recursively enumerable ( $r.e.$
” for short) if there exists a computable,

increasing sequence of rational numbers which converges to $\alpha$ . The randomness of an r.e. real
$\alpha$ can be characterized in various ways using each of the notions; program-size complexity,
Martin-Lof test, Chaitin’s $\Omega$ number, the domination and $\Omega$ -likeness of $\alpha$ , the universality of a
computable, increasing sequence of rational numbers which converges to $\alpha$ , and universal proba-
bility. These equivalent characterizations of randomness for an r.e. real number are summarized
in Theorem 3.4 (see Section 3), where the equivalences are established by a series of works of
Schnorr [13], Chaitin [4], Solovay [14], Calude, Hertling, Khoussainov and Wang [1], Ku\v{c}era and
Slaman [8], and Tadaki [17]. In this paper, we generalize these characterizations of randomness
over the notion of partial randomness, which was introduced by Tadaki [15, 16]. We introduce
several characterizations of partial randomness for an r.e. real number by parameterizing each
of the notions above on randomness by a real number $T\in(0,1]$ . We prove the equivalence of
all these characterizations of partial randomness in Theorem 4.6, our main result, in Section 4.

The paper is organized as follows. We begin in Section 2 with some preliminaries to algo-
rithmic information theory and partial randomness. In Section 3, we review the previous results
on the equivalent characterizations of randomness for an r.e. real number. Our main result on

’E-mail: tadaki@kc.chuo-u.ac.jp

数理解析研究所講究録
第 1635巻 2009年 103-120 103



partial randomness of an r.e. real number is presented in Section 4, and its proof is completed
in Section 5. In Section 6, we investigate some properties of the notion of T-convergence for
an increasing sequence of real numbers, which plays a crucial role in our characterizations of
partial randomness. We conclude this paper with a mention of the future direction of this work
in Section 7.

2 Preliminaries

2.1 Basic notation

We start with some notation about numbers and strings which will be used in this paper.
$\# S$ is the cardinality of $S$ for any set S. $\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers,
and $\mathbb{N}^{+}$ is the set of positive integers. $\mathbb{Q}$ is the set of rational numbers, and $\mathbb{R}$ is the set of
real numbers. A sequence $\{a_{n}\}_{n\in N}$ of numbers (rational numbers or real numbers) is called
increasing if $a_{n+1}>a_{n}$ for all $n\in N$ .

$\{0,1\}^{*}=\{\lambda, 0,1,00,01,10,11,000,001,010, \ldots\}$ is the set of finite binary strings where $\lambda$

denotes the empty $st_{7}\dot{n}ng$ , and $\{0,1\}^{*}$ is ordered as indicated. We identify any string in $\{0,1\}^{*}$

with a natural number in this order, i.e., we consider $\varphi:\{0,1\}^{*}arrow N$ such that $\varphi(s)=1s-1$

where the concatenation $1s$ of strings 1 and $s$ is regarded as a dyadic integer, and then we
identify $s$ with $\varphi(s)$ . For any $s\in\{0,1\}^{*},$ $|s|$ is the length of $s$ . A subset $S$ of $\{0,1\}^{*}$ is called
a prefix-free set if no string in $S$ is a prefix of another string in $S$ . For any partial function
$f$ , the domain of definition of $f$ is denoted by dom $f$ . We write $(r.e.$ ” instead of “recursively
enumerable.”

Normally, $o(n)$ denotes any function $f:\mathbb{N}^{+}arrow \mathbb{R}$ such that $\lim_{narrow\infty}f(n)/n=0$ . On the
other hand, $O(1)$ denotes any function $g:\mathbb{N}^{+}arrow \mathbb{R}$ such that there is $C\in \mathbb{R}$ with the property
that $|g(n)|\leq C$ for all $n\in N^{+}$ .

Let $\alpha$ be an arbitrary real number. We denote $\alpha-\lfloor\alpha\rfloor$ by $\alpha mod 1$ , where $\lfloor\alpha\rfloor$ is the greatest
integer less than or equal to $\alpha$ . Hence, $\alpha mod 1\in[0,1)$ . Normally, $\lceil\alpha\rceil$ denotes the smallest
integer greater than or equal to $\alpha$ . We denote by $\alpha_{n}\in\{0,1\}^{*}$ the first $n$ bits of the base-two
expansion of $\alpha mod 1$ with infinitely many zeros. Thus, in particular, if $\alpha\in[0,1)$ , then $\alpha_{n}$

denotes the first $n$ bits of the base-two expansion of $\alpha$ with infinitely many zeros. For example,
in the case of $\alpha=5/8,$ $\alpha_{6}=101000$ .

A real number $\alpha$ is called $r.e$ . if there exists a computable, increasing sequence of rational
numbers which converges to $\alpha$ . An r.e. real number is also called a left-computable real number.
On the other hand, a real number $\alpha$ is called right-computable if $-\alpha$ is left-computable. We say
that a real number $\alpha$ is computable if there exists a computable sequence $\{a_{n}\}_{n\in N}$ of rational
numbers such that $|\alpha-a_{n}|<2^{-n}$ for all $n\in \mathbb{N}$ . It is then easy to see that, for every $\alpha\in \mathbb{R},$ $\alpha$ is
computable if and only if $\alpha$ is both left-computable and right-computable. A sequence $\{a_{n}\}_{n\in N}$

of real numbers is called computable if there exists a total recursive function $f:\mathbb{N}\cross \mathbb{N}arrow \mathbb{Q}$ such
that $|a_{n}-f(n, m)|<2^{-m}$ for all $n,$ $m\in \mathbb{N}$ . See e.g. Pour-El and Richards [11] and Weihrauch
[20] for the detail of the treatment of the computability of $re$al numbers and sequences of real
numbers.

2.2 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic information
theory [4, 5]. A computer is a partial recursive function $C:\{0,1\}^{*}arrow\{0,1\}^{*}$ such that dom $C$

is a prefix-free set. For each computer $C$ and each $s\in\{0,1\}^{*},$ $H_{C}(s)$ is defined by $H_{C}(s)=$

$\min\{|p||p\in\{0,1\}^{*}$ &C(p) $=s\}$ . A computer $U$ is said to be optimal if for each computer
$C$ there exists a constant sim$(C)$ with the following property; if $C(p)$ is defined, then there
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is a $p’$ for which $U(p’)=C(p)$ and $|p’|\leq|p|+$ sim$(C)$ . It is easy to see that there exists an
optimal computer. We choose a particular optimal computer $U$ as the standard one for use, and
define $H(s)$ as $H_{U}(s)$ , which is referred to as the program-size complexity of $s$ , the information
content of $s$ , or the Kolmogorov complexity of $s[7,9,4]$ . Thus, $H(s)\leq H_{C}(s)+$ sim$(C)$ for
every computer $C$ .

Let $V$ be an arbitrary optimal computer. For each $s\in\{0,1\}^{*},$ $P_{V}(s)$ is defined as
$\sum_{V(p)=s}2^{-|p|}$ . Chaitin’s halting probability $\Omega_{V}$ of $V$ is defined by

$\Omega_{V}=$ $\sum$ $2^{-|p|}$ .
$p\in$ dom $V$

Thus, $\Omega_{V}=\sum_{s\in\{0,1\}^{*}}P_{V}(s)$ .

Definition 2.1 (weak Chaitin randomness, Chaitin [4, 5]). For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is
weakly Chaitin random if there exists $c\in \mathbb{N}$ such that $n-c\leq H(\alpha_{n})$ for all $n\in \mathbb{N}^{+}$ . ロ

Chaitin [4] showed that, for every optimal computer $V,$ $\Omega_{V}$ is weakly Chaitin random.

Deflnition 2.2 (Martin-L\"of randomness, Martin-L\"of [10]). A subset $C$ of $N^{+}\cross\{0,1\}^{*}$ is called
a Martin-Lof test if $C$ is an $r.e$ . set and

$\forall n\in \mathbb{N}^{+}$

$\sum_{s\in C_{n}}2^{-|s|}\leq 2^{-n}$
,

where $C_{n}=\{s|(n, s)\in C\}$ . For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is Martin-Lof random if for every
Martin-Lof test $C$ , there exists $n\in \mathbb{N}^{+}$ such that, for every $k\in N^{+},$ $\alpha_{k}\not\in C_{n}$ . $\square$

Theorem 2.3 (Schnorr [13]). For every $\alpha\in \mathbb{R},$ $\alpha$ is weakly Chaitin random if and only if $\alpha$ is
Martin-Lof random. ロ

It follows from Theorem 2.3 that $\Omega_{V}$ is Martin-L\"of random for every optimal computer $V$ .
The program-size complexity $H(s)$ is originally defined using the concept of program-size,

as stated above. However, it is possible to define $H(s)$ without referring to such a concept,
i.e., as in the following, we first introduce a universal probability $m$ , and then define $H(s)$ as
$-\log_{2}m(s)$ . A universal probability is defined as follows [21].

Definition 2.4 (universal probability). A function $r:\{0,1\}^{*}arrow[0,1]$ is called a lower-computable
semi-measure if $\sum_{s\in\{0,1\}^{*}}r(s)\leq 1$ and the set $\{(a, s)\in \mathbb{Q}\cross\{0,1\}^{*}|a<r(s)\}$ is $r.e$ . We say
that a lower-computable semi-measure $m$ is a universal probability if for every lower-computable
semi-measure $r$ , there exists $c\in \mathbb{N}^{+}$ such that, for all $s\in\{0,1\}^{*},$ $r(s)\leq cm(s)$ . ロ

The following theorem can be then shown (see e.g. Theorem 3.4 of Chaitin [4] for its proof).

Theorem 2.5. For every optimal computer $V$ , both $2^{-H_{V}(s)}$ and $P_{V}(s)$ are universal probabil-
ities ロ

By Theorem 2.5, we see that $H(s)=-\log_{2}m(s)+O(1)$ for every universal probability
$m$ . Thus it is possible to define $H(s)$ as $-\log_{2}m(s)$ with a particular universal probability
$m$ instead of as $H_{U}(s)$ . Note that the difference up to an additive constant is nonessential to
algorithmic information theory. Any universal probability is not computable, as corresponds
to the uncomputability of $H(s)$ . As a result, we see that $0< \sum_{s\in\{0,1\}^{*}}m(s)<1$ for every
universal probability $m$ .
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2.3 Partial randomness

In the works [15, 16], we generalized the notion of the randomness of a real number so that the
degree of the randomness, which is often referred to as the partial randomness recently [2, 12, 3],
can be characterized by a real number $T$ with $0<T\leq 1$ as follows.

Deflnition 2.6 (weak Chaitin T-randomness). Let $T\in \mathbb{R}$ with $T\geq 0$ . For any $\alpha\in \mathbb{R}$ , we
say that $\alpha$ is weakly Chaitin T-random if there exists $c\in \mathbb{N}$ such that $Tn– c\leq H(\alpha_{n})$ for all
$n\in N^{+}$ . ロ

Definition 2.7 (Martin-L\"of T-randomness). Let $T\in \mathbb{R}$ with $T\geq 0.$ A subset $C$ of $N^{+}\cross\{0,1\}^{*}$

is called a Martin-Lof T-test if $C$ is an $r.e$ . set and

$\forall n\in N^{+}$

$\sum_{s\in C_{n}}2^{-T|s|}\leq 2^{-n}$
.

For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is Martin-Lof T-random if for every Mariin-Lof T-test $C$ , there
exists $n\in N^{+}$ such that, for every $k\in \mathbb{N}^{+},$ $\alpha_{k}\not\in C_{n}$ . ロ

In the case where $T=1$ , the weak Chaitin T-randomness and Martin-Lof T-randomness
result in weak Chaitin randomness and Martin-Lof randomness, respectively. Tadaki [16] gen-
eralized Theorem 2.3 over the notion of T-randomness as follows.

Theorem 2.8 (Tadaki [16]). Let $T$ be a computable real number with $T\geq 0$ . Then, for every
$\alpha\in \mathbb{R},$ $\alpha$ is weakiy Chaitin T-mndom if and oniy if $\alpha$ is Martin-Lof T-random. ロ

Definition 2.9 (T-compressibility). Let $T\in \mathbb{R}$ with $T\geq 0$ . For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is
T-compressible if $H(\alpha_{n})\leq Tn+o(n)$ , which is equivalent to

$\varlimsup_{narrow\infty}\frac{H(\alpha_{n})}{n}\leq T$.

ロ

For every $T\in[0,1]$ and every $\alpha\in \mathbb{R}$ , if $\alpha$ is weakly Chaitin T-random and T-compressible,
then

$\lim_{narrow\infty}\frac{H(\alpha_{n})}{n}=T$, (1)

and therefore the compression rate of $\alpha$ by the program-size complexity $H$ is equal to $T$ . Note,
however, that (1) does not necessarily imply that $\alpha$ is weakly Chaitin T-random.

In the works [15, 16], we generalized Chaitin’s halting probability $\Omega$ to $\Omega(T)$ as follows.
For each optimal computer $V$ and each real number $T>0_{!}$ the generalized halting probability
$\Omega_{V}(T)$ of $V$ is defined by

$\Omega_{V}(T)=\sum_{p\in domV}2^{-\frac{|p|}{T}}$ .

Thus, $\Omega_{V}(1)=\Omega_{V}$ . If $0<T\leq 1$ , then $\Omega_{V}(T)$ converges and $0<\Omega_{V}(T)<1$ , since $\Omega_{V}(T)\leq$

$\Omega_{V}<1$ . The following theorem holds for $\Omega v(T)$ .

Theorem 2.10 (Tadaki [15, 16]). Let $V$ be an optimal computer and let $T\in \mathbb{R}$ .
(i) If $0<T\leq 1$ and $T$ is computable, then $\Omega_{V}(T)$ is weakly Chaitin T-random and T-

compressible.

(ii) If $1<T$ , then $\Omega_{V}(T)$ diverges to $\infty$ . ロ
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Note also that the computability of $\Omega_{V}(T)$ gives a sufficient condition for a real number
$T\in(0,1)$ to be a fixed point on partial randomness as follows.

Theorem 2.11 (Tadaki [18]). Let $V$ be an optimal computer. For every $T\in(0,1)$ , if $\Omega_{V}(T)$

is computable, then $T$ is weakly Chaitin T-random and T-compressible, and therefore

$\lim_{narrow\infty}\frac{H(T_{n})}{n}=T$ .

ロ

3 Previous results on the randomness of an r.e. real
In this section, we review the previous results on the randomness of an r.e. real number. First
we review some notions on r.e. real numbers.

Definition 3.1 ( $\Omega$-likeness). For any $r.e$ . real numbers $\alpha$ and $\beta$ , we say that $\alpha$ dominates $\beta$ if
there are computable, increasing sequences $\{a_{n}\}$ and $\{b_{n}\}$ of mtional numbers and $c\in \mathbb{N}^{+}$ such
that $\lim_{narrow\infty}a_{n}=\alpha,$ $\lim_{narrow\infty}b_{n}=\beta$, and $c(\alpha-a_{n})\geq\beta-b_{n}$ for all $n\in \mathbb{N}$ . An $r.e$ . real number
$\alpha$ is called $\Omega$ -like if it dominates all $r.e$ . real numbers. ロ

Solovay [14] showed the following theorem. For its proof, see also Theorem 4.9 of [1].

Theorem 3.2 (Solovay [14]). For every $r.e$ . real numbers $\alpha$ and $\beta$ , if $\alpha$ dominates $\beta$ then
$H(\beta_{n})\leq H(\alpha_{n})+O(1)$ . ロ

Definition 3.3 (universality). A computable, increasing and converging sequence $\{a_{n}\}$ of $r\alpha-$

tional numbers is called universal if for every computable, increasing and converging sequence
$\{b_{n}\}$ of rational numbers there exists $c\in \mathbb{N}^{+}$ such that $c(\alpha-a_{n})\geq\beta-b_{n}$ for all $n\in \mathbb{N}$, where
$\alpha=\lim_{narrow\infty}a_{n}$ and $\beta=\lim_{narrow\infty}b_{n}$ . a

The previous results on the equivalent characterizations of randomness for an r.e. real num-
ber are summarized in the following theorem.

Theorem 3.4 ([13, 4, 14, 1, 8, 17]). Let $\alpha$ be an $r.e$ . real number with $0<\alpha<1$ . Then the
following conditions are equivalent:

(i) The real number $\alpha$ is weakly Chaitin random.

(ii) The real number $\alpha$ is Martin-Lof random.

(iii) The real number $\alpha$ is $\Omega$ -like.

(iv) $H(\beta_{n})\leq H(\alpha_{n})+O(1)$ for every $r.e$ . real number $\beta$ .
(v) There exists an optimal computer $V$ such that $\alpha=\Omega_{V}$ .

(vi) There exists a universal probability $m$ such that $\alpha=\sum_{s\in\{0,1\}^{*}}m(s)$ .
(vii) Every computable, increasing sequence of rational numbers which converges to $\alpha$ is uni-

versal.

(viii) There exists a universal computable, increasing sequence of rational numbers which con-
verges to $\alpha$ . ロ
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The historical remark on the proofs of equivalences in Theorem 3.4 is as follows. Schnorr
[13] showed that (i) and (ii) are equivalent to each other. Chaitin [4] showed that (v) implies
(i). Solovay [14] sliowed that (v) implies (iii), (iii) implies (iv), and (iii) implies (i). Calude,
Hertling, Khoussainov, and Wang [1] showed that (iii) implies (v), and (v) implies (vii). Ku\v{c}era
and Slaman [8] showed that (ii) implies (vii). Finally, (vi) was inserted in the course of the
derivation from (v) to (viii) by Tadaki [17].

4 New results on the partial randomness of an r.e. real
In this section, we generalize Theorem 3.4 above over the notion of partial randomness. For
that purpose, we first introduce some new notions. Let $T$ be an arbitrary real number with
$0<T\leq 1$ throughout the rest of this paper. These notions are parametrized by the real
number $T$ .
Deflnition 4.1 (T-convergence). An increasing sequence $\{a_{n}\}$ of real numbers is called T-
convergent if $\sum_{n=0}^{\infty}(a_{n+1}-a_{n})^{T}<\infty$ . An $r.e$ . real number $\alpha$ is called T-convergent if there
exists a T-convergent computable, increasing sequence of mtional numbers which converges to

$\alpha$ . ロ

Note that every increasing and converging sequence of real numbers is l-convergent, and thus
every r.e. real number is l-convergent. In general, based on the following lemma, we can freely
switch from “T-convergent computable, increasing sequence of real numbers” to “T-convergent
computable, increasing sequence of rational numbers.”

Lemma 4.2. For every $\alpha\in \mathbb{R},$ $\alpha$ is an $r.e$ . T-convergent real number if and only if there exists
a T-convergent computable, increasing sequence of real numbers which converges to $\alpha$ .

Proof. The “only if” part is obvious. We show the “if” part. Suppose that $\{a_{n}\}$ is a T-
convergent computable, increasing sequence of real numbers which converges to $\alpha$ . Then, we first
see that there exists a computable sequence $\{b_{n}\}$ of rational numbers such that $a_{n}<b_{n}<a_{n+1}$

for all $n\in$ N. Obviously, $\{b_{n}\}$ is an increasing sequence of rational numbers which converges
to $\alpha$ . On the other hand, using the inequality $(x+y)^{\ell}\leq x^{t}+y^{t}$ for real numbers $x,$ $y>0$ and
$t\in(0,1]$ , we see that $(b_{n+1}-b_{n})^{T}<(a_{n+2}-a_{n})^{T}\leq(a_{n+2}-a_{n+1})^{T}+(a_{n+1}-a_{n})^{T}$ . Thus,
since $\sum_{n=0}^{\infty}(a_{n+2}-a_{n+1})^{T}$ and $\sum_{n=0}^{\infty}(a_{n+1}-a_{n})^{T}$ both converge, the increasing sequence $\{b_{n}\}$

of rational numbers is T-convergent. $\square$

The following argument illustrates the way of using Lemma 4.2: Let $V$ be an optimal com-
puter, and let $p_{0},p_{1},p_{2},$ $\ldots$ be a recursive enumeration of the r.e. set dom $V$ . Then $\Omega_{V}(T)=$

$\sum_{i=0}^{\infty}2^{-|p_{\iota}|/T}$ , and the increasing sequence $\{\sum_{i=0}^{n}2^{-}$ I $p_{i}|/T\}_{n\in N}$ of real nuinbers is T-convergent
since $\Omega_{V}=\sum_{i=0}^{\infty}2^{-|p_{t}|}<1$ . If $T$ is computable, then this sequence of real numbers is com-
putable. Thus, by Lemma 4.2 we have Theorem 4.3 below.

Theorem 4.3. Let $V$ be an optimal computer. If $T$ is computable, then $\Omega_{V}(T)$ is an $r.e.$ T-
convergent real number. ロ

Deflnition 4.4 ( $\Omega(T)$ -likeness). An $r.e$ . real number $\alpha$ is called $\Omega(T)$ -like if it dominates all
$re$ T-convergent real numbers. ロ

Note that an r.e. real number $\alpha$ is $\Omega(1)$ -like if and only if $\alpha$ is $\Omega$-like.

Definition 4.5 (T-universality). A computable, increasing and converging sequence $\{a_{n}\}$ of
rational numbers is called T-universal if for every T-convergent computable, increasing and
converging sequence $\{b_{n}\}$ of mtional numbers there exists $c\in \mathbb{N}^{+}$ such that $c(\alpha-a_{n})\geq\beta-b_{n}$

for all $n\in \mathbb{N}$ , where $\alpha=\lim_{narrow\infty}a_{n}$ and $\beta=\lim_{narrow\infty}b_{n}$ . ロ
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Note that a computable, increasing and converging sequence $\{a_{n}\}$ of rational numbers is
l-universal if and only if $\{a_{n}\}$ is universal.

Using the notions introduced above, Theorem 3.4 is generalized as follows.

Theorem 4.6 (main result). Let $\alpha$ be an $r.e$ . real number with $0<\alpha<1$ . Suppose that $T$ is
computable. Then the following conditions are equivalent:

(i) The real number $\alpha$ is weakly Chaitin T-random.

(ii) The real number $\alpha$ is Martin-Lof T-random.

(iii) The real number $\alpha$ is $\Omega(T)$ -like.

(iv) $H(\beta_{n})\leq H(\alpha_{n})+O(1)$ for every $r.e$ . T-convergent real number $\beta$ .

(v) For every $r.e$ . T-convergent real number $\gamma>0$ , there exist an $r.e$ . real number $\beta\geq 0$ and
a mtional number $q>0$ such that $\alpha=\beta+q\gamma$ .

(vi) There exist an optimal computer $V$ and an $r.e$ . real number $\beta\geq 0$ such that $\alpha=\beta+\Omega_{V}(T)$ .

(vii) There exists a universal probability $m$ such that $\alpha=\sum_{s\in\{0,1\}^{*}}m(s)^{\frac{1}{T}}$ .

(viii) Every computable, increasing sequence of mtional numbers which converges to $\alpha$ is T-
universal.

(ix) There exists a T-universal computable, increasing sequence of mtional numbers which
converges to $\alpha$ . a

The condition (vi) of Theorem 4.6 corresponds to the condition (v) of Theorem 3.4. Note,
however, that, in the condition (vi) of Theorem 4.6, a non-negative r.e. real number $\beta$ is needed.
The reason is as follows: In the case of $\beta=0$ , the possibility that $\alpha$ is weakly Chaitin T’-random
with a real number $T’>T$ is excluded by the T-compressibility of $\Omega_{V}(T)$ imposed by Theorem
2.10 (i). However, this exclusion is inconsistent with the condition (i) of Theorem 4.6.

Theorem 4.6 is proved as follows, partially based on Theorems 5.3, 5.4, 5.5, and 5.6, which
will be proved in the next section.

Proof of Theorem 4.6. We prove the equivalences in Theorem 4.6 by showing the two paths [A]
and $[$B$]$ of implications below.

[A] The implications $(i)\Rightarrow(ii)\Rightarrow(v)\Rightarrow(vi)\Rightarrow(i)$ : First, by Theorem 2.8, (i) implies
(ii) obviously. It follows from Theorem 5.3 below that (ii) implies (v), and also it follows
from Theorem 5.4 below that (v) implies (vi). For the forth implication, let $V$ be an optimal
computer, and let $\beta$ be an r.e. real number. It is then easy to show that $\beta+\Omega_{V}(T)$ dominates
$\Omega_{V}(T)$ (see the condition 2 of Lemma 4.4 of [1]). It follows from Theorem 3.2 and Theorem
2.10 (i) that the condition (vi) results in the condition (i) of Theorem 4.6.

[B] The implications $(v)\Rightarrow(vii)\Rightarrow(viii)\Rightarrow(ix)\Rightarrow(iii)\Rightarrow(iv)\Rightarrow(i)$ : First, it follows from
Theorem 5.5 below that (v) implies (vii), and also it follows from Theorem 5.6 below that (vii)
implies (viii). Obviously, (viii) implies (ix) and (ix) implies (iii). It follows from Theorem 3.2
that (iii) implies (iv). Finally, note that $\Omega_{U}(T)$ is an r.e. T-convergent real number which is
weakly Chaitin T-random by Theorem 2.10 (i) and Theorem 4.3. Thus, by setting $\beta$ to $\Omega_{U}(T)$

in the condition (iv), the condition (iv) results in the condition (i) ロ

As a consequence of Theorem 4.6, we obtain the following corollary, for example.
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Corollary 4.7. Suppose that $T$ is computable. Then, for every two optimal computers $V$ and
$W$ ,

$H((\Omega_{V}(T))_{n})=H((\Omega_{W}(T))_{n})+O(1)$ .

Proof. Corollary 4.7 follows immediately from Theorem 4.3 and the implication $(vi)\Rightarrow(iv)$ of
Theorem 4.6. ロ

5 The completion of the proof of the main result

In this section, we prove several theorems needed to complete the proof of Theorem 4.6. For
the sake of convenience, we first rephrase the definition of Martin-L\"of T-randomness of a real
number as follows. We denote by $\mathcal{I}$ the set $\{(n, q, r)\in \mathbb{N}^{+}\cross \mathbb{Q}\cross \mathbb{Q}|q<r\}$ . A subset $\mathcal{D}$ of $\mathcal{I}$

is called a mtional Martin-Lof T-test if $\mathcal{D}$ is an r.e. set and

$\forall n\in \mathbb{N}^{+}$

$\sum_{(q,r)\in \mathcal{D}(n)}(r-q)^{T}\leq 2^{-n}$
,

where $\mathcal{D}(n)=\{(q, r)|(n, q, r)\in \mathcal{D}\}$ . We can then show the following lemma, which rephrases
the definition of the Martin-L\"of T-randomness of a real number to give it more flexibility.

Lemma 5.1. For every $\alpha\in \mathbb{R},$ $\alpha$ is Martin-Lof T-mndom if and only if for every rational
Martin-Lof T-test $\mathcal{D}$ , there exists $n\in \mathbb{N}^{+}$ such that, for every $q,$ $r\in \mathbb{Q}$ , if $(q, r)\in \mathcal{D}(n)$ then
$\alpha\not\in[q, r]$ , where $[q, r]=\{x\in \mathbb{R}|q\leq x\leq r\}$ .

Proof. First, we show the “if” part by showing its contraposition. Suppose that $\alpha$ is not
Martin-L\"of T-random. Then there exists a Martin-L\"of T-test $C$ such that

$\forall n\in N^{+}\exists k\in N^{+}\alpha k\in C_{n}$ . (2)

We define a set $\mathcal{D}\subset \mathcal{I}$ by

$\mathcal{D}=\{(n, 0.s+\lfloor\alpha\rfloor, 0.s+2^{-|s|}+\lfloor\alpha\rfloor)|s\in C_{n}\}$ .

Since $C$ is an r.e. set, $\mathcal{D}$ is also an r.e. set. We also see that, for each $n\in \mathbb{N}^{+}$ ,

$\sum_{(q.r)\in \mathcal{D}(n)}(r-q)^{T}=\sum_{s\in C_{n}}2^{-T|s|}\leq 2^{-n}$
.

Thus, $\mathcal{D}$ is a rational $Martin- L\ddot{o}f$ T-test. On the other hand, note that $\beta\in[0.\beta_{k}+\lfloor\beta\rfloor,$ $0.\beta_{k}+$

$2^{-|\beta_{k}|}+\lfloor\beta\rfloor]$ for every $\beta\in \mathbb{R}$ and every $k\in \mathbb{N}^{+}$ . It follows from (2) that, for every $n\in \mathbb{N}^{+}$ ,
there exist $q,$ $r\in \mathbb{Q}$ such that $(q, r)\in \mathcal{D}(n)$ and $\alpha\in[q, r]$ . This completes the proof of the “if”
part.

Next, we show the “only if” part by showing its contraposition. Suppose that there exists
a rational Martin-L\"of T-test $\mathcal{D}$ such that

$\forall n\in \mathbb{N}^{+}\exists q,$ $r\in \mathbb{Q}[(q, r)\in \mathcal{D}(n) \ a\in [q, r]]$ . (3)

In the case of $\alpha\in \mathbb{Q},$ $\alpha$ is not Martin-L\"of T-random, obviously. This can be shown as
follows. We choose any one $m\in N^{+}$ with $Tm\geq 1$ . We then define a set $C\subset N^{+}\cross\{0,1\}^{*}$

by $C=\{(n, \alpha_{mn})|n\in N^{+}\}$ . Recall here that $\alpha_{mn}\in\{0,1\}^{*}$ denotes the first $mn$ bits of the
base-two expansion of $\alpha mod 1$ with infinitely many zeros. Obviously, $C$ is an r.e. set. We also
see that, for each $n\in N^{+}$ ,

$\sum_{s\in C_{n}}2^{-T|s|}=2^{-Tmn}\leq 2^{-n}$
.
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Therefore, $C$ is a Martin-Lof T-test. On the other hand, $\alpha_{mn}\in C_{n}$ for every $n\in \mathbb{N}^{+}$ . Hence, $\alpha$

is not Martin-L\"of T-random, as desired.
Thus, in what follows, we assume that $\alpha\not\in \mathbb{Q}$ . We choose any one $n_{0}\in \mathbb{N}$ such that

$2^{-n} \underline{n}_{T}<\min\{\alpha-\lfloor\alpha\rfloor, \lfloor\alpha\rfloor+1-\alpha\}$ .

We then define a set $\mathcal{D}^{(0)}\subset \mathcal{I}$ by

$\mathcal{D}^{(0)}=\{(n, q-\lfloor\alpha\rfloor, r-\lfloor\alpha\rfloor)|n\in N^{+}$ &(n $+$ no, $q,$ $r$ ) $\in \mathcal{D}\ [\alpha\rfloor<q,$ $r<\lfloor\alpha\rfloor+1\}$ .

Obviously, $\mathcal{D}^{(0)}$ is an r.e. set. We also see that

$\sum_{(q,r)\in \mathcal{D}^{(0)}(n)}(r-q)^{T}\leq\sum_{(q,r)\in \mathcal{D}(n+n_{0})}(r-q)^{T}\leq 2^{-(n+n_{0})}\leq 2^{-n}$

for each $n\in \mathbb{N}^{+}$ . Thus, $\mathcal{D}^{(0)}$ is a rational Martin-Lof T-test, and also $\mathcal{D}^{(0)}\subset \mathbb{N}^{+}\cross(0,1)\cross(0,1)$ .
On the other hand, by the choice of $n_{0}$ , it is easy to see that, for every $(n, q, r)\in \mathcal{I}$ , if $(q, r)\in$

$\mathcal{D}(n+n_{0})$ and $\alpha\in[q, r]$ , then $r-q\leq 2^{-no/T}$ and therefore $\lfloor\alpha\rfloor<q,$ $r<[\alpha\rfloor+1$ . It follows
from (3) that

$\forall n\in \mathbb{N}^{+}\exists q,$ $r\in \mathbb{Q}[(q, r)\in \mathcal{D}^{(0)}(n) \ \alpha mod 1\in[q, r]]$ . (4)

For each $q,$ $r\in \mathbb{Q}$ with $0<q<r<1$ , let $v(q, r)$ and $w(q, r)$ be finite binary strings such
that (i) $v(q, r)=q_{k}$ and $w(q, r)=r_{k}$ for some $k\in \mathbb{N}^{+}$ , and (ii) $v(q, r)+1=w(q, r)$ where $v(q, r)$

and $w(q, r)$ are regarded as a dyadic integer. Such a pair $(v(q, r), w(q, r))$ of finite binary strings
exists uniquely since $0<q<r<1$ . Then, for every $q,$ $r\in \mathbb{Q}$ with $0<q<r<1$ , it follows that
(i) $2^{-|v(q,r)|}=2^{-|w(q,r)|}\leq r-q$, and (ii) for every $\beta\in \mathbb{R}$ , if $\beta mod 1\in[q, r]$ then there exists
$k\in \mathbb{N}^{+}$ such that either $\beta_{k}=v(q, r)$ or $\beta_{k}=w(q, r)$ . We define a set $C\subset N^{+}\cross\{0,1\}^{*}$ by

$C= \bigcup_{(n+1,q,r)\in \mathcal{D}(0)}\{(n,$
$v(q,$ $r)),$ $(n,$ $w(q,$ $r))\}$ .

Note that, given $q,$ $r\in \mathbb{Q}$ with $0<q<r<1$ , one can compute both $v(q, r)$ and $w(q, r)$ . Thus,
since $\mathcal{D}^{(0)}$ is an r.e. set, $C$ is also an r.e. set. We also see that, for each $n\in \mathbb{N}^{+}$ ,

$\sum_{s\in C_{n}}2^{-T|s|}=\sum_{((q,r)\in D(0)n+1)}\{2^{-T|v(q,r)|}+2^{-T|w(q,r)|}\}\leq\sum_{(q,r)\in \mathcal{D}^{(0)}(n+1)}2(r-q)^{T}\leq 2^{-n}$
.

Thus, $C$ is a Martin-L\"of T-test. On the other hand, it is easy to see that, for every $(n, q, r)\in \mathcal{I}$ ,
if $(q, r)\in \mathcal{D}^{(0)}(n+1)$ and $\alpha mod 1\in[q, r]$ , then there exists $k\in \mathbb{N}^{+}$ such that either $\alpha_{k}=v(q, r)$

or $\alpha k=w(q, r)$ , and therefore $(n, \alpha_{k})\in C$ . It follows from (4) that, for every $n\in \mathbb{N}^{+}$ , there
exists $k\in N^{+}$ such that $\alpha_{k}\in C_{n}$ . Thus, $\alpha$ is not Martin-Lof T-random. This completes the
proof of the “only if” part. ロ

Lemma 5.2 and Theorem 5.7 below can be proved, based on the generalization of the tech-
niques used in the proof of Theorem 2.1 of Ku\v{c}era and Slaman [8] over partial randomness. We
also use Lemma 5.1 to prove Lemma 5.2 below.

Lemma 5.2. Let $\alpha$ be an $r.e$ . real number, and let $\{d_{n}\}$ be a computable sequence of positive
rational numbers such that $\sum_{n=0}^{\infty}d_{n}^{T}\leq 1$ . If $\alpha$ is Martin-Lof T-random, then for every $\epsilon>0$

there exist a computable, increasing sequence $\{a_{n}\}$ of rational numbers and a rational number
$q>0$ such that $a_{n+}i-a_{n}>qd_{n}$ for every $n\in \mathbb{N},$ $a_{0}>\alpha-\epsilon$ , and $\alpha=\lim_{narrow\infty}a_{n}$ .
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Proof. We choose any one rational number $r$ with $2^{-1/T}\geq r>0$ . Since $\alpha$ is an r.e. real number,
there exists a computable, increasing sequences $\{b_{n}\}$ of rational numbers such that $b_{0}>\alpha-\epsilon$

and $\alpha=\lim_{narrow\infty}b_{n}$ . We construct a rational Martin-L\"of T-test $\mathcal{D}$ by enumerating $\mathcal{D}(i)$ for
each $i\in N^{+}$ as follows. During the enumeration of $\mathcal{D}(i)$ we simultaneously construct a sequence
$\{a(i)_{n}\}_{n}$ of rational numbers.

Initially, we set $\mathcal{D}(i)$ $:=\emptyset$ and then specify $a(i)0$ by $a(i)_{0}:=b_{0}$ . In general, whenever $a(i)_{n}$

is specified as $a(i)_{n}$ $:=b_{m}$ , we update $\mathcal{D}(i)$ by $\mathcal{D}(i)$ $:=\mathcal{D}(i)\cup\{(i,$ $a(i)_{n},$ $a(i)_{n}+r^{i}d_{n})\}$ , and
calculate $b_{m+1},$ $b_{m+2},$ $b_{m+3},$ $\cdots$ one by one. During the calculation, if we find $m_{1}$ such that
$m_{1}>m$ and $b_{m_{1}}>a(i)_{n}+r^{i}d_{n}$ , then we specify $a(i)_{n+1}$ by $a(i)_{n+1}$ $:=b_{m_{1}}$ and we repeat this
procedure for $n+1$ .

For the completed $\mathcal{D}$ through the above procedure, we see that, for every $i\in \mathbb{N}^{+}$ ,

$(rr) \in \mathcal{D}(i)\sum_{\iota,2}(r_{2}-r_{1})^{T}=\sum_{n}(r^{i}d_{n})^{T}\leq 2^{-i}\sum_{n}d_{n}^{T}\leq 2^{-i}$
.

Here the second and third sums on $n$ may be finite or infinite. Thus, $\mathcal{D}$ is a rational Martin-Lof
T-test. Since $\alpha$ is Martin-L\"of T-random, there exists $k\in \mathbb{N}^{+}$ such that, for every $r_{1},$ $r_{2}\in \mathbb{Q}$ , if
$(r_{1}, r_{2})\in \mathcal{D}(k)$ then $\alpha\not\in[r_{1}, r_{2}]$ . It follows from $\alpha=\lim_{narrow\infty}b_{n}$ that in the above procedure for
enumerating $\mathcal{D}(k)$ , for every $n\in \mathbb{N}$ we ever find $m_{1}$ such that $m_{1}>m$ and $b_{m_{1}}>a(k)_{n}+r^{k}d_{n}$ .
Therefore, $\mathcal{D}(k)$ is constructed as an infinite set and also $\{a(k)_{n}\}_{n}$ is constructed as an infinite
sequence of rational numbers. Thus, we have $a(k)_{n+1}>a(k)_{n}+r^{k}d_{n}$ for all $n\in \mathbb{N}$ . Since
$\{a(k)_{n}\}_{n}$ is a subsequence of $\{b_{n}\}$ , it follows that the sequence $\{a(k)_{n}\}_{n}$ is increasing, $a(k)_{0}>$

$\alpha-\epsilon$ , and $\alpha=\lim_{narrow\infty}a(k)_{n}$ . This completes the proof. ロ

Theorem 5.3. Suppose that $T$ is computable. For every $r.e$ . real number $\alpha>0$ , if $\alpha$ is Martin-
$L\dot{0}f$ T-mndom, then for every $r.e$ . T-convergent real number $\gamma>0$ there exist an $r.e$ . real number
$\beta>0$ and a mtional number $q>0$ such that $\alpha=\beta+q\gamma$ .

Proof. Suppose that $\gamma$ is an arbitrary r.e. T-convergent real number with $\gamma>0$ . Then there
exists a T-convergent computable, increasing sequence $\{c_{n}\}$ of rational numbers which converges
to $\gamma$ . Since $\gamma>0$ , without loss of generality we can assume that $c_{0}=0$ . We choose any one
rational number $\epsilon>0$ such that

$\sum_{n=0}^{\infty}(c_{n+1}-c_{n})^{T}\leq(\frac{1}{\epsilon})^{T}$

Such $\epsilon$ exists since the sequence $\{c_{n}\}$ is T-convergent. It follows that

$\sum_{n=0}^{\infty}[\epsilon(c_{n+1}-c_{n})]^{T}\leq 1$ .

Note that the sequence $\{\epsilon(c_{n+1}-c_{n})\}$ is a computable sequence of positive rational numbers.
Thus, since $\alpha$ is r.e. and Martin-L\"of T-random by the assumption, it follows from Lemma 5.2
that there exist a computable, increasing sequence $\{a_{n}\}$ of rational numbers and a rational
number $r>0$ such that $a_{n+}i-a_{n}>r\epsilon(c_{n+1}-c_{n})$ for every $n\in N,$ $a_{0}>0$ , and $\alpha=\lim_{narrow\infty}a_{n}$ .
We then define a sequence $\{b_{n}\}$ of positive real numbers by $b_{n}=a_{n+1}-a_{n}-r\epsilon(c_{n+1}-c_{n})$ .
It follows that $\{b_{n}\}$ is a computable sequence of rational numbers and $\sum_{n=0}^{\infty}b_{n}$ converges to
$\alpha-a_{0}-r\epsilon(\gamma-c_{0})$ . Thus we have $\alpha=a_{0}+\sum_{n=0}^{\infty}b_{n}+r\epsilon\gamma$ , where $a_{0}+ \sum_{n=0}^{\infty}b_{n}$ is a positive
r.e. real number. This completes the proof. ロ

Theorem 5.4. Suppose that $T$ is computable. For every real number $\alpha$ , if for every $r.e.$ T-
convergent real number $\gamma>0$ there exist an $r.e$ . real number $\beta\geq 0$ and a mtional number $q>0$
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such that $\alpha=\beta+q\gamma$ , then there exist an optimal computer $V$ and an $r.e$ . real number $\beta\geq 0$

such that $\alpha=\beta+\Omega_{V}(T)$ .

Proof. First, for the optimal computer $U$ , it follows from Theorem 4.3 that $\Omega_{U}(T)$ is an r.e. T-
convergent real number. Thus, by the assumption there exist an r.e. real number $\beta\geq 0$

and a rational number $q>0$ such that $\alpha=\beta+q\Omega_{U}(T)$ . We choose any one $n\in \mathbb{N}$ with
$q>2^{-n/T}$ . We then define a partial function $V:\{0,1\}^{*}arrow\{0,1\}^{*}$ by the conditions that (i)
dom $V=\{0^{n}p|p\in$ dom $U\}$ and (ii) for every $p\in$ dom $U,$ $V(0^{n}p)=U(p)$ . Since dom $V$ is a
prefix-free set, it follows that $V$ is a computer. It is then easy to see that $H_{V}(s)=H_{U}(s)+n$ for
every $s\in\{0,1\}^{*}$ . Therefore, since $U$ is an optimal computer, $V$ is also an optimal computer. It
follows that $\Omega_{V}(T)=2^{-n/T}\Omega_{U}(T)$ . Thus we have $\alpha=\beta+(q-2^{-n/T})\Omega_{U}(T)+\Omega_{V}(T)$ . On the
other hand, since $T$ is computable, $\beta+(q-2^{-n/T})\Omega_{U}(T)$ is an r.e. real number. This completes
the proof. ロ

Theorem 5.5. Suppose that $T$ is computable. For every real number $\alpha\in(0,1)$ , if for every
$r.e$ . T-convergent real number $\gamma>0$ there exist an $r.e$ . real number $\beta\geq 0$ and a rational
number $q>0$ such that $\alpha=\beta+q\gamma$ , then there exists a universal probability $m$ such that
$\alpha=\sum_{s\in\{0,1\}^{*}}m(s)^{\frac{1}{T}}$ .

Proof. First, based on the optimal computer $U$ we define a computer $V:\{0,1\}^{*}arrow\{0,1\}^{*}$ by
the conditions that (i) $H_{V}(s)=H(s)+1$ for every $s\in\{0,1\}^{*}$ and (ii) for every $s\in\{0,1\}^{*}$ and
every $n\in \mathbb{N}$ , if $n>H(s)$ then there exists a unique $p\in\{0,1\}^{*}$ such that $|p|=n$ and $V(p)=s$ .
The existence of such a computer $V$ can be easily shown using Theorem 3.2 of [4], based on the
fact that the set $\{(n, s)\in \mathbb{N}\cross\{0,1\}^{*}|n>H(s)\}$ is r.e. and

$\sum_{n>H(s)}2^{-n}=\sum_{8\in\{0,1\}^{*}}\sum_{n=H(s)+1}^{\infty}2^{-n}=\sum_{s\in\{0,1\}^{*}}2^{-H(s)}<1$ ,

where the first sum is over all $(n, s)\in \mathbb{N}\cross\{0,1\}^{*}$ with $n>H(s)$ . It follows that $V$ is optimal
and

$\Omega_{V}(T)=\sum_{s\in\{0,1\}^{*}}\sum_{n=H(s)+1}^{\infty}2^{-n/T}=\frac{1}{2^{1}/\tau_{-1}}\sum_{s\in\{0,1\}^{*}}2^{-H(s)/T}$. (5)

By Theorem 4.3, we also see that $\Omega_{V}(T)$ is an r.e. T-convergent real number. Thus, by the
assumption, there exist an r.e. real number $\beta\geq 0$ and a rational number $q>0$ such that
$\alpha=\beta+q\Omega_{V}(T)$ . We choose any one rational number $\epsilon>0$ such that $\epsilon\leq 1-\alpha^{T}$ and
$\epsilon^{1/T}<q/(2^{1/T}-1)$ . It follows from (5) that

$\alpha=\beta+\frac{q}{2^{1/T}-1}2^{-H(\lambda)/T}+(\frac{q}{2^{1/T}-1}-\epsilon^{1/T})\sum_{s\neq\lambda}2^{-H(s)/T}$

(6)
$+ \sum_{s\neq\lambda}(\epsilon 2^{-H(s)})^{1/T}$

Let $\gamma$ be the sum of the first, second, and third terms on the right-hand side of (6). Then,
since $T$ is computable, $\gamma$ is an r.e. real number. We define a function $m:\{0,1\}^{*}arrow(0, \infty)$

by $m(s)=\gamma^{T}$ if $s=\lambda;m(s)=\epsilon 2^{-H(s)}$ otherwise. Since $\gamma^{T}<\alpha^{T}\leq 1-\epsilon$ , we see that
$\sum_{s\in\{0,1\}^{*}}m(s)<\gamma^{T}+\epsilon<1$ . Since $T$ is right-computable, $\gamma^{T}$ is an $r.e$ . real number, Therefore,
since $2^{-H(s)}$ is a lower-computable semi-measure by Theorem 2.5, $m$ is also a lower-computable
semi-measure. Thus, since $2^{-H(s)}$ is a universal probability by Theorem 2.5 again and $\gamma^{T}>0$ ,
it is easy to see that $m$ is a universal probability. On the other hand, it follows from (6) that
$\alpha=\sum_{s\in\{0,1\}^{r}}m(s)\tau^{1}$ . This completes the proof. ロ
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Theorem 5.6 below is obtained by generalizing the proofs of Solovay [14] and Theorem 6.4
of Calude, Hertling, Khoussain$ov$ , and Wang [1].

Theorem 5.6. Suppose that $T$ is computable. For every $\alpha\in(0,1)$ , if there exists a universal
probability $m$ such that $\alpha=\sum_{s\in\{0,1\}^{r}}m(s)\tau 1$ , then every computable, increasing sequence of
mtional numbers which converges to $\alpha$ is T-universal.

Proof. Suppose that $\{a_{n}\}$ is an arbitrary computable, increasing sequence of rational numbers
which converges to $\alpha=\sum_{s\in\{0,1\}^{*}}m(s)\tau 1$ . Since $m$ is a lower-computable semi-measure and $T$ is
left-computable, there exists a total recursive function $f:\mathbb{N}arrow N^{+}$ such that, for every $n\in N$ ,
$f(n)<f(n+1)$ and

$\sum_{k=0}^{f(n)-1}m(k)$ I $\geq a_{n}$ . (7)

Recall here that we identify $\{0,1\}^{*}$ with N. We then define a total recursive function $g:Narrow$
$N$ by $g(k)= \min\{n\in \mathbb{N}|k\leq f(n)\}$ . It follows that $g(f(n))=n$ for every $n\in \mathbb{N}$ and
$\lim_{karrow\infty}g(k)=\infty$ .

Suppose that $\{b_{n}\}$ is an arbitrary T-convergent computable, increasing and converging se-
quence of rational numbers. We then choose any one $d\in \mathbb{N}^{+}$ with $\sum_{n=0}^{\infty}(b_{n+1}-b_{n})^{T}\leq d$ . We
then define a function $r:Narrow[0, \infty)$ by $r(k)=(b_{g(k+1)}-b_{q(k)})^{T}/d$ . Since $T$ is computable,
$\{b_{n}\}$ is T-convergent, and $g(k+1)=g(k),$ $g(k)+1$ , we see that $r$ is a lower-computable semi-
measure. Thus, since $m$ is a universal probability, there exists $c\in \mathbb{N}^{+}$ such that, for every
$k\in N,$ $cm(k)\geq r(k)$ . It follows from (7) that, for each $n\in N$ ,

$(cd)^{\frac{1}{T}}( \alpha-a_{n})\geq d^{\frac{1}{T}}\sum_{k=f(n)}^{\infty}(cm(k))^{\frac{1}{T}}\geq\sum_{k=f(n)}^{\infty}(b_{g(k+1)}-b_{g(k)})=\beta-b_{n}$ ,

where $\beta=\lim_{narrow\infty}b_{n}$ . This completes the proof. ロ

Note that, using Lemma 5.2, we can directly show that the condition (ii) implies the condi-
tion (iii) in Theorem 4.6 without assuming the computability of $T\in(O, 1]$ , as follows. Theorem
5.7 below holds for an arbitrary real number $T\in(0,1]$ .

Theorem 5.7. For every $r.e$ . real number $\alpha$ , if $\alpha$ is Martin-Lof T-mndom, then $\alpha$ is $\Omega(T)$ -like.

Proof. Suppose that $\beta$ is an arbitrary r.e. T-convergent real numbers. Then there is a T-
convergent computable, increasing sequence $\{b_{n}\}$ of rational numbers which converges to $\beta$ .
Since $\{b_{n}\}$ is T-convergent, without loss of generality we can assume that $\sum_{n=0}^{\infty}(b_{n+1}-b_{n})^{T}\leq 1$ .
Since $\alpha$ is r.e. and Martin-L\"of T-random by the assumption, it follows from Lemma 5.2 that
there exist a computable, increasing sequence $\{a_{n}\}$ of rational numbers and a rational number
$q>0$ such that $a_{n+1}-a_{n}>q(b_{n+1}-b_{n})$ for every $n\in N$ and $\alpha=\lim_{narrow\infty}a_{n}$ . It is then easy
to see that $\alpha-a_{n}>q(\beta-b_{n})$ for every $n\in N$ . Therefore $\alpha$ dominates $\beta$ . This completes the
proof. ロ

6 Some results on T-convergence

In this section, we investigate some properties of the notion of T-convergence. As one of the
applications of Theorem 4.6, the following theorem can be obtained first.

Theorem 6.1. Suppose that $T$ is computable. For every $r.e$ . real number $\alpha$ , if $\alpha$ is T-convergent,
then $\alpha$ is T-compressible.
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Proof. Using $(vi)\Rightarrow(iv)$ of Theorem 4.6, we see that $H(\alpha_{n})\leq H((\Omega_{U}(T))_{n})+O(1)$ for every
r.e. T-convergent real number $\alpha$ . It follows from Theorem 2.10 (i) that $\alpha$ is T-compressible for
every r.e. T-convergent real number $\alpha$ . $\square$

In the case of $T<1$ , the converse of Theorem 6.1 does not hold, as seen in the following
theorem in a sharper form.

Theorem 6.2. Suppose that $T$ is computable and $T<1$ . Then there exists an $r.e$ . real number
$\eta$ such that (i) $\eta$ is weakly Chaitin T-mndom and T-compressible, and (ii) $\eta$ is not T-convergent.

ロ

In order to prove Theorem 6.2, the following lemma is useful.

Lemma 6.3.

(i) If $\{a_{n}\}$ is a T-convergent increasing sequence of real numbers, then every subsequence of
the sequence $\{a_{n}\}$ is also T-convergent.

(ii) Let $\alpha$ be a T-convergent $r.e$ . real number. If $\{a_{n}\}$ is a computable, increasing sequence
of mtional numbers converging to $\alpha_{f}$ then there exists a subsequence $\{a_{n}’\}$ of the sequence
$\{a_{n}\}$ such that $\{a_{n}’\}$ is a T-convergent computable, increasing sequence of rational numbers
converging to $\alpha$ .

Proof. (i) Let $f:\mathbb{N}arrow \mathbb{N}$ such that $f(n)<f(n+1)$ for all $n\in \mathbb{N}$ . Then, using repeatedly the
inequality $(x+y)^{t}\leq x^{t}+y^{t}$ for real numbers $x,$ $y>0$ and $t\in(0,1]$ , we have

$(a$$f(n+1)-af(n))^{T}=[k \leq\sum_{k=f(n)}^{f(n+1)-1}(ak+1-a)^{T}$.

It follows that

$\sum_{n=0}^{m}$ $(a$$f(n+1)$ – $a$$f(n))^{T} \leq\sum_{k=f(0)}^{f(m+1)-1}(a_{k+1}-a_{k})^{T}$ .

Since $\{a_{n}\}$ is T-convergent, we see that the subsequence $\{a_{f(n)}\}$ of $\{a_{n}\}$ is also T-convergent.
(ii) We choose any one T-convergent computable, increasing sequence $\{b_{n}\}$ of rational num-

bers converging to $\alpha$ . It is then easy to show that there exist total recursive functions $g:Narrow \mathbb{N}$

and $h:\mathbb{N}arrow \mathbb{N}$ such that, for all $n\in \mathbb{N},$ $(i)g(n)<g(n+1)$ , (ii) $h(n)<h(n+1)$ , and (iii)
$b_{g(n)}<a_{h(n)}<b_{g(n+1)}$ . It follows from Lemma 6.3 (i) that the subsequence $\{b_{g(n)}\}$ of $\{b_{n}\}$ is
T-convergent. Using the inequality $(x+y)^{t}\leq x^{t}+y^{t}$ for real numbers $x,$ $y>0$ and $t\in(O, 1]$ ,
we see that

$(a_{h(n+1)}-a_{h(n)})^{T}<(b_{g(n+2)}-b_{g(n)})^{T}\leq(b_{g(n+2)}-b_{g(n+1)})^{T}+(b_{g(n+1)}-b_{g(n)})^{T}$

Thus, we see that the subsequence $\{a_{h(n)}\}$ of $\{a_{n}\}$ is a T-convergent computable, increasing
sequence of rational numbers converging to $\alpha$ . ロ

The proof Theorem 6.2 is given as follows.

Proof of Theorem 6.2. We choose any one recursive enumeration $p_{0},p_{1},p_{2},$ $\ldots$ of the r.e. set
dom $U$ , and define $\eta$ by

$\eta=\sum_{i=0}^{\infty}|p_{i}|2^{-|p_{i}|/T}$ .
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Then, since $T$ is computable and $T<1$ , by Theorem 3 of Tadaki [18] we see that $\eta$ is an r.e. real
number which is weakly Chaitin T-random and T-compressible.1 Since $T$ is computable, it is
easy to show that there exists a computable, increasing sequence $\{a_{n}\}$ of rational numbers such
that

$\sum_{i=0}^{n-1}|p_{i}|2^{-|p_{\tau}|/T}<a_{n}<\sum_{i=0}^{n}|p_{i}|2^{-|p_{i}|/T}$ (8)

for all $n\in \mathbb{N}^{+}$ . Obviously, $\{a_{n}\}$ is an increasing sequence of rational numbers converging to $\eta$ .
To show that $\eta$ satisfies the condition (ii) of Theorem 6.2, let us assume contrarily that

$\eta$ is T-convergent. Then it follows from Lemma 6.3 (ii) that there exists a total recursive
function $f:Narrow \mathbb{N}$ such that $f(n)<f(n+1)$ for all $n\in N$ , and $\{a_{f(n)}\}$ is a T-convergent
computable, increasing sequence of rational numbers converging to $\eta$ . On the other hand, since
$T$ is computable, it is easy to show that there exists a computable, increasing sequence $\{b_{n}\}$ of
rational numbers such that

$\sum_{i=0}^{f(n)}2^{-|p_{i}|/T}<b_{n}<\sum_{i=0}^{f(n+1)}2^{-|p_{t}|/T}$ (9)

for all $n\in \mathbb{N}$ . Obviously, $\{b_{n}\}$ is an increasing sequence of rational numbers converging to
$\Omega_{U}(T)$ . Since $U$ is an optimal computer, using (vi) $\Rightarrow(viii)$ of Theorem 4.6, we see that there
exists $c\in \mathbb{N}^{+}$ such that $c(\Omega_{U}(T)-b_{n})\geq\eta-a_{f(n)}$ for all $n\in \mathbb{N}$ . It follows from (8) and (9)
that

$c \sum_{i=f(n)+1}^{\infty}2^{-|p_{t}|/\tau}>\sum_{i=f(n)+1}^{\infty}|p_{i}|2^{-|p_{i}|/T}$

for all $n\in \mathbb{N}^{+}$ . Therefore, we have

$\sum_{i=f(n)+1}^{\infty}(c-|p_{i}|)2^{-|p_{i}|/T}>0$ (10)

for all $n\in \mathbb{N}^{+}$ . On the other hand, it is easy to show that $\lim_{iarrow\infty}|p_{i}|=\infty$ . Therefore, since
$\lim_{narrow\infty}f(n)=\infty$ , there exists $n_{0}\in N^{+}$ such that, for all $i\in \mathbb{N}$ , if $i\geq f(n_{0})+1$ then $|p_{i}|\geq c$ .
Thus, by setting $n$ to no in (10), we have a contradiction. This completes the proof. ロ

Let $T_{1}$ and $T_{2}$ be arbitrary computable real numbers with $0<T_{1}<T_{2}<1$ , and let $V$ be
an arbitrary optimal computer. By Theorem 2.10 (i) and Theorem 6.1, we see that the r.e. real
number $\Omega_{V}(T_{2})$ is not $T_{1}$ -convergent and therefore every computable, increasing sequence $\{a_{n}\}$

of rational numbers which converges to $\Omega_{V}(T_{2})$ is not $T_{1}$ -convergent. Thus, conversely, the
following question naturally arises: Is there any computable, increasing sequence of rational
numbers which converges to $\Omega_{V}(T_{1})$ and which is not $T_{2}$-convergent ? We can answer this
question affirmatively in the following form.

Theorem 6.4. Let $T_{1}$ and $T_{2}$ be arbitmry computable real numbers with $0<T_{1}<T_{2}<1$ .
Then there exist an optimal computer $V$ and a computable, increasing sequence $\{a_{n}\}$ of rational
numbers such that (i) $\Omega_{V}(T_{1})=\lim_{narrow\infty}a_{n},$ $(ii)\{a_{n}\}$ is T-convergent for every $T\in(T_{2}, \infty)$ ,
and (iii) $\{a_{n}\}$ is not T-convergent for every $T\in(O, T_{2}]$ .

lIn Theorem 3 of Tadaki [18], $\eta$ is furthermore shown to be Chaitin T-random, i.e., $\lim_{narrow\infty}H(\eta_{n})-Tn=$ oo
holds.
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Proof. First, we choose any one computable, increasing sequence $\{c_{n}\}$ of real numbers such
that (i) $\{c_{n}\}$ converges to a computable real number $\gamma>0$ , (ii) $\{c_{n}\}$ is T-convergent for every
$T\in(T_{2}, \infty)$ , and (iii) $\{c_{n}\}$ is not T-convergent for every $T\in(0, T_{2}]$ . Such $\{c_{n}\}$ can be obtained,
for example, in the following manner.

Let $\{c_{n}\}$ be an increasing sequence of real numbers with

$c_{n}= \sum_{k=1}^{n+1}(\frac{1}{k})^{\#_{2}}$

Since $T_{2}>0$ , we first see that $\{c_{n}\}$ is T-convergent for every $T\in(T_{2}, \infty)$ , and $\{c_{n}\}$ is not
T-convergent for every $T\in(0, T_{2}]$ . Since $T_{2}$ is a computable real number with $0<T_{2}<1$ , it is
easy to see that $\{c_{n}\}$ is a computable sequence of real numbers which converges to a computable
real number $\gamma>0$ . Thus, this sequence $\{c_{n}\}$ has the properties (i), (ii), and (iii) desired above.

We choose any one rational number $r$ with $0<r<1/\gamma$ , and let $\beta=r\gamma$ . Obviously, $\beta$ is a
computable real number with $0<\beta<1$ . Let $b=2^{\frac{1}{T_{1}}}$ . Then $1<b$ . We can then effectively
expand $\beta$ to the base-b, i.e., Property 1 below holds for the pair of $\beta$ and $b$ .
Property 1. There exists a total recursive function $f:\mathbb{N}^{+}arrow \mathbb{N}$ such that $f(k)\leq\lceil b]-1$ for
all $k\in \mathbb{N}^{+}$ and $\beta=\sum_{k=1}^{\infty}f(k)b^{-k}$ .

This can be possible since both $\beta$ and $b$ are computable. The detail is as follows. In the
case where Property 2 below holds for the pair of $\beta$ and $b$ , Property 1 holds, obviously.
Property 2. There exist $m\in N^{+}$ and a function $g:\{1,2, \ldots, m\}arrow \mathbb{N}$ such that $g(k)\leq\lceil b]-1$

for all $k\in\{1,2, \ldots, m\}$ and $\beta=\sum_{k=1}^{m}g(k)b^{-k}$ .
Thus, in what follows, we assume that Property 2 does not hold. In this case, we construct

the total recursive function $f:N^{+}arrow \mathbb{N}$ by calculating $f(1),$ $f(2),$ $f(3),$ $\ldots,$ $f(m),$ $\ldots$ one by one
in this order, based on recursion on stages $m$ . We start with stage 1 and follow the instructions
below. Note there that the sum $\sum_{k=1}^{m-1}f(k)b^{-k}$ is regarded as $0$ in the case of $m=1$ .

At the beginning of stage $m$ , assume that $f(1),$ $f(2),$ $f(3),$ $\ldots,$ $f(m-1)$ are calculated already.
We approximate the real number $\beta-\sum_{k=1}^{m-1}f(k)b^{-k}$ and the $\lceil b\rceil-1$ real numbers

$b^{-m},$ $2b^{-m},$
$\ldots,$

$(\lceil b\rceil-2)b^{-m},$ $(\lceil b\rceil-1)b^{-m}$

by rational numbers with increasing precision. During the approximation, if we find $l\in$

$\{0,1,2, \ldots , \lceil b\rceil-1\}$ such that

$lb^{-m}< \beta-\sum_{k=1}^{m-1}f(k)b^{-k}<(l+1)b^{-m}$ , (11)

then we set $f(m)$ $:=l$ and begin stage $m+1$ .
We can check that our recursion works properly, as follows. Since $0<\beta<1\leq\lceil b\rceil b^{-1}$ , we

see that $0< \beta-\sum_{k=1}^{m-1}f(k)b^{-k}<\lceil b\rceil b^{-m}$ at the beginning of stage $m=1$ . Thus, in general, we
assume that $0< \beta-\sum_{k=1}^{m-1}f(k)b^{-k}<\lceil b\rceil b^{-m}$ at the beginning of stage $m$ . Then, since $\beta$ and
$b$ are computable and Property 2 does not hold, we can eventually find $l\in\{0,1,2, \ldots, \lceil b\rceil-1\}$

which satisfies (11). Since $b^{-m}\leq\lceil b\rceil b^{-(m+1)}$ , we have $0< \beta-\sum_{k=1}^{m}f(k)b^{-k}<\lceil b\rceil b^{-(m+1)}$ at
the beginning of stage $m+1$ .

Thus, Property 1 holds in any case. We choose any one $L\in \mathbb{N}$ with $2^{L}\geq\lceil b\rceil-1$ . Then
$\sum_{k=1}^{\infty}f(k)2^{-(k+L)}\leq\sum_{k=1}^{\infty}(\lceil b\rceil-1)2^{-(k+L)}\leq 1$. Hence, by Theorem 3.2 of [4], it is easy to
show that there exists a computer $C$ such that (i) $\#\{p||p|=$ k $+$ L&p $\in$ dom $C\}=f(k)$
for every $k\in \mathbb{N}^{+}$ , and (ii) $|p|\geq 1+L$ for every $p\in$ dom $C$ . We then define a partial function
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$V:\{0,1\}^{*}arrow\{0,1\}^{*}$ by the conditions that (i) dom $V=\{Op|p\in$ dom $U\}\cup\{1p|p\in$ dom $C\}$ ,
(ii) $V(Op)=U(p)$ for all $p\in$ dom $U$ , and (iii) $V(1p)=C(p)$ for all $p\in domC$ . Since dom $V$ is a
prefix-free set, it follows that $V$ is a computer. It is then easy to check that $H_{V}(s)\leq H_{U}(s)+1$

for every $s\in\{0,1\}^{*}$ . Therefore, since $U$ is an optimal computer, $V$ is also an optimal computer.
On the other hand, we see that

$\Omega_{V}(T_{1})=\sum_{p\in domU}2^{-(|p|+1)/T_{1}}+\sum_{p\in domC}2^{-(|p|+1)/T_{1}}$

$=2^{-\frac{1}{T_{1}}} \Omega_{U}(T_{1})+2^{-\frac{L+1}{T_{1}}}\sum_{k=1}^{\infty}f(k)2^{-k/T_{1}}$ (12)

$=2^{-\frac{1}{T_{1}}}\Omega_{U}(T_{1})+2^{-+}1\beta L1$ .
Since $T_{1}$ is computable with $0<T_{1}<1$ , it follows from Theorem 4.3 that there exists

a $T_{1}$ -convergent computable, increasing sequence $\{w_{n}\}$ of rational numbers which converges
to $\Omega_{U}(T_{1})$ . Then, since $T_{1}$ is computable, it is easy to show that there exists a computable,
increasing sequence $\{a_{n}\}$ of rational numbers such that

$\eta w_{n}+\xi c_{n}<a_{n}<\eta w_{n+1}+\xi c_{n+1}$

for all $n\in \mathbb{N}$ , where $\eta=2^{-\frac{1}{T_{1}}}$ and $\xi=2^{-\frac{L+1}{T_{1}}}r$ . Obviously, by (12) we have $\lim_{narrow\infty}a_{n}=$

$2^{-\frac{1}{T_{1}}}\Omega_{U}(T_{1})+2^{-\frac{L+1}{T_{1}}}r\gamma=\Omega_{V}(T_{1})$ . Using the inequality $(x+y)^{t}\leq x^{t}+y^{t}$ for real numbers
$x,$ $y>0$ and $t\in(O, 1]$ , we have

$(a_{n+1}-a_{n})^{T}<[(\eta w_{n+2}+\xi c_{n+2})-(\eta w_{n}+\xi c_{n})]^{T}$

$\leq\eta^{T}(w_{n+2}-w_{n})^{T}+\xi^{T}(c_{n+2}-c_{n})^{T}$

$\leq\eta^{T}(w_{n+2}-w_{n+1})^{T}+\eta^{T}(w_{n+1}-w_{n})^{T}$

$+\xi^{T}(c_{n+2}-c_{n+1})^{T}+\xi^{T}(c_{n+1}-c_{n})^{T}$ .
Thus, for each $T\in(T_{2}, \infty)$ , since both $\{w_{n}\}$ and $\{c_{n}\}$ are T-convergent, $\{a_{n}\}$ is also T-
convergent. We also have

$(c_{n+2}-c_{n+1})^{T}<[\eta(w_{n+2}-w_{n+1})+\xi(c_{n+2}-c_{n+1})]^{T}/\xi^{T}$

$=[(\eta w_{n+2}+\xi c_{n+2})-(\eta w_{n+1}+\xi c_{n+1})]^{T}/\xi^{T}$

$<(a_{n+2}-a_{n})^{T}/\xi^{T}$

$\leq(a_{n+2}-a_{n+1})^{T}/\xi^{T}+(a_{n+1}-a_{n})^{T}/\xi^{T}$ .
Thus, for each $T\in(0, T_{2}]$ , since $\{c_{n}\}$ is not T-convergent, it is easy to see that $\{a_{n}\}$ is not
T-convergent also. This completes the proof. $\square$

7 Concluding remarks

In this paper, we have generalized the equivalent characterizations of randomness for a recur-
sively enumerable real over the notion of partial randomness, so that the generalized char-
acterizations are all equivalent to the weak Chaitin T-randomness. As a stronger notion of
partial randomness of a real number $\alpha$ , Tadaki [15, 16] introduced the notion of the Chaitin
T-randomness of $\alpha$ , which is defined as the condition on $\alpha$ that $\lim_{narrow\infty}H(\alpha_{n})-Tn=\infty^{2}$

Thus, future work may aim at modifying our equivalent characterizations of partial randomness
so that they become equivalent to the Chaitin T-randomness.
$\overline{2The}$actual separation of the Chaitin $T$-randomness from the weak Chaitin T-randomness is done by Reimann
and Stephan [12].
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