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Abstract
A fast verified automatic integration algorithm of calculating univariate integrals over finite

interval using numerical computations is proposed. The proposed algorithm $is$ applicable to the
double exponential formula for numerical integration proposed by H. Takahashi and M. Mori.
To get highly accurate integral value using the formula, how to decide the two parameters $h$

and $n$ is critical. In this paper, we present a theorem to get an adequate pair $h$ and $n$ for
a given tolerance. Furthermore, we propose a fast verified automatic integration algorithm
based on the theorem with a priori error algorithm for rounding error. Numerical results are
presented showing the performance of the proposed algorithm.

1 Introduction
We are concemed with verified computation of an intergral

$I= \int_{a}^{b}f(x)dx$ .

We assume that $f(x)$ may have an integrable singularity at the end-points $x=a$ and$/orx=b$.
We adopt the double exponential formula for numerical integration proposed by H. Takahashi and
M. Mori [2] in 1974. The double exponential transformation $\varphi$ for the integral over finite interval
$(a, b)$ is defined by

$x= \varphi(t)=\frac{b-a}{2}\tanh(\frac{\pi}{2}\sinh(t))+\frac{a+b}{2}$,

and then the double exponential formula can be written as follows:

$I_{h,n}:=h \sum_{k=-n}^{n}f(\varphi(kh))\varphi’(kh)$ ,
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where $h$ and $n$ denote a mesh size and the number of points, respectively. Here, the error $E(h, n)$
can be described as

$I=I_{h,n}+E(h, n)$

$E(h, n)=\tilde{C}(E_{D}(h)+E_{T}(h, n))$ ,

which $E_{D}(h)$ and $E_{T}(h, n)$ denote the discretization error and the truncation error with a constant
$\tilde{C}$ . In order that the formula works accurately and efficiently, $E_{D}$ and $E_{T}$ should be of the same
order in magnitude, so that we attempt to select the pair $h$ and $n$ adequately.

Several authors have proposed the error analysis of the double exponential formula [3, 4, 5].
In particular, for verified computation, a theorem (Theorem 1), which is proposed by Okayama et
al. [6], is useful to get an upper bound of $E(h, n)$ . We think that this theorem is much important
because it shows some constants of the upper bound of the formula explicitly, so that it can easily
be applied for verified integration algorithms. Using the theorem, however, these errors $E_{D}$ and
$E_{T}$ are sometimes not of the same order since the pair $h$ and $n$ is not suitably selected.

To solve the problem, in this paper, we present a theorem (Theorem 3). Using this theorem,
we can easily get an adequate pair satisfying

$E(h, n)\leq\epsilon_{abs}$ ,

which $\epsilon_{abs}$ denotes a given absolute tolerance.
For developing verified algorithm using the double exponential formula, all rounding errors that

occur throughout the algorithm must be taken into account. An upper bound of rounding error
for verified computations can be calculated by interval arithmetic, but it is much slower than pure
floating-point arithmetic because it calculates the interval of evaluation $res_{i}$ and the upper bound
of rounding error $\epsilon_{i}$ for every $x_{i}$ s.t.

$|res_{i}-f(x_{i})|\leq\epsilon_{i}$ .
Furthermore, to get the upper bound, whole calculations by interval arithmetic must be completed.
To avoid these problems, we adopt an algorithm of calculating a priori error bounds of function
evaluations using floating-point computations (Algorithm 1). This algorithm calculates a global
constant $\epsilon$ for any floating point numbers $a\leq x\leq b$ s.t.

$\max_{a\leq x\leq b}|res-f(x)|\leq\epsilon$ ,

which $res$ denotes the approximate value of $f(x)$ .
Automatic integration in this paper means that the user inputs an integration and a relative

tolerance $\epsilon_{rel}$ , and automatic integration algorithm outputs an interval $\tilde{I}$ s.t.

$| \frac{I-\tilde{I}}{I}|\leq\frac{rad(\tilde{I})}{|I|}\leq\epsilon_{rel}$ ,

where rad(I) denotes the radius of $\overline{I}$ .
In this paper, we propose a fast verified automatic integration algorithm based on Theorem 3

and Algorithm 1. Using this algorithm, we can calculate $\tilde{I}$ as fast as the widely-used approximation
software developed by Ooura [10] for integration problems using the double exponential formula.
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2 Errors of The Double Exponential Formula
2.1 The Double Exponential Formula
Now consider again the integral

$I= \int_{a}^{b}f(x)dx$ . (1)

We assume that $f(x)$ may have an integrable singularity at the end-points $x=a$ and$/orx=b$.
We apply a variable transformation

$x=\varphi(u)$

to (1), where $\varphi(u)$ is an analytic increasing function without singularities on the real axis except
infinity satisfying

$a=\varphi(-\infty)$ , $b=\varphi(+\infty)$ .
Then we have

$I= \int_{-\infty}^{\infty}f(\varphi(u))\varphi’(u)du$ , (2)

in which $f(\varphi(u))\varphi’(u)$ has no singularities on the real axis except infinity. We apply the trapezoidal
rule to (2) with a mesh size $h$ ,

$I_{h}:=h \sum_{k=\infty}^{\infty}f(\varphi(kh))\varphi’(kh)$ .

Obviously, the infinite sum must be appropriately truncated in actual application; e.g.

$I_{h,n}:=h \sum_{k=-n}^{n}f(\varphi(kh))\varphi’(kh)$ .

In order that the formula above works accurately, the transformed function by the double
exponential transformation should be analytic and bounded on some strip domain,

$\mathcal{D}_{d}=\{z\in \mathbb{C}:|{\rm Im} z|<d\}$ ,

for a positive constant $d$ . More specifically, the function before the transformation is subject to be
non-singular on the following domain:

To be more specific, we define the following function space:

Deflnition 1
Let $K,$ $\alpha,$

$\beta$ be positive constants. Then $L_{K,\alpha,\beta}(\varphi(\mathcal{D}_{d}))$ denotes the family of all functions $f$ that
are holomorphic on $\varphi(\mathcal{D}_{d})$ for $d$ with $0<d<\pi/2$ , and satisfy the condition that

$|f(z)|\leq K|z-a|^{\alpha-1}|b-z|^{\beta-1}$ , (3)

for all $z\in\varphi(\mathcal{D}_{d})$ .
We can calculate the upper bound of $K$ using circle interval arithmetic. See Eiermann [7].
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2.2 Error Analysis of The Double Exponential Formula
For developing verified algorithm using the double exponential formula, all errors of the formula
must be taken into account. Since the trapezoidal rule in the double exponential formula is used
for transformed infinite interval, we have to consider the following two errors as the errors of the
double exponential formula:

1. The Discretization error $E_{D}(h)$

2. The Truncation error $E_{T}(h, n)$

For estimating the discretization error, a lemma proposed by Okayama et al. can be used.

Lemma 1 (Okayama et al. [6, Lemma 4.16])
Let $f\in L_{K,\alpha,\beta}(\varphi(\mathcal{D}_{d}))$ and $\mu=\min\{\alpha,\beta\}$ . Then

$|E_{D}|=| \int_{a}^{b}f(x)dx-h\sum_{j=-\infty}^{\infty}f(\varphi(jh))\varphi’(jh)|$

$\leq C_{1}C_{2}\frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}$ ,

where the constants $C_{1}$ an$dC_{2}$ are deRned by

$C_{1}= \frac{2K(b-a)^{\alpha+\beta-1}}{\mu}$ (4)

$C_{2}= \frac{2}{\cos^{\alpha+\beta}(\frac{\pi}{2}\sin d)\cos d}$ . (5)

Next, the following lemma proposed by Okayama et $s1$ . can be used for the estimation of the
truncation error:

Lemma 2 (Okayama et al. [6, Lemma 4.17])
Assume that the assumptions of Lemma 1 are fulfilled. Furthermore let $\nu=\max\{\alpha, \beta\},$ $n$ be a
positive integer, an$dM$ and $N$ be positive integers defined by

$\{\begin{array}{ll}M=n, N =n-\lfloor\log(\beta/\alpha)/h\rfloor (if\mu=\alpha)N=n, M =n-\lfloor\log(\alpha/\beta)/h\rfloor (if\mu=\beta)\end{array}$ (6)

Then, it follows that

$|E_{T}| \leq|h\sum_{j=-\infty}^{-M-1}f(\varphi(jh))\varphi’(jh)|+|h\sum_{j=N+1}^{\infty}f(\varphi(jh))\varphi’(jh)|$

$\leq e^{\pi}\tau^{\nu}C_{1}e^{-g_{\mu exp(nh)}}$ ,

where the constant $C_{1}$ is defined by (4).

Using the above two lemmas, Okayama et al. has proposed the following theorem:
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Theorem 1 (Okayama et al. [6, Theorem 2.11])
Let $f\in L_{K,\alpha,\beta}(\varphi(\mathcal{D}_{d})),$ $\mu=\min\{\alpha, \beta\},$ $\nu=\max\{\alpha, \beta\},$ $n$ be a positive integer with $n\geq$

$(\nu e)/(4d)$ , and $h$ be selected by

$h=p(n)= \frac{\log(4dn/\mu)}{n}$ . (7)

$FuRhermore$, let $M$ and $N$ be positive integers defined by (6). Then it follows that

$| \int_{a}^{b}f(x)dx-h\sum_{k=-M}^{N}f(\varphi(kh))\varphi’(kh)|\leq|E_{D}|+|E_{T}|$

$\leq C_{1}[\frac{C_{2}}{1-e^{-\not\in\mu e}}+e^{*\nu}]\epsilon^{-2\pi dn/\log(4dn/\mu)}$,

where the constants $C_{1}$ and $C_{2}$ are defined by (4) and (5).

We think that this theorem is much important because it shows some constants of the upper
bound of the formula explicitly, so that it can easily be applied for verified integration algorithms.
Using the theorem, however, these errors $E_{D}$ and $E_{T}$ are sometimes not of the same order since
the pair $h$ and $n$ is not suitably selected.

In addition, though Theorem 1 requires $n$ first to determine $h$ from $n$ , it does not describe how
to select $n$ .

To solve these problems, we present two theorems as follows:

Theorem 2
Let $f\in L_{K,\alpha,\beta}(\varphi(\mathcal{D}_{d})),$ $\mu=\min\{\alpha,\beta\},$ $\nu=\max\{\alpha, \beta\},$ $h$ be a positive number, and $n$ be selected
$by$

$n=q(h)= \lceil\frac{1}{h}\log(\frac{4d}{\mu h}-\frac{2}{\pi\mu}\log_{e}(\frac{C_{2}}{e^{*\nu}}))]$ . (S)

Furthermore, let $M$ and $N$ be positive integers defin$ed$ by (6). Then it follows that

$|abf(x)dx-h \sum_{k=-M}^{N}f(\varphi(kh))\varphi’(kh)|\leq|E_{D}|+|E_{T}|$

$\leq 2C_{1}C_{2}\frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}$

where the constants $C_{1}$ an$dC_{2}$ are defined by (4) and (5).

Proof.
Clearly it follows by Lemma 1 and 2 that

$|E_{D}|+|E_{T}| \leq C_{1}(C_{2}\frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}+e^{\S\nu}e^{-\S\mu\exp(nh)})$

$=C_{1}(\overline{E}_{D}+\tilde{E}_{T})$ ,

where $\tilde{E}_{D}$ and $\tilde{E}_{T}$ are defined by

$\tilde{E}_{D}=C_{2}\frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}$ (9)

$\tilde{E}_{T}=e^{\S\nu}e^{-mu\exp(nh)}$ . (10)
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For decreasing $|E_{D}|$ and $|E_{T}|$ at the same order, using $e^{-2\pi d/h}\ll 1$ when $h$ is small, suppose
$C_{2}e^{-2\pi d/h}=\tilde{E}_{T}$ . (11)

(11) can be rewritten by $n$ as follows:

$e^{-\pi} \tau^{\mu\exp(nh)}=\frac{C_{2}}{ef^{\nu}}e^{-2\pi d/h}$

$\Leftrightarrow-\frac{\pi}{2}\mu\exp(nh)=\log_{e}(\frac{C_{2}}{enu}e^{-2\pi d/h})$

$= \log_{e}(\frac{C_{2}}{e\yen^{\nu}})+\log_{e}(e^{-2\pi d/h})$

$= \log_{e}(\frac{C_{2}}{enu})-\frac{2\pi d}{h}$

$\Leftrightarrow$
$n= \frac{1}{h}\log(\frac{4d}{\mu h}-\frac{2}{\pi\mu}\log_{e}(\frac{C_{2}}{ef^{\nu}}))$

$\leq\lceil\frac{1}{h}\log(\frac{4d}{\mu h}-\frac{2}{\pi\mu}\log_{e}(\frac{C_{2}}{e^{*\nu}}))\rceil$ .
Using (11), the upper bound of the double exponential formula can be written as follows:

$|E_{D}|+|E_{T}|\leq C_{1}(\tilde{E}_{D}+\tilde{E}_{T})$

$=C_{1}C_{2}( \frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}+e^{-2\pi d/h})$

$=C_{1}C_{2}e^{-2\pi d/h}( \frac{2-e^{-2\pi d/h}}{1-e^{-2\pi d/h}}I$

$\leq 2C_{1}C_{2}\frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}$

口
Theorem 2 shows that when $E_{D}\approx E_{T}$ , the upper bound of the double exponential formuladepends only on $h$ . The following theorem shows the condition of the pair $h$ and $n$ when a tolerance

$\epsilon_{ab\epsilon}$ is inputted:

Theorem 3
Let $f\in L_{K,\alpha,\beta}(\varphi(\mathcal{D}_{d})),$ $\mu=\min\{\alpha, \beta\}$ and $\nu=\max\{\alpha, \beta\}$ . Eurthermore, let $M$ and $N$ bepositive integers defined by (6), and the constants $C_{1}$ axid $C_{2}$ be defined by (4) and (5). If apositive $n$um$berh$ and a positive integer $n$ are selected by

$h= \frac{2\pi d}{\log_{e}(1+\frac{2C_{2}}{\epsilon_{abs}})}$

,

$n= \lceil\frac{1}{h}\log(\frac{2}{\pi\mu}\log_{e}(\frac{2e\^{\nu}}{\epsilon_{abs}}))\rceil$ ,

then

$| \int_{a}^{b}f(x)dx-h\sum_{k=-M}^{N}f(\varphi(kh))\varphi’(kh)|\leq C_{1}\epsilon_{ab\epsilon}$

holds.
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Proof.
It follows by Lemma 1 and 2 that

$|E_{D}(h)|+|E_{T}(h, n)|\leq C_{1}(\tilde{E}_{D}+\tilde{E}_{T})$ .

For conforming $|E_{D}|$ to $|E_{T}|$ , assign $\epsilon_{abs}$ as follows:

$\tilde{E}_{D}(h)\leq\frac{\epsilon_{ab\epsilon}}{2}$ , (12)

$\tilde{E}_{T}(h, n)\leq\frac{\epsilon_{abs}}{2}$ . (13)

First, since $\tilde{E}_{D}(h)$ depends on only $h$ , from (12) we have

$C_{2} \frac{e^{-2\pi d/h}}{1-e^{-2\pi d/h}}\leq\frac{\epsilon_{abs}}{2}$

$\Leftrightarrow e^{-2\pi d/h}\leq\frac{\epsilon_{abs}}{2C_{2}+\epsilon_{ab\epsilon}}$

$\Leftrightarrow h\leq\frac{2\pi d}{\log_{e}(1+\frac{2C_{2}}{\epsilon_{ab\epsilon}})}=:h_{m}$

.

Next, though $\tilde{E}_{T}(h, n)$ depends on $h$ and $n$ , we can choose adequate $n$ from (13) using maximum
$h(=h_{m})$ as follows:

$e^{g\nu}e^{-\S\mu\exp(nh_{n})} \leq\frac{\epsilon_{abs}}{2}$

$\Leftrightarrow-\frac{\pi}{2}\mu\exp(nh_{m})\leq\log_{e}\frac{\epsilon_{abs}}{2ef^{\nu}}$

$\Leftrightarrow n\geq\frac{1}{h_{m}}\log_{e}(\frac{2}{\pi\mu}\log_{e}\frac{2e^{n}\tau^{\nu}}{\epsilon_{abs}})$

Since the right-hand side is monotone decreasing for $h$ , we have

$n= \lceil\frac{1}{h_{m}}\log_{e}(\frac{2}{\pi\mu}\log_{e}\frac{2e^{l^{\nu}}}{\epsilon_{ab\epsilon}})\rceil$ .

口

3 Fast Verifled Automatic Integration Algorithm
3.1 A Priori Error Algorithm for Rounding Error
In verified numerical computations, all rounding errors that occur throughout the algorithm must
be taken into account. Although the rounding errors can be counted by interval arithmetic, it is
much slower than pure floating-point arithmetic. Moreover it is not until all calculations have done
by interval arithmetic that we could get the upper bound of rounding errors.

To avoid these problems, we adopt an algorithm of calculating a priori error bounds of func-
tion evaluations using floating-point computations, which is proposed by M. Kashiwagi [8]. This
algorithm calculates a global constant $\epsilon$ for any $a\leq x\leq b$ s.t.

$\max_{a\leq x\leq b}|res-f(x)|\leq\epsilon$ ,
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which $res$ denotes the approximate value of $f(x)$ . In the case that some numerical algorithm
computes the same function with a number of different points, we can expect the algorithm with
the a priori error algorithm to become faster than that with interval arithmetic, because the
evaluations of the function are executed by pure floating-point operations.

Consider the binary operation $\tilde{z}=g(\tilde{x},\tilde{y})$ . Denote hi and $\overline{y}$ in the intervals $I_{x}$ and $I$ by$y$approximate values of $x$ and $y$ in $I_{x}$ and $I_{y}$ , respectively. Suppose

$|x-\tilde{x}|\leq\epsilon_{x}$ , $|y-\tilde{y}|\leq\epsilon_{y}$

hold. In addition, assume the following inequality is satisfied:

$|\tilde{z}-g(\tilde{x},\tilde{y})|\leq|g(\tilde{x},\tilde{y})|\epsilon_{M}$ . (14)

Then, the following inequality holds for $z\in I_{z}$ :

$|z-\tilde{z}|\leq|D_{x}|\epsilon_{x}+|D_{y}|\epsilon_{y}+|I_{z}|\epsilon_{M}$ .
Here, let us suppose the interval $I_{z}$ holds

$I_{t}\supset\{g(x, y)|x\in I_{x}, y\in I_{y}\}$ ,

and intervals $D_{x},$ $D_{y}$ hold

$D_{x} \supset\{\frac{\partial g}{\partial x}(x, y)|x\in I_{x},$ $y\in I_{y}\}$

$D_{y} \supset\{\frac{\partial g}{\partial y}(x, y)|x\in I_{x},$ $y\in I_{y}\}$ .

For the single operation $z=g(x)$ , we can show the upper bound of rounding error by the
almost same way. Denote $\tilde{x}$ in the intervals $I_{x}$ by approximate values of $x$ in $I_{x}$ . Suppose

$|x-\tilde{x}|\leq\epsilon_{x}$

hold. In addition, assume the following inequality is satisfied:

$|\tilde{z}-g(\tilde{x})|\leq|g(\tilde{x})|\epsilon_{M}$ . (15)

Then, the following inequality holds for $z\in I_{z}$ :

$|z-\tilde{z}|\leq|D_{x}|\epsilon_{x}+|I_{z}|\epsilon_{M}$ .
Here, let us suppose the interval $I_{z}$ holds

$I_{z}\supset\{g(x)|x\in I_{x}\}$ ,

and intervals $D_{x}$ hold
$D_{x}\supset\{g’(x)|x\in I_{x}\}$ .

We make the pair $(I, \epsilon)$ as

$I$ : An input interval into the operation
$\epsilon$ : Collected errors until the operation,
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and define every operation for the pair.
For example, the addition operator $”+$” for the pair is defined by

$(I_{x}, \epsilon_{x})+(I_{y}, \epsilon_{y})=(I_{x}+I_{y}, \epsilon_{x}+\epsilon_{y}+|I_{x}+I_{y}|\epsilon_{M})$ .

To similar, the multiplication operator ‘. is defined by

$(I_{x}, \epsilon_{x})\cdot(I_{y}, \epsilon_{y})=(I_{x}\cdot. I_{y}, \epsilon_{x}\cdot\epsilon_{y}+|I_{x}\cdot I_{y}|\epsilon_{M})$ .

With bottom-up calculation by recursive use of the defined operation, we can get an upper
bound of rounding errors when evaluating a point of a function in floating-point arithmetic.

Algorithm 1
Computation of an a priori error algorithm of $ro$unding errors when evaluating $f(\xi)$ in floating-
point arithmetic $(a\leq\xi\leq b, \xi\in F)$ .
Step 1 Set an interval $I=[a, b]$ .

Step 2 Make apair $x=(I, O)$ .
Step 3 Calculate $y=f(x)$ with the pair.

Step 4 Output the secon$d$ wlue $\epsilon_{y}$ of $y$ .

Remark 1
In IEEE standard 754 double precision with rounding-to-nearest mode,

$\epsilon_{x}=\epsilon_{y}=2^{-53}$ ,

and for the operators of addition, subtraction, multiplication, division and square root,

$\epsilon_{M}=2^{-53}$ .

When we $b$uild a program based on this algorithm, we have to use a software satisfying (14)
and (15) for all $inp$utted floating point numbers on every function. Unfortunately, some free
mathematical libraries do NOT satisfy these ineq $u$ality for all inputted floating poin$t$ numbers on
every function. CRli$bm$ software [9] develop$ed$ by $J.M$uller, F.Dinechin and others is designed to
satisfy these inequalities, so that in $n$umerical results of this paper we use this library.

3.2 Proposed Algorithm
Summarizing the above mentioned discussions, we propose the following algorithm.

Algorithm 2
A verified automatic integration algorithm outpu$ts$ an interval $\tilde{I}$ satisfying

$| \frac{I-\tilde{I}}{I}|\leq\epsilon_{rel}$

when user inpu$ts$ the integral (1) an$d$ relative tolerance $\epsilon_{rel}$ .

Step 1 Choose $d$ and calculate $K$.
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Step 2 Get the order of the true value by verified computation.
Step 3 Rewrite inputted relative tolerance $\epsilon_{rel}$ to absolute tolerance $\epsilon_{abs}$ .
Step 4 Calculate an upper bound of rounding error $E_{r}|$ using Algorithm 1.
Step5 $If|E_{r}|<\epsilon_{abs}$ , get $handnfor\epsilon=\epsilon_{ab\epsilon}-|E_{r}|$ by Theorem 3.
Step 6 Calculate the integral value $s$ by the double exponential formula using $h$ and $n$ with pure

floating-point $n$umbers.

Step 7 Outp$ut$ the interval $[s-|E_{r}|, s+|E_{r}|]$ .

4 Numerical Results
In this section, we present the numerical experiments. These experiments have been done under
the following computer environment:. Linux (Fedora8). Memory $8GB$ , Intel Core 2 Extreme 3. $0GHz$ (Use 1 Core Only). GCC 4.1.2 with CRlibm 1.0 beta (CRlibm is used to satisfy (14) and (15).)

4.1 Comparison for Estimating Rounding Error
We shall present numerical results that Algorithm 1 and interval arithmetic are applied for thefollowing two examples for comparison in terms of the execution time and the upper bound of
rounding error.
Example 1

$f_{1}(x)=x^{26}+x^{24}+\cdots+x+1$

Example 2

$f_{2}(x)=\sin(\exp(x))$

First, we present a comparison of the execution time of Algorithm 1 and interval arithmetic for
$fi(x)$ and $f_{2}(x)$ when the number of points has increased.

Left figure of Figure 1 shows the ratios of the execution time $t_{i}/t_{p}$ , which $t_{p}$ and $t_{i}$ denote the
execution time of Algorithm 1 and that of interval arithmetic.

This figure shows that because $t_{i}$ depends on the number of points and $t_{p}$ does not depend on
that, the ratios between them have increased exponentially.

Next, we show a comparison of the upper bound of rounding error when the number of points
has increased. Right figure of Figure 1 shows that the ratios of the number of points $e_{p}/e_{i}$ , which
$e_{p}$ and $e_{i}$ denote the upper bound of rounding error calculated by Algorithm 1 and that by interval
arithmetic, respectively.

This figure shows that $e_{p}$ is about 30 times larger than $e_{i}$ for $f_{1}(x)$ , and $e_{p}$ is almost the sameas $e_{i}$ for $f_{2}(x)$ .
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Figure 1: Comparison for the upper bound of rounding error

4.2 Comparison between Two Theorems
In this section, we also present numerical results that the comparison between Theorem 1 and 2.

The main difference between two theorems is the relation between $n$ and $h$ : Theorem 1 uses
(7) and Theorem 2 uses (8).

In this numerical experiment, we $d$ like to compare the ratio of the order between $\tilde{E}_{D}$ and $\tilde{E}_{T}$

defined by (9) and (10), when the user input an absolute tolerance $\epsilon_{ab\epsilon}$ . Figure 2 shows the ratio
of the order of each errors as

$\log_{10}(\frac{\tilde{E}_{D}}{\tilde{E}_{T}}I$ ,

when $d=1.O$ and $\alpha=\beta=1$ .
This figure displays the errors of Theorem 1 don’t decrease at the same order in magnitude,

but that of Theorem 2 keep in step.

Figure 2: Comparison between theorems

4.3 Comparison on Automatic Integration
We compare the following three algorithms on automatic integration:
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(A) (Verified) Proposed algorithm (Algorithm 2)

(B) (Verified) An algorithm consists of interval arithmetic and Theorem 2
(C) (Approximate) Automatic integration software developed by T. Ooura [10]:

Example 1

$I_{1}= \int_{-1}^{1}f_{1}(x)dx$

Example 2

$I_{2}= \int_{0}^{1}\frac{f_{2}(x)}{\sqrt{x}}dx$

We show a comparison of the execution time of $(A)-(C)$ for $I_{1}$ and $I_{2}$ when the relative tolerance
has become tighter gradually on left figure and right figure of Figure 3 respectively.

These figures show that (A) is 3-10 times faster than (B) and (A) can calculate at almost thesame speed compared with (B).

Figure 3: Ratio of the execution time

5 Conclusion
We presented verified automatic integration algorithms using the double exponential formula. The
proposed algorithm is designed for the discretization error and the truncation error to decrease at
the same order in magnitude. From the numerical results, we confirm that the proposed algorithm
tends to be as fast as the widely-used approximation software developed by Ooura.
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