Reciprocity laws of Dedekind sums in characteristic p

東京理大理工学部 浜畑 芳紀 (Yoshinori Hamahata) Department of Mathematics. Tokyo University of Science

1 Introduction

The purpose of this paper is to report our recent results about Dedekind sums in finite characteristic.

For two relatively prime integers $a, c \in \mathbb{Z}$ with $c \neq 0$, we define the classical Dedekind sum in the form

$$s(a,c) = \frac{1}{c} \sum_{k \in (\mathbb{Z}/c\mathbb{Z}) - \{0\}} \cot\left(\pi \frac{k}{c}\right) \cot\left(\pi \frac{ak}{c}\right).$$

As is well known, s(a, c) has the following properties:

- (1) s(-a,c) = -s(a,c).
- (2) If $a \equiv a' \pmod{c}$, then s(a, c) = s(a', c).
- (3)(Reciprocity law) For two relatively prime integers $a, c \in \mathbb{Z} \{0\}$,

$$s(a,c)+s(c,a)=rac{1}{3}\left(rac{a}{c}+rac{1}{ac}+rac{c}{a}
ight)- ext{sign}(ac).$$

The sum s(a,c) is related to the module \mathbb{Z} . In [6], Sczech defined the Dedekind sum for a given lattice $\mathbb{Z}w_1+\mathbb{Z}w_2$. Okada [5] introduced the Dedekind sum for a given function field. His Dedekind sum is related to the $\mathbb{F}_q[T]$ -module L corresponding to the Carlitz module (cf. 2.1). Inspired by Okada's result, we defined in [2] the Dedekind sum for a given finite field. Our previous result is related to a given finite field itself. Observing these former results, we have noticed that it is possible to define the Dedekind sum for a given lattice in finite characteristic. In this paper, we introduce Dedekind sums for lattices, and establish the reciprocity law for them.

Our results is divided into two parts. Section 2 deals with finite fields case. In section 3, we discuss function fields case.

2 Finite Dedekind sums

In this section, we use the following notations.

 $K = \mathbb{F}_q$: the finite field with q elements

 \overline{K} : an algebraic closure of K

 \sum' : the sum over non-zero elements \prod' : the product over non-zero elements

2.1 Lattices

A lattice Λ in \overline{K} means a linear K-subspace in \overline{K} of finite dimension. For such a lattice Λ , we define the Euler product

$$e_{\Lambda}(z) = z \prod_{\lambda \in \Lambda}' \left(1 - \frac{z}{\lambda}\right).$$

The product defines a map $e_{\Lambda}: \overline{K} \to \overline{K}$. The map e_{Λ} has the following properties:

- e_{Λ} is \mathbb{F}_q -linear and Λ -periodic.
- If $\dim_K \Lambda = r$, then $e_{\Lambda}(z)$ has the form

$$e_{\Lambda}(z) = \sum_{i=0}^{r} \alpha_{i}(\Lambda) z^{q^{i}}, \qquad (1)$$

where $\alpha_0(\Lambda) = 1$ and $\alpha_r(\Lambda) \neq 0$.

- e_{Λ} has simple zeros at the points of Λ , and no other zeros.
- $de_{\Lambda}(z)/dz = e'_{\Lambda}(z) = 1$. Hence we have

$$\frac{1}{e_{\Lambda}(z)} = \frac{e_{\Lambda}'(z)}{e_{\Lambda}(z)} = \sum_{\lambda \in \Lambda} \frac{1}{z - \lambda}.$$
 (2)

We recall the Newton formula for power sums of the zeros of a polynomial.

Proposition 1 (The Newton formula cf. [1]) Let

$$f(X) = X^{n} + c_1 X^{n-1} + \dots + c_{n-1} X + c_n$$

be a polynomial, and $\alpha_1, \ldots, \alpha_n$ the roots of f(X). For each positive integer k, put

$$T_k = \alpha_1^k + \cdots + \alpha_n^k.$$

Then

$$T_k + c_1 T_{k-1} + \dots + c_{k-1} T_1 + k c_k = 0 \quad (k \le n),$$

$$T_k + c_1 T_{k-1} + \dots + c_{n-1} T_{k-n+1} + c_n T_{k-n} = 0$$

$$(k \ge n).$$

Using this formula, we have

Proposition 2 Let Λ be a lattice in \overline{K} , and take a non-zero element $a \in \overline{K}$. For m = 1, 2, ..., q - 2, we have

$$\frac{a^m}{e_{\Lambda}(az)^m} = \sum_{x \in \Lambda} \frac{1}{(z - x/a)^m}.$$

For $b \in \overline{K} - \{0\}$, set

$$R(b) = \{\lambda/b \mid \lambda \in \Lambda\} - \{0\}.$$

Lemma 3

$$\sum_{x \in R(b)} x^{-m} = \begin{cases} 0 & (m = 1, \dots, q - 2) \\ \alpha_1(\Lambda)b^{q-1} & (m = q - 1) \end{cases},$$

where $\alpha_1(\Lambda)$ is as in (1).

2.2 Finite Dedekind sums

Observing that (2) is similar to a formula for $\pi \cot \pi z$, for a lattice Λ in \overline{K} , we define Dedekind sum as follows.

Definition 4 Set

$$\widetilde{\Lambda} = \{ x \in \overline{K} \mid x\lambda \in \Lambda \text{ for some } \lambda \in \Lambda \}.$$

We choose $c, a \in \overline{K} - \{0\}$ such that $a/c \notin \widetilde{\Lambda}$. For $m = 1, \ldots, q-2$, define

$$s_m(a,c)_{\Lambda} = rac{1}{c^m} {\sum_{\lambda \in \Lambda}}' \left(rac{\lambda}{c}
ight)^{-q+1+m} e_{\Lambda} \left(rac{a\lambda}{c}
ight)^{-m}.$$

Moreover, we define

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \sum_{\lambda \in \Lambda}' \left(rac{\lambda}{c}
ight)^{-q+1}.$$

We call $s_m(a,c)_{\Lambda}$ the m-th finite Dedekind sum for Λ .

Remark 5 In [2], we defined the Dedekind sum for $\Lambda = K$. Our definition generalizes it.

It follows from Lemma 3 that

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \alpha_1(\Lambda)c^{q-1},$$

where $\alpha_1(\Lambda)$ is the coefficient of z^q in $e_{\Lambda}(z)$ as in (1).

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 6 Dedekind sums $s_m(a,c)_{\Lambda}$ $(m=1,\ldots,q-1)$ satisfy the following properties:

- (1) For any $\alpha \in K^*$, $s_m(\alpha a, c)_{\Lambda} = \alpha^{-m} s_m(a, c)_{\Lambda}$.
- (2) If $a, a' \in \overline{K}$ satisfy $a a' \in c\Lambda$, then $s_m(a, c)_{\Lambda} = s_m(a', c)_{\Lambda}$.

2.3 Reciprocity Law

We present the reciprocity law for our Dedekind sums. Let a, c be the elements of $\overline{K} - \{0\}$ such that $a/c \notin \widetilde{\Lambda}$.

Theorem 7 (Reciprocity law I) For m = 1, ..., q - 2, we have

$$s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda}$$

$$= \sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c,a)_{\Lambda}}{a^{r} c^{r}} \cdot \binom{m+1}{r} + \frac{s_{0}(c)_{\Lambda} + m \cdot s_{0}(a)_{\Lambda}}{a^{m} c^{m}}.$$

As a corollary to this result, the next theorem is obtained.

Theorem 8 (Reciprocity law II) For m = 1, ..., q - 2, we have

$$\begin{split} s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda} &= \\ &\sum_{r=1}^{m-1} \frac{(-1)^{r-1} \left(s_{m-r}(a,c)_{\Lambda} + (-1)^{m-1} s_{m-r}(c,a)_{\Lambda}\right) \binom{m+1}{r}}{2a^{r}c^{r}} \\ &+ \frac{\left(m + (-1)^{m-1}\right) \left(s_{0}(a)_{\Lambda} + (-1)^{m-1} s_{0}(c)_{\Lambda}\right)}{2a^{m}c^{m}}. \end{split}$$

Example 9 Using the notation in the previous subsection, we have

$$egin{split} s_1(a,c)_{\Lambda} + s_1(c,a)_{\Lambda} &= rac{lpha_1(\Lambda)\,(a^{q-1}+c^{q-1})}{ac}, \ s_3(a,c)_{\Lambda} + s_3(c,a)_{\Lambda} &= rac{2s_2(a,c)_{\Lambda}+2s_2(c,a)_{\Lambda}}{ac} - rac{lpha_1(\Lambda)\,(a^{q-1}+c^{q-1})}{a^3c^3}. \end{split}$$

In particular, if $\Lambda = K$, then $e_K(z) = z - z^q$, so that

$$egin{split} s_1(a,c)_K + s_1(c,a)_K &= -rac{a^{q-1} + c^{q-1}}{ac}, \ s_3(a,c)_K + s_3(c,a)_K &= rac{2s_2(a,c)_K + 2s_2(c,a)_K}{ac} + rac{a^{q-1} + c^{q-1}}{a^3c^3}. \end{split}$$

3 Dedekind sums for A-lattices

In this section we use the following notations. Let \mathbb{F}_q be the finite field with q elements, $A = \mathbb{F}_q[T]$ the ring of polynomials in an indeterminate $T, K = \mathbb{F}_q(T)$ the quotient field of A, $| \ |$ the normalized absolute value on K such that |T| = q, K_{∞} the completion of K with respect to $| \ |, \overline{K_{\infty}}$ a fixed algebraic extension of K_{∞} , and C the completion of $\overline{K_{\infty}}$. We denote by \sum', \prod' the sum over non-zero elements, the product over non-zero elements, respectively.

3.1 A-lattices

A rank r A-lattice Λ in C means a finitely generated A-submodule of rank r in C that is discrete in the topology of C. For such an A-lattice Λ , define the Euler product

$$e_{\Lambda}(z) = z \prod_{\lambda \in \Lambda}' \left(1 - \frac{z}{\lambda}\right).$$

The product converges uniformly on bounded sets in C, and defines a map $e_{\Lambda}: C \to C$. The map e_{Λ} has the following properties:

- e_{Λ} is entire in the rigid analytic sense, and surjective;
- e_{Λ} is \mathbb{F}_q -linear and Λ -periodic;
- e_{Λ} has simple zeros at the points of Λ , and no other zeros;

• $de_{\Lambda}(z)/dz = e'_{\Lambda}(z) = 1$. Hence we have

$$\frac{1}{e_{\Lambda}(z)} = \frac{e_{\Lambda}'(z)}{e_{\Lambda}(z)} = \sum_{\lambda \in \Lambda} \frac{1}{z - \lambda}.$$
 (3)

An \mathbb{F}_q -linear ring homomorphism

$$\phi: A \to \operatorname{End}_C(\mathbb{G}_a), \quad a \mapsto \phi_a$$

is said to be a *Drinfeld module* of rank r over C if ϕ satisfies

$$\phi_T = T + a_1 \tau + \dots + a_r \tau^r, \quad a_r \neq 0$$

for some $a_i \in C$, where τ denotes the q-th power morphism in $\operatorname{End}_C(\mathbb{G}_a)$. Given a rank r A-lattice Λ , there exists a unique rank r Drinfeld module ϕ^{Λ} with the condition $e_{\Lambda}(az) = \phi_a^{\Lambda}(e_{\Lambda}(z))$ for all $a \in A$. The association $\Lambda \mapsto \phi^{\Lambda}$ yields a bijection of the set of A-lattices of rank r in C with the set of Drinfeld modules of rank r over C. The rank one Drinfeld module ρ defined by $\rho_T = T + \tau$ is said to be the Carlitz module. We denote the A-lattice associated to ρ by L.

Using the Newton formula, we have

Proposition 10 Let Λ be a rank r A-lattice in C, and take a non-zero element $a \in A$. For m = 1, 2, ..., q - 2, we have

$$\frac{a^m}{e_{\Lambda}(az)^m} = \sum_{\lambda \in \Lambda/a\Lambda} \frac{1}{e_{\Lambda}(z - \lambda/a)^m}.$$

For any non-zero element $c \in A$, set

$$R(c) = \{e_{\Lambda}(\lambda/c) \mid \lambda \in \Lambda/c\Lambda\} - \{0\}.$$

In other words, R(c) consists of the non-zero roots of $\phi_c(z)$. Let Λ be a rank r A-lattice in C corresponding to the Drinfeld module ϕ with

$$\phi_c(z) = \sum_{i=0}^n l_i(c) z^{q^i}, \tag{4}$$

where $n = r \deg c$, $l_n(c) \neq 0$, and $l_0(c) = c$.

Proposition 11

$$\sum_{\alpha \in R(c)} \alpha^{-m} = \begin{cases} 0 & (m = 1, \dots, q - 2) \\ l_1(c)/c & (m = q - 1) \end{cases}.$$

In particular, if $\phi = \rho$, the Carlitz module, then

$$\sum_{\alpha \in R(c)} \alpha^{-q+1} = \frac{c^{q-1}-1}{T^q-T}.$$

3.2 Dedekind sums for A-lattices

Observing that (3) is similar to a formula for $\pi \cot \pi z$, for an A-lattice Λ of finite rank in C, let us define Dedekind sum as follows.

Definition 12 Let $a, c \in A - \mathbb{F}_q$ be relatively prime elements. In other words, assume Aa + Ac = A. For $m = 1, \ldots, q - 2$, define

$$s_m(a,c)_{\Lambda} = \frac{1}{c^m} \sum_{\lambda \in \Lambda/c\Lambda} ' e_{\Lambda} \left(\frac{\lambda}{c}\right)^{-q+1+m} e_{\Lambda} \left(\frac{a\lambda}{c}\right)^{-m}.$$

Moreover, we define

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \sum_{\lambda \in \Lambda/c\Lambda} {'}e_{\Lambda} \left(rac{\lambda}{c}
ight)^{-q+1}.$$

We call $s_m(a,c)_{\Lambda}$ the m-th Dedekind-Drinfeld sum for Λ . In particular, if L is the rank one A-lattice associated to the Carlitz module ρ , then $s_m(a,c)_L$ is called the m-th Dedekind-Carlitz sum.

Remark 13 (1) In [5], Okada defines the Dedekind-Carlitz sum. Our definition generalizes it.

(2) It is possible to define Dedekind-Drinfeld sums in the same way for arbitrary function field instead of $K = \mathbb{F}_q(T)$.

It follows from Proposition 11 that

$$s_0(c)_\Lambda = s_0(a,c)_\Lambda = rac{l_1(c)}{c},$$

where $l_1(c)$ is the coefficient of z^q in $\phi_c(z)$ as in (4). In particular, regarding the lattice L associated to the Carlitz module ρ ,

$$s_0(c)_L = s_0(a,c)_L = \frac{c^{q-1}-1}{T^q-T}.$$

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 14 Dedekind sums $s_m(a,c)_{\Lambda}$ $(m=1,\ldots,q-2)$ satisfy the following properties:

- (1) For any $\alpha \in \mathbb{F}_q^*$, $s_m(\alpha a, c)_{\Lambda} = \alpha^{-m} s_m(a, c)_{\Lambda}$.
- (2) If $a, a' \in A$ satisfy $a a' \in cA$, then $s_m(a, c)_{\Lambda} = s_m(a', c)_{\Lambda}$.
- (3) Take $b \in A$ with $ab-1 \in cA$. Then $s_m(b,c)_{\Lambda} = c^{q-1-2m} s_{q-1-m}(a,c)_{\Lambda}$.

3.3 Reciprocity Law

We present the reciprocity law for our Dedekind sums. Let $a, c \in A - \mathbb{F}_q$ be relatively prime elements, and $m = 1, \dots, q - 2$.

Theorem 15 (Reciprocity law I)

$$s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda}$$

$$= \sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c,a)_{\Lambda}}{a^{r} c^{r}} \cdot {m+1 \choose r} + \frac{s_{0}(c)_{\Lambda} + m \cdot s_{0}(a)_{\Lambda}}{a^{m} c^{m}}.$$

As a corollary to this result, the next theorem is obtained.

Theorem 16 (Reciprocity law II)

$$\begin{split} s_m(a,c)_{\Lambda} + (-1)^{m-1} s_m(c,a)_{\Lambda} &= \\ &\sum_{r=1}^{m-1} \frac{(-1)^{r-1} \left(s_{m-r}(a,c)_{\Lambda} + (-1)^{m-1} s_{m-r}(c,a)_{\Lambda}\right) \binom{m+1}{r}}{2a^r c^r} \\ &+ \frac{\left(m + (-1)^{m-1}\right) \left(s_0(a)_{\Lambda} + (-1)^{m-1} s_0(c)_{\Lambda}\right)}{2a^m c^m}. \end{split}$$

Example 17 Using the notation in the previous subsection, we have

$$egin{split} s_1(a,c)_\Lambda + s_1(c,a)_\Lambda &= rac{al_1(c) + cl_1(a)}{a^2c^2}, \ s_3(a,c)_\Lambda + s_3(c,a)_\Lambda &= rac{2s_2(a,c)_\Lambda + 2s_2(c,a)_\Lambda}{ac} - rac{al_1(c) + cl_1(a)}{a^4c^4}. \end{split}$$

In particular, if $\Lambda = L$, then

$$egin{split} s_1(a,c)_L + s_1(c,a)_L &= rac{a^{q-1} + c^{q-1} - 2}{ac(T^q - T)}, \ s_3(a,c)_L + s_3(c,a)_L &= rac{2s_2(a,c)_L + 2s_2(c,a)_L}{ac} - rac{a^{q-1} + c^{q-1} - 2}{a^3c^3(T^q - T)}. \end{split}$$

Acknowledgement

The author was partially supported by Grant-in-Aid for Scientific Research (No. 20540026), Japan Society for the Promotion of Science.

References

- [1] D. Goss, The algebraist's upper half-planes, Bull. Amer. Math. Soc., 2, 391-415 (1980).
- [2] Y. Hamahata, Dedekind sums for finite fields, In: Diophantine Analysis and Related Fields: DARF 2007/2008. AIP Conference Proceedings, 976, American Institute of Physics, 2008, pp.96-102.
- [3] Y. Hamahata, Finite Dedekind sums, In: Arithmetic of Finite Fields: WAIFI 2008. Lecture Notes in Computer Science, 5130, Springer-Verlag, 2008, pp. 11-18.
- [4] Y. Hamahata, Dedekind sums in finite characteristic, *Proc. Japan Academy*, **84**, 89-92 (2008).
- [5] S. Okada, Analogies of Dedekind sums in function fields, *Mem. Gifu Teach. Coll.*, **24**, 11-16 (1989).
- [6] R. Sczech, Dedekindsummen mit elliptischen Funktionen, *Invent. Math.*, **76**, 523-551 (1984).