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1 Introduction

The purpose of this paper is to report our recent results about Dedekind sums in finite
characteristic.

For two relatively prime integers a,c € Z with ¢ # 0, we define the classical
Dedekind sum in the form

s(a,c):% > cot (%) cot («a—f)

ke(Z/cZ)—{0}

As is well known, s(a, c) has the following properties:

(1) s(—a,c) = —s(a,c).

(2) If a = @’ (mod c), then s(a,c) = s(d/, c).

(3)(Reciprocity law) For two relatively prime integers a, ¢ € Z — {0},

l1/a 1 c )
s(a,c) 4+ s(c,a) = 3 (c +—+ a) sign(ac).

The sum s(a, c) is related to the module Z. In [6], Sczech defined the Dedekind sum for
a given lattice Zw, + Zw,. Okada [5] introduced the Dedekind sum for a given function
field. His Dedekind sum is related to the F,[T]-module L corresponding to the Carlitz
module (cf. 2.1). Inspired by Okada’s result, we defined in [2] the Dedekind sum for a
given finite field. Our previous result is related to a given finite field itself. Observing
these former results, we have noticed that it is possible to define the Dedekind sum for
a given lattice in finite characteristic. In this paper, we introduce Dedekind sums for
lattices, and establish the reciprocity law for them.

Our results is divided into two parts. Section 2 deals with finite fields case. In section
3, we discuss function fields case.

2 Finite Dedekind sums

In this section, we use the following notations.
K = F,: the finite field with ¢ elements

K: an algebraic closure of K

>~'": the sum over non-zero elements

[T': the product over non-zero elements
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2.1 Lattices

A lattice A in K means a linear K -subspace in K of finite dimension. For such a
lattice A, we define the Euler product

' P
ea(z) = zH (1 - X) .
A€A
The product defines amap e, : K — K. The map e, has the following properties:
® ¢, is [P -linear and A-periodic.
e If dimg A = r, then es(2) has the form

ea(2) = Y au(A)27, Y
=0
where ap(A) = 1 and a,.(A) # 0.
e e, has simple zeros at the points of A, and no other zeros.
e dep(z)/dz = €}, (z) = 1. Hence we have

en(z)  ea(z) v an A

We recall the Newton formula for power sums of the zeros of a polynomial.

Proposition 1 (The Newton formula cf. [1]) Le:
fX)=X"4+aX" '+ 41X+,
be a polynomial, and a, . . . , o, the roots of f(X). For each positive integer k, put
Tkza'f+---+af,.
Then
Te+ T+ +ce1Th + ke =0 (k< n),
Te+aTea+ -+ cp1Thony1 + i =0
(k =2 n).
Using this formula, we have

Proposition 2 Let A be a lattice in K, and take a non-zero element a € K. For
m=1,2,...,9 — 2, we have

a™ 1
ealaz)™ xze; (z —z/a)™’
Forb € K — {0}, set

R(b) = {\/b| X € A} — {0}.

—m 0 (m=1,...,9—2)
Z T { a1(A)b~! (m=q-1) ’

x€ R(b)

Lemma 3

where a; (A) is as in (1).
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2.2 Finite Dedekind sums

Observing that (2) is similar to a formula for 7 cot 7z, for a lattice A in K, we define
Dedekind sum as follows.

Definition 4 Set B
A={z e K|z\ € Afor some ) € A}.

We choose c,a € K — {0} such thata/c € A. Form = 1,...,q — 2, define
1 = /A "ot a\\" "
Sm(a,c)a = Z’;Z (E) EA (—;) .
A€A

Moreover, we define

so(c)a = so(a,c)a = ZI (%)_q+1~

A€A

We call s,,(a, c), the m-th finite Dedekind sum for A.

Remark 5 In [2], we defined the Dedekind sum for A = K. Our definition generalizes
it.

It follows from Lemma 3 that
so(c)a = so(a,c)a = oy (A)c?t,

where a; (A) is the coefficient of 29 in e, (z) as in (1).
The following result is analogous to the properties (1), (2) of the classical Dedekind
sums in section one.

Proposition 6 Dedekind sums s,,(a,c)y (m = 1,...,q — 1) satisfy the following
properties.

(1) For any a € K*, s,,(aa,c)p = a™™s,,(a, c),.

(@) Ifa,a’ € K satisfy a — a’ € cA, then Sm(a,c)p = 8,,(a, ).

2.3 Reciprocity Law
We present the reciprocity law for our Dedekind sums. Let a,c be the elements of
K — {0} such thata/c & A.

Theorem 7 (Reciprocity lawI) Form =1,...,q — 2, we have

Sm(a,e)a + (—1)™ s, (c,a)a

= E (=)™ "8 _r(c,a)n (m . 1) L So(Q)atm-so(a)s

arc’ r amcm

r=1
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As a corollary to this result, the next theorem is obtained.

Theorem 8 (Reciprocity law II) Form =1,...,q — 2, we have

sm(@,e)a +(=1)" 'sm(c,a)n =
oty (_1)7‘—1 (sm—r(a’ C)A + (“l)m_lsm~r(ca a)A) (m:—l)
Z 2aTc"

+ (m +(=1)""1) (so(a)a + (=1)™ 1sp(c)a)
2a™mc™m

r=1

Example 9 Using the notation in the previous subsection, we have

o (A) (@ + 1)

si(a,c)a + s1(c,a)p =

ac
2s5(a,c)p + 2s2(c,a a1(A) (@' + o7}
53(0,O)x 4+ sa(c. ) = 2(a, c)a * 2(c,a)a  a1(A) (a303 ).

In particular, if A = K, then ex(2) = z — 29, so that

aQ‘l +cq—l
si{(a,c)k + s1(c,a)x = -——
2s a,c + 2s c,a aq—l + Cq—l
ss(a, )k + s3(c,a)k = 203, 0k +282(c, 0)k .
ac adc?

3 Dedekind sums for A-lattices

In this section we use the following notations. Let F, be the finite field with g elements,
A = F,[T] the ring of polynomials in an indeterminate T, K = F,(T') the quotient field
of A, | | the normalized absolute value on K such that |T'| = ¢, K, the completion of
K with respect to | |, K, afixed algebraic extension of K., and C the completion of
K. We denote by 5, [T’ the sum over non-zero elements, the product over non-zero
elements, respectively.

3.1 A-lattices

A rank r A-lattice A in C means a finitely generated A-submodule of rank r in C that
is discrete in the topology of C'. For such an A-lattice A, define the Euler product

ea(z) = zHI (1 - :z\_) .

A€EA

The product converges uniformly on bounded sets in C, and defines amap e; : C —
C. The map e, has the following properties:

e ¢, is entire in the rigid analytic sense, and surjective;

e e, is F,-linear and A-periodic;

e e, has simple zeros at the points of A, and no other zeros;



65

o dep(2)/dz = €} (z) = 1. Hence we have

1 _ej\(z)_z 1 . 3)

ea(z)  ea(z) fxz—A

An F-linear ring homomorphism
¢:A—Endc(G,), a— ¢,
is said to be a Drinfeld module of rank r over C if ¢ satisfies
¢pr=T+ar+---+a, 7, a, #0

for some a; € C, where 7 denotes the g-th power morphism in End¢(G,). Given a
rank 7 A-lattice A, there exists a unique rank 7 Drinfeld module ¢* with the condition
ea(az) = @2 (ea(z)) forall a € A. The association A — ¢* yields a bijection of the
set of A-lattices of rank r in C with the set of Drinfeld modules of rank 7 over C. The
rank one Drinfeld module p defined by pr = T + 7 is said to be the Carlitz module.
We denote the A-lattice associated to p by L.

Using the Newton formula, we have

Proposition 10 Let A be a rank r A-lattice in C, and take a non-zero element a € A.
Form =1,2,...,q — 2, we have

a™ 1
ea(az)™ Z ea(z — Aa)™

A€A/aA
For any non-zero element c € A, set
R(c) = {ea(A/c) | A € AJcA} — {0}.

In other words, R(c) consists of the non-zero roots of ¢.(z). Let A be a rank r A-lattice
in C corresponding to the Drinfeld module ¢ with

¢e(2) = D _Li(c)2, @
=0

where n = rdegc, l,(c) # 0, and lp(c) = c.

Proposition 11
Za_m__{ 0 (m=1,...,g—2)
P (/e (m=q-1)
In particular, if ¢ = p, the Carlitz module, then
11
—g+1 _
Z Q™ = Te T

a€R(c)
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3.2 Dedekind sums for A-lattices

Observing that (3) is similar to a formula for 7 cot 7z, for an A-lattice A of finite rank
in C, let us define Dedekind sum as follows.

Definition 12 Let a,c € A — F, be relatively prime elements. In other words, assume
Aa+ Ac= A.Form =1,...,q— 2, define

1 ro AT A\
Sm(a,C)A=C—m Z ea (;) ea (%—) -

AEA/cA

Moreover, we define

ol =so@on= 3 ‘er (2) 7

A€EA/cA

We call s,,,(a,c)s the m-th Dedekind-Drinfeld sum for A. In particular, if L is the
rank one A-lattice associated to the Carlitz module p, then s,,(a, ), is called the m-th
Dedekind-Carlitz sum.

Remark 13 (1) In (5], Okada defines the Dedekind-Carlitz sum. Our definition gen-
eralizes it.

(2) Itis possible to define Dedekind-Drinfeld sums in the same way for arbitrary func-
tion field instead of K = F,(T).

It follows from Proposition 11 that

li(c
so(c)a = so(a,c)a = %2,
where [ (c) is the coefficient of 27 in ¢.(z) as in (4). In particular, regarding the lattice
L associated to the Carlitz module p,

so(c)L = so(a,c)L = -c-;;-_-_—f~
The following result is analogous to the properties (1), (2) of the classical Dedekind
sums in section one.

Proposition 14 Dedekind sums s,(a,c)p (m = 1,...,q— 2) satisfy the following
properties:

(1) For any a € F}, s,n(aa,c)y = a™™sn,(a, ¢)a.

(2)Ifa,d’ € Asatisfy a — o/ € cA, then s,(a,c)s = s,(d', ).

(3) Take b € A withab — 1 € cA. Then s,(b,c)s = eI 1=mg 1 _m(a,c)a.
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3.3 Reciprocity Law
We present the reciprocity law for our Dedekind sums. Let a, ¢ € A — F, be relatively
prime elements,and m = 1,...,q — 2.

Theorem 15 (Reciprocity law I)

Sm(a,e)a + (—=1)" s, (c,a)a

_ ’i‘ (=)™ 8mr(e:@)a  (m+1) | so(c)a+m - so(a)a
arcr r am™cm |

r=1
As a corollary to this result, the next theorem is obtained.

Theorem 16 (Reciprocity law II)

sm(a,c)a + (_l)m—lsm(cv a)p =
mz_l (=1)""! (8m—r(a, c)A +2(a—rir)m_lsm..r(c, a)a) (m;Ll)

L (e (C)™Y) (so@)a + (=)™ s0(c)a)
2a™mcm '

r=1

Example 17 Using the notation in the previous subsection, we have

3

aly(c) + cly(a)

T 4202
2s5(a, c)p + 2382(c,a)A B aly(c) + cly(a)
ac atct '

s1(a,c)a + s1(c,a)p =

s3(a,c)a + s3(c,a)p =
In particular, if A = L, then

e

si(a,c)r + s1(c,a)L =

ac(Te-T) °

2s2(a,c)r +2s2(c,a a9l 4 21 2

ss(a, )L + s3(c,a) = e )Lac oo a3A(T1—T)
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