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Abstract. In this paper a new notion of generalized solution to the initial bound-
ary value problem for a nonlinear strongly degenerate parabolic equation of the form
u + V- Az, t,u) + B(z,t,u) = AB(u) is treated; this type of solution is called a BV-
entropy solution. Since equations of this form are linear conbinations of time-dependent
conservation laws and porous medium type equation, it is interesting to investigate inter-
actions between singularities of solutions provided by the two different kinds of nonlinear-
ities. Therefore the part of conservation laws and that of porous medium type diffusion
term have to be treated in a separate way. In fact, for the convective term, method for
the existence and uniqueness of the entropy solutions in the sense of Kruzkov is employed
and so the initial-boundary-value problem is formulated in the space BV of functions of
bounded variation. This observation leads us to the new notion of BV-entropy solution.
Our objective here is to establish unique existence of such BV-entropy solutions under
the homogeneous Neumann boundary conditions.

1. INITIAL BOUNDARY VALUE PROBLEM
1.1. Introduction. We consider the initial boundary value problem for a nonlinear de-
generate convective diffusion equations of the form
u + V- Az, t,u) + B(z,t,u) = AB(u), (z,t) € Qx(0,T),

0B(u)
on
u(z,0) = uo(z), uo € L*(Q2) N BV ().

(IBVP)

(z,t) =0, (z,t)€ 00 x (0,T),

Here Q is a bounded Lipschitz domain in RY. V = (8/8z;,...,0/0zy) and A =
S N 8%/8x? are the spatial nabla and the Laplacian in RV, respectively. (0,T] is a fixed
time interval. A(z,t,&) = (Al,..., AN)(z,t,&) is an RV-valued differentiable function on
Q1 x [0,T) x R and B(z,t,£) is an R-valued differentiable function on Q x [0,T] x R.
The function 3 on the right-hand side is supposed to be monotone nondecreasing and
locally Lipschitz continuous on R. Moreover, n represents the unit normal to 9€2. Since
3 is assumed to be monotone nondecreasing, the set of points where 5’ = 0 may have a
positive measure. In this sense, we say that the equation posed in (IBVP) is a strongly
degenerate parabolic equation.

This type of equation can be applied to the sedimentation-consolidation processes of
particulate suspensions, filtration problems, Stefan problems and so on. On the other
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hand, this equation is also regarded as a linear combination of the time dependent con-
servation laws (quasilinear hyperbolic equation) :

u + V- Az, t,u) + B(z,t,u) =0
and the porous medium equation (nonlinear degenerate parabolic equation):
ur = AB(u).

That is, this equation has both properties of hyperbolic equations and parabolic equations.
Moreover, by the assumption on 3, this equation has the following properties :

(i) In the case that § is strictly increasing, ”parabolicity” is majorant to ”hyper-
bolicity”.

(ii) In the case that § is monotone nondecreasing, " parabolicity” and ”hyperbolic-
ity” are not necessarily comparable.

In fact, in the case that 3 is strictly increasing, it is possible to prove uniqueness of
generalized solution in the sense of distributions. However, in the case that 3 is simply
monotone nondecreasing, it is impossible. Therefore, we employ generalized solutions in
the sense of Kruzkov which are called by entropy solutions.

1.2. Previous work. In 1967, A. I. Vol'pert [12] proposed a theory of functions of
bounded variation in multi-dimentional cases and apply it to the first order quasi-linear
equations. In 1969, A. I. Vol’pert and S. I. Hudjaev [14] considered second order equations
and proved the existence and uniqueness of the BV -entropy solutions in a restricted sense,
assuming the so-called discontinuity conditions. On the othe hand, in 1969 through 1970,
S. N. Kruzkov [7], [8] introduced a notion of entropy solution and proved the existence
and uniqueness of a general class of first order quasi-linear equations. The idea employed
in his proof for the uniqueness of entropy solutions is named Kruzkov’s doubling variable
device. Our argument is relied essentially on Kruzkov’s device introduced in [8]. In 1979,
C. Bardos, A. Y. Leroux and J. C. Nedelec [2] applied Kruzkov’s device to the first order
quasi-linear equations and gave similar results on bounded domains under the Dirichlet
boundary conditions.

Later, in 1999, J. Carrillo showed existence and uniqueness of entropy solutions to non-
linear strongly degenerate parabolic equations under the homogeneous Dirichlet boundary
condition of the form B(u) = 0 on Q. In particuler, his method for the proof of unique-
ness is useful for the discussion of entropy solutions in strongly degenerate parabolic
equations. On the other hand, in 2002, C. Mascia, A. Porretta and A. Terracina showed
the uniqueness and consistency with parabolic regularizations of entropy solutions in non-
homogeneous Dirichlet boundary problems for strongly degenerate parabolic equations. It
is striking that they use the notion of boundary layer to formulate the Dirichlet boundary
condition.

As stated above, various results of this type of equations have been obtained. However,
to the best of the author’s knowlwdge, very little is known about the Neumann problems.
Accordingly, we focus our attention on the Neumann problems for this type of equations.
In fact, H. Watanabe [15] has proved the unique existence of the BV solutions in (P)
under the assumption that (3 is strictly increasing.
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1.3. Basic hypotheses. Throughout this paper, we put the following three conditions
on the nonlinear functions A*, ¢ =1, --- NN, and B.

(H.1) Let a’ = (0/08)A* fori=1,...,N, and b= (0/0¢)B. For each r > 0, the
functions A’, 9, 4%, o*, 8;;A%, Oia*, B, ;B 4,j = 1,..., N are all bounded and
continuous on @, = Q x [0,T] x [—r,7].

(H.2) There exist constants a, o such that

—V -a(z,t,€) — b(x,t,8) <a and —b(z,t,§) <o
for all (x,t,€) € @ x [0,T] x R.
(H.3) For each r > 0 and 7 > 0,

sup IB;Ai(x,t,f) - 0;A'(z, 5,6)),
p(T;r) = max ¢ sup|a'(z,t,§) —a'(z,s,£)l,
SUp'B(fE,t,f) - B(.’L‘,S, g)l
overz € Q, s,t €[0,T], £ € Rsuchthat |s—¢t| <7, |[{|<randi=1,...,N.
Then
p(r;r) = 0 as 7 | 0 for each r > 0.

The above conditions are the assumptions for the cofficients of the main partial differential
equation in (IBVP). Condition (H.1) is a smoothness condition for the coefficients, (H.2)
is a growth conditions and (H.3) restricts the time dependence, respectively.

1.4. The generalized solution to (IBVP). In this section we introduce a notion of
generalized solution to (IBVP). This notion derives the entropy solution introduced by S.
N. Kruzkov [7], [8]. He showed the existence and uniqueness of entropy solutions to the
first order quasilinear equations. In view of the concept of entropy solution, we introduce
a new notion of generalized solution to the second order equations:

Definition 1.1. Let up € L=®(Q)NBV (). A functionu € L>®(Q2x(0,T))NBV (2% (0,T))
is called a BV -entropy solution of the problem (IBVP), if it satisfies the two conditions:

(1) u belongs to C([0,T]; L*(Q)) and L!-limy o u(:,t) = uo;
(2) VB(u) € L2(0,T; L*(Q)N) and for ¢ € CP(RY x (0,T))* and k € R,

/ [ u—kipudzdr > /0 | s~ w98 v
—[A(z, t,u) — A(z,t,k)] - Vo + [B(z, t,u) + V - Az, t, k)|p)dzdt.

In the case of Q@ = RV, a BV-entropy solution is a distributional solution in BV (§2). In
this paper, we discuss unique existence of BV -entropy solutions assosiate with (IBVP).

Remark 1.1. H. Watanabe [15] has proved unique existence of the BV solutions in
(IBVP) below under the assumption that B is strictly increasing.
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Definition 1.2. Let up € L*(Q)NBV (). A functionu € L>(2x(0,T))NBV (2x(0,T))
is called a BV solution of the problem (IBVP), if it satisfies the two conditions below:
(1) u belongs to C([0,T]; L*(2)) and L'-limgo u(,t) = uo;
(2) VB(u) € L*(0,T; L*(Q)") and for ¢ € C*(RN x (0,7)),

/T/(ugot + A(r,t, u) - Vo — B(z,t,u)p — VB(u) - Vy)dzdt
o Ja

T .
- / Alz,t, Tow) - n(z) @ dHV1dt = 0,
0 o0

where T, : BV(Q2) — LY0Q; HN~1) is the trace operator.

1.5. Inflow-Outflow of the convective term. We consider the probrem in the case
that § is monotone nondecreasing. We then concentrate on the framework in such a
way that a BV-entropy solution is a BV solution. To see this, we assume the following
condition :

Inflow-Outflow condition :
Let v € L>*(Q) N BV(Q)). For any k € R,

(1.1) / sgn(Tov — k)[A(z, t, T,v) — Az, t, k)] - n(z) dHY-1 > 0.
a9

Under this inflow-Outflow condition, a BV -entropy solution is a BV solution.

In C. Bardos, A. Y. Leroux and J. C. Nedelec (1979), a similar condition for the Dirichlet
boundaty condition are introduced in the first order quasilinear equations.

1.6. Neumann boundary condition. In this section, we propose a natural way for
formulating the Neumann boundary condition in the definition of BV -entropy solutions.
When V3(u) is nondifferentiable in the classical sense, we usual consider the Neumann
boundary condition in the following form :

(1.2) VB(u) -ndHY " =0.
o0
However, we only have V3(u) € [L*(2)]V by definition, and so it is not straightforward
to impose the Neumann boundary condition in the sense of (1.2).
In order to overcome this difficulty, we employ a natural way for approximating outward
normal on the boundary. Let {(s} be a sequence of C%(2) N C°(Q?) functions such that

%in[l)cg-——l inQ, 0<¢G<1in), ¢ =0 on dN.

Then we see that —V (s converges to the outward normal n of the boundary as § | 0 in
the following sense :

lim | ¢-V{sdz = — 1im/ div(p){sdx = -—/ div(p)dz = ——/ @-n dHN?
810 Ja 810 Ja Q | 89

for p € [C*(2)]V. In accordance with C. Mascia, A. Porretta and A. Terracina (2002),
the sequence {(s} is called a boundary-layer sequence. Here, we substitute ¢ = (1 — (5)¢,
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with £ € C°(RN)* into the defintion of BV -entropy solution. Then we have

/T/[—[A(:c,t,u) — A(z,t, k)] - Vs
o Ja

—[B(z,t,u) + V - A(z, t,k)](1 — () + VB(u) - V(5|{dzdt = 0.
We here let § | 0 to get the follwing relation

T T
/ / (A(z,t, Tou) — Az, ,k)] - n(z)EdHY " dt + lim / / VB(u) - VCsEdadt = 0.
o Jogn 610 Jo Ja

By means of the Inflow-Outflow condition, we get the following result:
(1.3) lim/ VB(u) - V{sdx = 0.
310 Jq

If the function V3(u) makes sense on the boundary 052, then the above equality means
(1.2). Hence, we may interpret the Neumann boundary condition in the form of (1.3).

2. ABSTRACT CAUCHY PLOBLEMS

We costruct nonlinear evolution operators associate with (IBVP) in terms of the nonlin-
ear semigroup theory (ex. [6], [L1]). To see this, we convert (IBVP) to a time-dependent
abstract Cauchy probrem in L!(2). For this purpose, we define the following differential
operator .A(t).

Definition 2.1. Let t € [0,T]. We say that v € 2(A(t)) and w = A(t)v iff v,w €
L>*(Q) N BV(2) and

—(VB(v),sgn(v — k)Vy) + (A(-, t,v) — A(, t, k),sgn(v — k)V)
'_(B(" ¢ ’U) + V- A(? t k:),sgn(v - k)@) 2 (wa sgn(’u - k)(p>
for ¢ € CPRM)*, ke R.

Here, (-,-) means the duality pairing between LP(Q) and L(2) with 1/p + 1/ = 1.
A(t) are all single-valued for ¢t € [0,T]. Therefore, we consider the following abstract
Cauchy problem in L!(2):

(d/dt)u(t) = A(t)u(t) forte (0,T),

(ACP) {
w(0) = v € L®(Q) N BV(Q),

where (d/dt)u(t) is understood to be the derivative of u(-) in a generalized sense. Also,
we separate the class L°°(2) into a family of absolutely convex closed subsets defined by

(2.1) X, ={veL®); ||v|le <7} forr>0.

In view of the BV theory, A(t) is quasi-dissipative with respect to the L'-norm || - ||;.
To see this, we first show the following energy estimate for V3(v).
Lemma 2.1. Ifv € 2(A(t)), then ||VB(v)l|2 < 0.

In fact, we substitute the regularized positive and negative part of diffusion function
[B(W)]T, [B(v)]" to the test function ¢ in the definition of BV -entropy solutions respec-
tively. Using the Inflow-Outflow condition and certain known technical estimates, we
obtain the above result. Using the above Lemma, we get the following result.
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Theorem 2.1. Let r > 0, t € [0,7] and A € (0,a'"'). Then for any pair v,w €
P(A(t)) N X,, we have

(1= 2Ad)|[v = wlly < ||(I = M@)o = (I = MA®)wl|r.
The proof of Theorem 2.1 is obtained in a way similar to the proof of uniqueness of

BV -entropy solutions (see Section 6). Hence, we write the resolvent operator of A(t) by
J(Nt) = (I — AA(t))™! for A € (0,a/7Y).

3. DIFFERENCE APPROXIMATION

3.1. Difference operators. We construct an evolution operator associated with (/ BV P)
through difference approximations. We begin by defining three types of difference opera-
tors :

D} (v = £ Hu(- + le;) — v], D7 (&)v =€ v — v(- — Le;)],
DY(O)v = (26) v (- + Le;) — v(- — Le;)].
Here, £ > 0 denotes a spatial mesh size. These operators are called by the forward,
backward and central difference operators, respectively. Moreovre, we are the averaging
operator defined by
D¢ (v = (2N) " ou(- + Le;) + v(- — Ley)].
In this paper, we consider this equation on bounded domains. Therefore, it is nontrivial

to see how the Neumann bondary condition can be formulated in terms of difference
approximations. To this end, we define the domains of difference approximations by :

YG={zreQ|zxlle,cQforal0<g<1}.

For instance, we think of the following simple figures in the case of Q is a rectangle or a
triangle, which we denote by (% and displayed as the shaded parts below:

V4 L o ¢ ¢,

We then consider the difference approximations in €} and try to formulate the Neumann
boundary condition in Q\%. For this purpose we need more symbols:

OF* = {ztle; e O\ |z €M}, OF={zeQ|z+le; € N} (respectively).

These approximate domains may be depicted as below:

’ L

>

Q;-_ Ij;_ Qﬁ. n:++
- -

14

&~

€Ty ‘ &x;
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Remark 3.1. We regard the domain Q\Q} as the boundary layer of Q. In paticuler, we
make an attempt to impose the Neumann boundary condition in Q}i and Q5=

We first define the difference operators C;, (t): X, — L*(€2) in the ith direction, r > 0,
t € 0,7}, h € (0,h,), by

ity in Q\[Q" U QF7]
(3.1) Ciptv =14 G (t)v+9; nQFuQ
b in O\,

for v € X,. Here éf,h (t) are the core difference operators
CA’i,h(t)v = D7 (£)DF (£)(B(v) + . (h)v) — DY(&)Ai(-,t,v) — D¢(€)B(-,t,v) in €.

where ¢, (k) is defined later. Moreover, we choose 9} € L*(£;" UQ;) and b € L=(\0%)
satisfing appropriate conditions related to the Neumann boundary condition. In this
paper we employ the elements

{ 218 ~ Bu(- — te)] in O
Vy =

0 in QLF\Q.
1 . i
{ —718) — B — te:)] in O,
’Ue =
0 in Q\[Q% U Q.

Then we obtain the following estimate :

/ sgn(v — k)C; ,(t)vedz
Q

= / sgn(v — k)Ci, (¢)vepdz + / ~ sgn(v — k)Dppdr + / sgn(v — k)bipdz
Q Q1 U, o}

-

+ /,- sgn(v — k)[A(z,t,v) — A'(z,t, k)| DY (£)pdzx

£

_ / sgn(v — K)[DHOB(z,,v) + DYO A, ¢, k)lpdz.
Q

i
4

sen(o — KD OBE)ID; (Oplde + &r(h) [ DI (OD} Ol ~ Klpds

£
[4

for ¢ € C°(RN)* and k € R. On the right-hand side of the above inequality, the second
term converges to zero as £ — 0. Hence, we clear integral near the boundary terms and
may get that the operator C;,(t) form to employ the entropy solutions.

Using the difference operator Ci’h(t) in the ith direction, we define the aimed difference
operator Crx(t): Xr — L®(Q), r > 0,t € [0,T], h € (0, h;), by

N
Crn®)y = v+ R Cha(®)v.

i=1
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The difference operators C, x(t) are of Lax-Friedrichs type in the following sense :

N
Con(®) = v+ B3 _IDF (ODF (©B(v) + £r(W)v) = DUO A, t,0) = DXOB(-t,v)

=1

in ﬂfil 2. These difference operators are employed to construct entropy solutions.

3.2. The CFL condition. The difference operators C,(t) are constructed in the sense
of explicit Euler. Therefore, it is necessary to formulate the CFL condition for the stable
computation. In order to discribe the CFL condition, we prepare several symbols. In
view of condition (H.1), we write

K, = ess.sup{ﬁ'({) ; 1§l <k
M, = max{1, suprema of |A¥|, |8;A|, [a*|, |8;;A%|, |8;a"],
|B|, |8;B|, |b| over Q, and ¢,j=1,...,N}.

The first part of the CFL condition is imposed for the mesh ratio h/¢?. We choose a
monotone nonincreasing function r € (0, 00) — 4, € (0, 1) such that

2NK,’ NM,

The second part of the CFL condition is imposed for the mesh size in time. We fix w > 0
which will be defined later and define

) w K, 1 2
hr —m1n{~3- ,5,- (M: (m —5,-)) }
The CFL condition is then stated as follows: If v € X, in (DS), then we impose that
h € (0, h,). Moreover, we define the coefficient of artifitail viscosity term as

(3'2) . Er(h) = Mr(h’/ér)l/z = M,L.

3.3. Properties of the difference operators C,(t). We have deal with several es-
timates of the difference operators C,,(¢). Firstly, we have the following L*-estimates

6. = h/€2, 0<5,<min{ ! L }

Proposition 3.1 (L*-estimate). Let r > 0, t € [0,T] and h € (0, h,). Then we have
(3.3) [ICrh(t)vlleo < (1 + ah)|[v]loo + A(]|Clee + 1).
forv € X,. Here, we write C for the function
C(z,t) = =V - A(z,t,0) — B(z,t,0) for (z,t) € QO x [0, T]
and define ||C||o = ||C||Leo(02x10,17)- |
Secondly, we estimate the Lipschitz constants of C, ().

Proposition 3.2 (Lipschitz continuity in L'). Letr > 0, t € [0,T] and h € (0, h,). Then
we have
(34) [ICrn(t)v — Crp(Bwlls < (1 + hag,)llv — wlly,

forv,w € X,. Here, oy, = (1 + @)’ + M,Cq, & << 3 is constant satisfying e — 0 as
¢ 1 0 and Cq is a positive constant depending on the domain Q.
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We next treat the total variations of C,x(t). To this end, we introduce a discrete
version of the functional |D - |(Q2) which represents the total variations of elements of X
in a discrete sense as follows :

. |
ID°(w)ol() = sup{ > /Q D2 (W) ged ;@ = (91, o) € [CF(QENQE NQE]IY,
k=1 v

<
lg}ca;xNHsoklloo <1}

for v € LY() and v > 0. As easily seen, it holds that for v € L*=(£2)
N

[D°(v)v|() = E/ |Dy(v)vldz, and that |Dv|(2) < oo if sup |D°(v)v|(£2,) < oo.
& Qk v>0

Using the above relations, we obtain BV estimates of C,x(t).

Proposition 3.3 (BV estimates). Let r > 0,t € [0,T], and h € (0, h,). Forve X, and
v € (0,1), we have

(3.5) |DO(0)Crn(t)vl(Q) < (1 + hay, )| D°(¥)v](Q) + w-h(ID°(0)v] () + 192),
where w, = M.N(N + 1).
Finally, we give a result on the time dependence of the difference operators Crn(2).

Proposition 3.4 (Time dependence). Let r > 0, s,t € [0,T], h € (0,h;) and v € X;.
Then we have

ICra(8)v — Cra(t)vlls < A(ID°(€)v](2e) + [Q2)wrp(ls — &l 7).
The proof is obtained by rearranging C, x(t)v and applying Proposition 3.3.

4. RESOLVENTS OF THE OPERATORS .A(t)

In this section, we discuss the resolvents of the operators A(t). First, we define the
implicit difference operators A, ,(t) as follows :

PD(A-n(t) = X, Arp(t) = h_ [Cra(t) — ZC n(t)v

forr > 0,t € [0,T) and h € (0,hk,). We here make an attempt to define the difference
operators A, »(t) which would approximate the differential operators A(t) formulated as
above. In fact, it is seen that the differece operators A, ,(t) converges the differential
operators A(t) as h | 0 in the following sense:

(I = AMaat) o — (I -XA@X) v inL'ash |0

for v € X, and A > 0 with 0 < A < min{a~?, &r(hr)™'}.
Here we introduce functions a(-) and a-(-), 7 > 0, on the interval (0, 1] difined by

(4.1) ar(h) = h7eoeh —1) for h € (0,1],
(4.2) Gr(h) = h™i(elerttddunh _ 1) for h € (0,1], respectively.
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Remark 4.1. Forr > 0, t € [0,T] and h € (0, hg), the operator A.p(t) — ar(h)I is
dissipative on X, with respect to the norm || - ||; by Proposition 3.2, namely,
(4.3) (1 = Aar(h)llv = wlly < I = AMrn(®))v — (I = Apa(t))wl]y

forv,w € X, and X\ > 0. This shows that the operator I — A\A,x(t) is injective on X,
for A € (0,0,(h)™1) and has the inverse operator. In what follows, we write the resolvent
operator as

(4.4) Tra(Nt) = (I = AMga(t))™

for R>0,te(0,T], h € (0,hr) and X € (0,ar(h)™!). By virtue of the definition of the
difference operator App(t), Trir(A t) is an operator from L®(QQ) to Xg.

4.1. Properties of resolvent operator. We first investigate the domains of the resol-

vents Jrx(A;t) and their growth with respect to A. To this end, we employ the following
functions:

(4.5) gAr) = (1= 2a) H{r + A(|Clloc + 1)} for 7 > 0 and A € (0,a7?),

where ||Cl|s is introduced in Proposition 3.1.
Proposition 4.1 (Growth of Jg 5 in the spaces L*° and L! with respect to A\). Let R > 0,
t€[0,T], he (0,hr) and 0 < A < {a !, ar(h)'}. Then we have :
(@) Ifve L=(Q) and g(\ ||v]lo) < R, then
v € D(Trn(Xit)), [ Trn(NO)vllee < g(X, [10]loo)-
(0) Ifv,w € L=(Q) and g(\, ||v||e) V g\, [|w]|ee) < R, then
1 Trn (X80 = Tra(X )l < (1 = Ae(h)) v — w]s.

Using Propositions 3.1 and 3.2, the above Proposition is varified. In fact, we consider
the following map '
Tz =h(h+ N+ Ah+ N)Cru(t)z for z € Xg.
The operator T(v) maps Xp into itself and is a strict contraction with respect to || - |;.
Hence, using the fixed point theorem, we obtain the first part of (a). The last part of (a)
and (b) are clear.

Secondly, we make an attempt to estimate the discrete version of the total variations
of the set {Trnr(A\;t)v; h € (0,hg)}.

Lemma 4.1 (Discrete version of total variations of Jra(\;t)v). Let R > 0, t € [0,T),
h e (0,hr) and 0 < X < {a !, &r(R)~1}. If v e L®(Q) and g(\, ||v]lw) < R, then
(1 = Adr(h))|D°(v) Trn(Xi t)v|() < |DO(v)vl(Q)

4.6
(46) +FAwgr(1l — Aagr(h)) 7D (€)v|() + Mwr(1l + Awgr(l — Aar(h)) 1)

The proof of this Lemma is essentially used in Proposition 3.3. By virtue of Lemma
4.1, we obtain the estimates of the total variations of Jgn(A;t)v in terms of the total
variation of v. Notice that

|Dv|(R2) = sup [D°(v)v|(%)

ve(0,1

hold for v € BV (Q).
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Proposition 4.2 (Growth of Jr in the spaces M). Let R > 0, t € [0,T}, h € (0, hg)
and 0 < A < {a™1, &r(h)~'}. Ifv € L®(Q) N BV(Q) and g(\, [[v]|e) < R, then

IDTra (X )v|(Q) < (1= Aar(R) (I Dv|(R) + Awrl€2]).

Using the estimetes otained in the above two propositions and applying the compactness
theorem in BV (see [4]), one may investigate the behavior in L!(2) of Jra(A;t)vash | 0.

Proposition 4.3 (Convergence of the resolvents). Let R > 0, t € [0,T] and 0 < A <
min{at, &r(hr)™'}. Let v € L®(Q) N BV(Q) and g(A, ||v]le) < R. Then

ve R = MNA®) and Trp(Mt)v = T(Nt)v in L' as h | 0.

We now combine the first part of Proposition 4.1 (a) and Proposition 4.3 to obtain the
following result.

Proposition 4.4 (Range condition). Let R > 0,t € [0,T], and0 < A < {a~Y, &r(hr)™'}
Then
{ve L*NBV(Q); g\ Ivlle) < R} € R(I — AA(Y)).

Moreover, combining the second part of Proposition 4.1 (a), Proposition 4.2 and Propo-
sition 4.3, the following assertions are obtained:

Proposition 4.5. Let R > 0, t € [0,T}, and 0 < A < {7, &r(hr)"'}. Ifv,w €
L=(Q) N BV(Q) and g(A, ||v]leo) V (A, lJw]leo) < R, then

HT (A t)vlleo < g(A, []]oo),
TNty = T (X twlls < (1= reg)~Hlv = wily,
IDT (X; t)o|(2) < (1~ Mo +wr)) " (1Dv|(R) + Awr|),
where alf = o + M,.C(Q).
Furthermore, the following result shows the denseness of Z(.A(t)).

Proposition 4.6 (Denseness). Let R > 0 andt € [0,T]. Then X3NBV () and Z(A(t))N
Xgr are both dense in Xp.

Since the time-dependent evolution problems are treated in this paper, it is significant
to establish the best possible result for the time-dependence of the resolvents of A(t)’s.

Proposition 4.7 (Time Dependence). Let R > 0, s,t € [0,T], h € (0,hr) and let
0< A< {atar(h)}. Ifve L®(R) and g(\, [[vlle) < R. Then

(1 = Aar(R)||Trn(X; 8)v — Tra(A; t)vlla
< A1 = Aag(h))H{ID°(£)v|(Q) + |QU}wrp(ls — t]; R).

For R > 0 and v > 0, we choose a number \g satisfying 0 < Ag < min{(2a)~}, &r(hr)™'}
and define the function of time-dependence

(4.8) 0%(7) = (1 = Arér(hr)) " (v + |Q)wrp(T; R)  for T > 0.
Then, for v € L®(Q), g(X;||v]le) < R and |Dv|(2) < v, we obtain
(4.9) (1 = dar(P)|Trr(X; 8)v — Tra(X; t)v]ls < M0x(|s — t]).

(4.7)
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5. GENERATION AND APPROXIMATION OF THE EVOLUTION OPERATOR

5.1. Generation of the evolution operator. We prove the generation theorem of the
nonliner evolution operators through the results due to K.Kobayashi-S.Oharu [6] and
K.Okamoto-S.Oharu [11]. We first introduce a family of positive functions {G,(-) ; s €
[0,7)} defined by '

(5.1) Gs(r) = e2T=9{r 4+ (T — 5)(]|C|Joo + 1)} for r > 0.

These functions are modified forms of the growth functions g(\;r) defined in (4.5). The
function g(A;r) represents the modulus of growth of the single resolvent Jgrx(A;t). In
what follows, we demonstrate that products of resolvents generate the evolution operater.
Therefore, we involve the functions Gs(r). Also, for R > 0 and s € [0,7], the symbol
Xr,s denotes an absolutely convex subset of L>(2) defined by

Xrs={v € L™(Q) | Gs(|lv]leo) < R}.

We see that X, C X3 for s € [0,7), and that Xg, is monotone increasing with respect
to s € [0,T). The evolution operator which is constructed by means of the products of
resolvents is also constructed by means of the products of finite-difference operators. This
is important since so-constructed evolution operator provides physically right solutions to
(IBVP).

We first prove that the family of difference operators {Agnx(t) | h € (0, hg), t € [0,T]}
generates a family of solution operators {Urx(¢,s) | b € (0, hgr)} from Xpg, into Xg,; to
the semidiscrete problem in L*(Q) :

{ LY (Q)-(d/dt)u(t) = Agnp(t)u(t) fort e (s,T),

ACP
( )R u(s) =v € Xpe-

In what follows, we follow the discussions of the generation of evolution operators along
Kobayashi-Oharu [6]. First, we obtain the following technical but crucial lemma for the
induction argument which is basic to the generation theorem.

Lemma 5.1. Let R > 0, s,t € [0,T], h € (0,hgr), A, € (0,Ar) and v > 0. Let
v,w € L*(Q) N BV(QQ) and suppose that

(5.2) I lvlle) S R, (1= A&r(R)) ™ (IDv](Q) + AwrlQ]) < v,

g llwllee) < R, (1~ pér(h)) ™ (|Dw|(Q) + uwr|Q]) < .

Then we have
(1= ApA+ ) rar(h)] - |Tra(X; 8)v — Tra(p; wl|y
< A+ @) HTra (N 8)v = wls + p(A + p)7Hlv = Tra(ps wlh
PR+ )RR s — ).

Let R >0,5,8€[0,T),te[sT),te 57T and v > 0. Let v € Xp,, w € Xg; and
suppose that

exp [(1 — Ar@r(hr)) "' Tér(hr)]|(|Dv|(Q) + Twr|) < 7,
exp [(1 - AR@R(hR))"IT&R(hR)](ID’wI(Q) + Tleﬂl) <.
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Fix any & € (0, hr) and any A, i € (0, Ag). We define a double indexed sequence (ax.¢) of
nonnegative numbers by

k ¢
T Tra(Xsti)v = T Trn(us t5)w

i=1 j=1

(5.3) PES

1

fort; =s+i\ £, =8+jp, 0 <k S [(t—5)/A, 0<£< [(t — 8)/u). From Proposition
4.1(a), it follows that v € 2([]5, Tra(X;t:)) so far as v satisfies (5.2). Hence the elements
15, Jra(Xit:), 0 <k <[(t — s)/)A], make sense. Moreover, for 0 < k < [(t — s)/ A,
1T Tra(Xst)olleo < (1= A0) ¥ (|[vllos + EMICllo + 1)) < B,

5.4
(54) ID T, Tra(Xst)v](Q) < (1 — Aar(h)~*(|Dv|(2) + kAwr|) < 7.

Likewise, the corresponding estimates for ]"[ﬁ=1 Jrr(u;t;)w are obtained for w and 0 <

£<((E-8)/ul
Now the application of Lemma 5.1 implies the relations

(5.5) (1= AuA + @) rar(h)] - ake < MA +p)rake-1 + w(A + p) lak-1e
' +3A(A + p)TrePHmarGR ([t — £o).

In view of (5.4) and (5.5) for the sequence (ax), we obtain the following lemma.

Lemma 5.2 (Comparison lemma). Let R, s, 3,t.t and~y be as above. Let0 <e < T, |n| <
e, 0<k<e—|n|, T€[0,T) and v € (0, Ar). Let z € L>=(Q) N BV(QY) and suppose that

g lizllee) € R and (1 — var(h)™(1Dz|(R) + vwrlQl) < 7.
Let 0 <k <[(t—5)/), 0<£<[(f—3)/u) and put

Ck,e(n) = ((tk - tAg — 77)2 + k)\2 + £ﬂ2) 1/2 '

Then for the sequence axe defined by (5.3) we obtain the following comparison result :
(1 = Aar(h)k(1 = par(h)’ - ake < v = Tra(vs T)zlh + | Tra(vi T)z — wih
tcre(s = 8) (v Ten(viT)z — 2|1 + 3ePtutviar(h) gL (T))
+Bel st Ien() gy (k10 (T)ewe(n) + 4(c)).

Using this lemma, we first construct an evolution operator Ug(t,s) associated with
the Cauchy problem (ACP)g for the family of operators {Agrna(t)}.

Proposition 5.1. Let R >0, s € [0,T) and h € (0, hg). For each v € Xp,, the product
formula

[(t=s)/A]
(5.6) Upp(t,s)v = L‘(Q)-l}fxg 11 Tan(X; s +idv

hold for each t € [s,T) and the convergence is uniform on [s,T) with respect to t. Fur-
thermore, the family {Urn(t,s) ; 0 < s < t < T} has the properties (a) through (e)
below:
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(a) For s,t € [0,T] with s <t, Ury maps Xgs into Xgr; and
UR’h(T, 7’) =1, UR,h(t, S)uR‘h(S, T‘) = UR,h(t, ’I") on Xp,
foro<r<s<t<T.

(b) For s € [0,T) and v € Xgps, Urr(-, s)v € CY([s,T); L*(R?)) and

LY()-(8/0t)Urn(t, s)v = Apn(t)Urns(t,s)v  for t e [s,T).
(c) Forv € Xgs,

UrA(E, 8)vlloo < e (|[0]|o0 + (8 = 8)IIC]oo)-
(d) For v,w € Xg.,
ehrn(t, s)v — Upa(t, s)w|ls < e*RPE |y — |,

(e) Forv € Xg,N BV(Q),

| DUR(, s)0|(Q) < eSRME=)(|Dy|(Q) + ( — s)wr|€).

Remark 5.1. We have proved the continuity of Urn(t, s) with respect to t in Proposition
5.1 (b). Actually, for each v € Xgo, L'(Q)-valued function Ugn(t, s)v is continuous over
0<s<t<T.

Also, we use the convergence of products of resolvents (Proposition 4.3) and in tern
construct the evolution operator {U(t,s) ; 0<s <t <T}.

Theorem 5.1. There exists an evolution operator {U(t,s) ; 0 < s < t < T} on the
subspace L=(2) of L*(QY) such that
[(t=s)/A]
=71 -h . 1
(5.7) U, s)v = L(Q) 1){%1 H T (A s + i)

holds for v € L*(Q2) N BV (), 0 < s < t < T and the convergence is uniform for
0<s<tT.

5.2. Approximation theorem and product formula. We are now in a position to
obtain the desired nonlinear evolution operator U(t,s). We can also prove the two types
of convergence theorems for the evolution operators. The next theorem is the Tortter
type convergence theorem of the evolution operator :

Theorem 5.2. Let R >0, s € [0,T) and h € (0,hg). For v € Xg,, we have
(5.8) WUrn(E, ) v —U(t,s)v]1 =0 ash O
and the convergence is uniform fort € [s,T).

Applying Proposition 5.1 and Theorem 5.2, we prove the several properties of the
evolution operator. This is the first main theorem together with Theorem 5.1.

Theorem 5.3. Let {U(t,s) ; 0 < s <t < T} be the two parameter family of operators
defined by (5.7). Then it is an evolution operator on the subspace L*°(Q2) of L1(Q) with
the following properties:
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(a) Forr,s,t € [0,T] withr < s <t, U(t,s) maps L=(Q) into itself,

U(s,s) =1 and U(t,s)U(s,T) =U(t,T) on L=(Q).
(b) For v € L®(Q), the L}(Q)-valued function U(t,s)v is continuous over the tri-

angle0<s<t<T.
(¢) Forv € L*™(Q),
(2, 8)vloo < € (||v]loo + (8 = $)IIC]lo0)-
(d) For v,w € Xp.s,
Ut s)v — U, Swll < e*REIjo — wl|;.

(e) Forv e XgpsNBV(Q),

|DU(t, s)v|(Q) < eCRREI(1Dy|(Q) + (t ~ s)wrlQ).

We next demonstrate that the product formula in terms of the difference operators
Cra(t).
Proposition 5.2. Let R >0, s € [0,T) and h € (0,hg). For v € Xg,s,
[(t—s)/h}-1

II Crn(s+ik)v —Unn(t, s)v

i=0

(5.9) —0 ashlO

1
and the convergence is uniform fort € [s,T).

Namely, we get the Chernoff type convergence theorem for the evolution operator.
Theorem 5.4. Let R > 0, s € (0,T) andv € Xg,. Then

[(t—s)/h]
o ; 1
(5.10) Ut s)v = 1,%1 LOI Crnr(s+ih)v in L' (Q)

and the convergence is uniform fort € s, T).

Applying Proposition 5.1 and Theorem 5.2, one can show that the evolution operator
{U(t,s) ; 0 < s <t<T} provides entropy solutions to (IBVP).

Proposition 5.3. For v € L*(Q), the L'(Q)-valued function u(-) = U(-,0)v gives a
entropy solution to the problem (IBV P).

Finally, we give the proof of the following Proposition. For each R > 0 and t € [0, T}
we define

Dr(t)={ve X3NBV(Q) ; lirf\ll%nf/\"lﬂj(/\; t)v — v||; < oo}

This set is called the generalized domain. It is easily seen that 2(A(t)) N X3 C Dr(t)
and Dpg(t) is independent of t. We write Dp for the common set.

Proposition 5.4. Suppose that limsup, 77 p(7;7) < 00 for allr > 0. Letv € L®(Q)N

BV (). Assume that there is a positive number R = R(v) such thatv € Xgg andv € 13R.
Then the function u(zx,t) = [U(t,0)v](z) gives a BV -entropy solution to (IBV P).
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6. UNIQUENESS OF BV-ENTROPY SOLUTIONS
In this section, we prove the uniqueness of BV -entropy solutions.

Theorem 6.1. Let u, v be a pair of BV -entropy solutions with initial values up and vy,
respectively. Then under the growth condition (H.2), we have

[lu(, ) = v(, D)l < e**JJuo(-) — vo()lha
for some positive constant o'. In particular, a BV -entropy solution is unique.

We set Q@ = Q x [0,7] and 8Q = 80 x [0,7). Furthermore, we set the degenerate
domain of § as follows :

(6.1) E={keR|f(k)=0}, & ={ze€Q]|V,B(u(z)) =0}
and Q\&, = (Q\&,) x [0, T]. Since 3 is monotone nondecreasing, L~ (E) > 0 hold. Hence,
there may exist z,y € F such that

sgn(z — y) # sgn(B(z) — B(y)).

This causes difficulties for treating our degenerate equations in the case of 3 is monotone
nondecreasing.
We then introduce a family of functions {®; ; j € N} C C?(R) defined by

[~/ eosl(Gn/D)s] + 570 (sl < 57,
255 = { E (sl = 5=1).

These functions approximate the function ®(s) = |s| and have the following properties:

(6.2) jl_iglo ®;(s) = |sl, jljglo P’ (s) = sgn(s), jlifg s®(s) = 0,
(6.3) <I’;-’(s) >0, supp @} = [—57%,771, [s®7(s)| < m/2.

Let £ ®6 € 27(RY) ® 27(0,T). In addition, we introduce symmetric functions
PV € 27 (R) satisfying f pVdz = 1 and supp[pV)] C [~1,1]. Similarly, we use spheri-
cally symmetric functions p™¥) € 2 (R") satsfying [pw p™Vdz = 1 and supp[p®™(z)] C
{lz] £ 1}. Let § > 0 be a small number such that pgl)(x) = (1/d8)p(z/§) and pgN)(x) =
(1/6N)p™N)(z/5) is continuous on R and R¥ with the properties that [ pgl)(t)G(t)dt — 6(0)
and fp((,N)(z)ﬁ(m)d:E — £(0) as 6 | 0. We then define

T+ r—
(6.4 () = ¢ (542) o (152)
in 2+ (R?*M) and ‘
t+s t—s
belonging to 2% ((0,T)%). We now employ the test functions ¢s defined by
(66) Qoé(xayvtas) = &5(17,1})95(11,5)-

To show Theorem 6.2, we employ the following Lemma which is first shown by J. Carrillo
[3] and is a key estimate for proving the uniqueness of entropy solutions associated with
the degenerate parabolic equation.
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Lemma 6.1. Let u be a BV -entropy solution. Then, the following equality hold :
/ sgn(u — k)[—(u — k), + VB(u) - Vo — [A(z, t,u) — Az, t, k)] - Vo
Q

+Blz, ) + V- Ale, tR)lelde =~ [ 9](8(u) - B(k)IVE@) oz,
for p € 2+(RN x (0,T)) and k € E.

Using Lemma 6.1, we obtain the following Proposition. To prove the uniqueness of
entropy solutions, this result is crucial.

Theorem 6.2. For u, v are BV—;ntropy solutions to (P), the nezt inequality hold :
T
| [1u=slodade> [ [ sentu-v)(80) - V80 - Ve
o Jo o Jo

—[A(z, t,u) — A(z,t,v)] - Vo + [B(z,t,u) — B(z,t,v)|p)dzdt,
for p € CP(RN x (0,T))*.

Outline of the proof of Uniqueness Theorem.
Let u, v be a pair of BV-entropy solutions. We put k = v(y, s) and ¢ = @s(z,¥,t,s) in
the definition of BV -entropy solution u. Then

L= / sgn(u(z, ) — v(y, )= (u — v)(@s)e + VaB(u) - Voips
QxQ

(6.7)

—[A(z,t,u) — A(x,t,v)] - Vaops + [B(z,t,u) + Vs - A(z, t,v)]ps|drdydtds.
Similarlly, we also have following :

L= / sgn(v(y, s) — u(z, £))[— (v = w)(s)s + VyB(v) - Vyes
QxQ

-[A(yv S, U) - A(ya s, u)] . v‘y@& + [B(y, S, U) + Vy . A(y, S, u)]go(s]da:dydtds

We then set I = I; + I,. Using the estimates for I, we get the desired result. By the
definition of BV -entropy solution u, the following inequality hold :

/ sgn(u(z, £) — v(y, $))[—(u — v) (@) + VaB(u) - Vaps
Qx&x[0,T)

—[A(z, t,u) — A(z,t,v)] - Vops + [B(z, t,u) + Vs - Az, t,v)]ps|dzdydtds < 0.
Hence, in view of the domain of integral and the above estimate, we have

I = / + / < / .
QxQ\&, Qx&yx[0,T) QxQ\&y

Application of Lemma 6.1 on the right-hand side, then implies
L[ @l - BW)IVAW) psdzdydds.
QxQ\&

Moreover, since V3(u) includes the integrand on the right-hand side, the integral on the
right-hand side is equal to

- [ &(8(u) — B(v))| VB(w) Ppsdadydtds.
Q\EuxQ\&E
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Similarly, we get the next estimate.
L<- / Y((v) — B(w))|VB(v) P psdadydtds.
Q\EuxQ\ &
Consequently, we deduce the estimate
68 s 960 - AW)IVAF + (V80 psdsdydids.
Q\Eu xQ\&y

Next, we consider the diffusion, convection and remaining integral terms respectively. In
this paper, we only consider the diffusion term as follows :

/Q o sgn(u(z,t) — v(y, 5))[VaB(u) - Vips — VyB8(v) - Vypsldzdydtds
= L o sgn(u(m, t) — v(y, 3))[Vmﬁ(u) - Vyﬁ(’u)} [Veps + Vycpg]dmdydtds

——/Q o sgn(u(z,t) — v(y, s))[Va0(u) - Vyos — Vy8(v) - Vips|drdydtds

We then estimate the second term on the right-hand side of the above equality; in patic-
uler, we wish to estimate the first term of the integrand V,8(u) - V5. Considering that

zﬁ(u) is included the integrand and using the relation sgn(u — k) = sgn(8(u) — B(k))
for k & E, we have

- / sgn(u — v)V,0(u) - Vypsdrdydtds
QxQ

—— [ () - B0)VaBlu) - Vyspededydtds
Q\6uxQ |

Moreover, using the Gauss divergence theorem, the above integral is equal to

—~l ! _ . N-1
lm| /Q . /a B (60) = B(0)-B(1) - n(y)pod " dydeds

+/ Q7 (B(u) — B(v))VaB(u) - VyB(v)psdzdydtds) = I;.
QA\EuxQ
Using the boundary-layer sequence {(s }, the first term on the right-hand side is equal to

il | L, UL =P 90 80) = 0 atdodldys).

J 610

We here notice that the convergence as § | 0 of the above integral is uniform with respect
to ¢’ > 0 and so that by the Lemma of Moor we have

hﬁl lim 11m[the above integral] = hm hm lgfgl[the above integral].
j
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By the Lebesgue convergence theorem and the Neumann boundary condition (1.3), the
right-hand side goes to 0. Similarly, we get the next identity

/ sgn(u — v)V,B8(v) - Vopsdzdydtds

QxQ

= lim[/ / 5 (B(u) — B(w))V,B(v) - n(z)psdHN"'dzdtds
7oJQ\& JOQ

_/ @7 (B(w) - B(v))V,B(v) - VoB(u)psdrdydtds] = Iaa.
QxQ\&y '

In the same way as above, the first term on the right-hand side of the above equality
converges to 0 as 6 | 0.

Finally, we derive the left hand side on the aimed inequality (6.7). We begin by trans-
forming the left-hand side of the very first identity of the present proof.

/c;xq(U(&'Pa)z — v(ps)s)dzdydtds = _/

QxQ
In order to treat the right-hand side, we need the next lemma :

wsDyudzdyds + / wsDsvdzdydt.
QxQ

Lemma 6.2. For a BV solution u of (IBV P), the following equality hold :

T _ T u , 895
(6.9) /Q[ /0 s Dyuldz = — /0 L [ /k @,(8(r) — Bk))dris(w,v) 2 (¢, 5)dodt,
for all k € R.

Consequently, we sum up the above results.

I= / sgn(u — v)(—[u(ws)s — v(ws)s] + [VzB(w) = VyB(V)] - [Vops + Vi)
QxQ

—[A(SL‘, t, u) - A(y’ t, U)] ' [VQ?@J + vy‘P&] + [B(l', t, u) - B(ya t, v)]go(;)da:dydtds
+Id’1 + Ig2.

Since the inequality (6.8), we get the following estimate :

[ [ sgn(u = o) (~u(es)e = v(pa)s] + [VaB(w) = VyB)] - [Vaps + Vyps
QxQ

—[A(z, t,u) — Ay, t,v)] - [Vaws + Vyps] + [B(z, t,u) — By, t, v)]ps)dzdydtds)
< —limlim @%(B(u) — B()[VB(u) + V,8(v)Ppsdzdydtds.
810 Jo\auxQ\&,
Hence, we obtain the next result :

/ |lu — v|&6, dzdt > / sgn(u — v)([VB(u) — VB(v)] - VEO
Q Q

—[A(z,t,u) — A(z,t,v)] - VEO + [B(z, t,u) — B(z,t,v)]£0)dzdt.
Finally, we set‘go(x, t) = £(z)0(t) to get the desired result. |
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From the inequality (6.7), we may show the uniequness of BV -entropy solutions of
(IBVP). In fact, we put £ € xg(z) ® 27(0,7). Then we obtain the following estimate :

(6.10) (d/dt)/ /]u—v]d;v <o / /Iu—v|dxdt

Notice that we have used the growth condition (H.2). Hence, Gronwall’s inequality can
be applied to show the continuous dependence of BV -entropy solutions on initial values.
Consequently, the proof of Theorem 6.1 is now complete.
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