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Abstract

Matroids and oriented matroids are fundamental structures in discrete geometry.
Analysis of orientations of matroids is important to investigate the relationship

between matroids to oriented matroids. We introduce related results of our paper
on the next two problems: testing orientability and enumerating orientations of
matroids. First, we test orientability of matroids by formulating it as SAT problems.
We determine orientability of matroids of rank 3 on $n\leq 12$ elements and of rank
4 on $n\leq 9$ elements. Next, we enumerate orientations of matroids again using a
formulation as SAT. We show by computational experiments that rather degenerate
matroids have much less orientations compared to uniform matroids.

1 Introduction
Matroids and oriented matroids are fundamental structures in discrete geometry as ab-
stract generalizations of the combinatorial properties of geometric configurations such as
vector configurations, point configurations and hyperplane arrangements. While matroids
only encode incidence relations such as collinearity or coplanarity, oriented matroids in
addition describe relative positions of objects. Briefly speaking, oriented matroids are
extension of matroids with additional information. Thus, every oriented matroid has a
corresponding matroid called an underlying matroid. Conversely, we call the oriented
matroid as an orientation of the underlying matroid. While every oriented matroid has a
unique underlying matroid, not every matroid has an orientation. Matroids with at least
one orientation are called orientable matroids.

数理解析研究所講究録
第 1641巻 2009年 16-21 16



Table 1: Number of $nonarrow$isomorphic simple matroids [9]

$r$ : rank $n$ : size of the ground set $*$ : non-determined value

Table 2: Number of non-isomorphic simple oriented matroids $[$8] [7]

$r$ : rank $n$ : size of the ground set $*$ : non-determined value

For computational analysis of discrete structures such as matroids and oriented ma-
troids, enumeration of them is important as the source. In this paper, we investigate
oriented matroids $hom$ the side of matroids. The motivation for this approach comes
from the extensiveness of enumeration of matroids.

Enumeration of matroids has been studied for more than thirty years since Blackbum,
Crapo and Higgs [4] determined all simple matroids on $n\leq 8$ elements in 1973 and several
subsequent studies as [2] [11] have extended the coverage. The most recent result by the
authors [9] extended the coverage by determining all more than $4\cross 10^{9}$ matroids of rank
4 on 10 elements. Table 1 summarizes the number of simple matroids of rank $r\leq 4$ on
$n\leq 12$ elements determined by these studies.

Now we compare enumeration of matroids with that of oriented matroids. Oriented
matroids of rank 3 on $n\leq 10$ elements and of rank 4 on $n\leq 8$ elements are determined
by Finschi and Fukuda [8] [7] as in summarized in Table 2. We remark that in a case of
uniform, ones of rank 3 on $n\leq 11$ elements are determined by Aichholzer and Krasser [1].

By comparing Table 1 with Table 2, we can easily see that the coverage of enumeration
of matroids is more extensive than that of oriented matroids. We may think this difference
occurs from the fact that the number of matroids is much less than that of oriented
matroids of the same rank and on the ground set of the same size. Because of this
extensiveness of enumeration of matroids, we can expect analysis of oriented matroids
based on matroids can overwhelm the direct result from enumeration of oriented matroids.

In this paper, we are concemed with the next two problems as a bridge from matroids
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Table 3: Results on orientability of matroids [10]

*For a case with $r=4$ and $n=10$ , we test randomly sampled 1000000 matroids.

to oriented matroids: testing orientability and enumerating orientations of matroids. For
these problems, we introduce the results from the paper [10].

First, we discuss testing orientability. Orientability of matroids is important to under-
stand the gap between matroids and oriented matroids. Although testing orientability of
matroids is proved to be NP-complete [15], we propose a method which works satisfactory
in practice. We formulate orientability of a matroid as a Boolean Satisfiability problem
(SAT) and solve it with a practically well designed SAT solver. The method is based
on the oriented matroid generation method by Bremner, Bokowski and G\’evay [5] and
Schewe [16]. The point in this method is the fact that although SAT is also NP-complete,
practical heuristic methods are well studied.

We determine orientability of matroids of rank 3 on $n\leq 12$ elements and of rank
4 on $n\leq 9$ elements. The results are summarized in Table 3. Note that this result is
more extensive than the result directly obtained from the existing enumeration of oriented
matroids.

We obtain new insights on orientability of matroids. Immediate one is on the conjec-
ture that asymptotically most matroids are non-orientable [3, p279]. If this conjecture is
true, it is expected that the ratio of non-orientable matroids is higher among matroids on
the ground set of the larger size. We can observe such a behavior especially clear in cases
of rank 4.

Next, we discuss enumeration of orientations. Enumerating orientations serves as a
local oriented matroid generation method in case oiily oriented matroids with the specific
underlying matroids are concemed. The method is expected to generate oriented matroids
on the rather large-sized ground set which are not contained in the existing oriented
matroid enumeration. We can use the previously noted SAT formulation to find all
orientations of an orientable matroid. It works well if a matroid does not have too many
orientations. We present by a computational experiment that while uniform matroids
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have many orientations, most other matroids, especially highly degenerate ones, have
much less orientations. The result suggests generating orientations goes well for many
matroids in average except a few cases such as uniform ones.

2 Testing Orientability
In this section, we describe the method of testing orientability of matroids and the com-
putational result.

A matroid $M$ of rank $r$ on $E_{n}$ is orientable if and only if there is a chirotope $\chi$ satisfying
following conditions: (i) the set $\{\{x_{1}, \ldots, x_{r}\}|\chi(x_{1}, x_{2}, \ldots, x_{r})\neq 0\}$ is equal to the set of
bases of $M$ , and (ii) $\chi$ satisfies the 3-term Grassman-Pl\"ucker relations. The condition (i)
determines whether the value of $\chi$ on each r-subset of $E_{n}$ is zero or non-zero. Thus, the
rest problem is whether there is an assignment of-l and 1 to the values of $\chi$ on r-subset
corresponding to bases of $M$ .

Out method for testing orientability is to translate this problem into an instance
of SAT problem and solve it with a general SAT solver. We use MiniSAT [6] in our
experiment. The variables correspond to the values of $\chi$ on ordered bases of $M$ and the
Boolean values true and false correspond to 1 and-l, respectively. The constraints are
3-term Grassman-Pl\"ucker relations. The idea of using SAT is based on the methods for
generation of oriented matroids by Bremner, Bokowski and G\’evay $[$5] and Schewe [16].
However, our case is special in a point that we need only one variable for each r-subset
because whether the value is zero or non-zero is fixed in a problem of testing orientability.

We add one constraint to narrow the search space. Because if $\chi$ is a chirotope then $-\chi$

is too, we may fix the value of $\chi$ on one freely selected ordered base. With this constraint,
each orientation of a matroid corresponds to one satisfiable truth assignment of the SAT.

The results from [10] are summarized in Table 3. These results are developed as
extension of [9]. We only investigate the cases with rank $r\geq 3$ because all matroids of
rank at most 2 are orientable [3, p247-248]. Additionally, we only show the cases with
$n\geq 7$ because all matroids on $n\leq 6$ elements are orientable. Because it is hard to
determine orientability of all rank 4 matroids on 10 elements, we investigate randomly
sampled 1,000,000 matroids to estimate the ratio of non-orientable ones, which is correct
up to the range 0.001 for 95 %.

3 Enumerating orientations
For enumeration of orientations of a matroid, we can use the SAT instance discussed in
Section 2 again. Because each satisfiable truth assignment of the SAT instance corre-
sponds to an orientation, enumeration of satisfiable truth assignments achieves the end.
Note that orientations generated by this method include isomorphic ones. For distinct-
ness, we call orientations including isomorphic ones as labeled orientations.

The computational cost for generation of orientations is at least proportional to the
number of solutions in principle. Conversely, our generation method will still work well
enough if the number of labeled orientations is small enough. Thus, we study the behavior
of the number of labeled orientations of matroids by counting them.
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While orientations generated by our method include isomorphic ones, there are many
applications in which isomorph-free orientations are of interest and existing database of
oriented matroids [8] [1] are designed to store them. Our method has redundancy for
generation of isomorph-free ones. However, if the number of labeled orientations is small
enough, our generation method still works well. On the other hand, if the number of
isomorphism classes is too large, they are hard to enumerate intrinsically. Thus, we also
investigate the number of isomorphism classes of orientations of matroids.

Figure 1 shows the number of orientations in two senses of simple matroids of rank 3
on 9 elements. First, we discuss the number of labeled orientations. We can observe easily
that the number is positively correlated with the number of bases. While the uniform
matroid (the rightmost in each graph) has as many as 4.0 $\cross 10^{11}$ labeled orientations,
the median is only 45056. It suggests our generation works well enough in average and
especially well for highly-degenerate matroids.

Next, we compare the number of labeled orientations to that of isomorphism classes.
Our computational result shows that while the ratio of the number of labeled orientations
to that of isomorphism classes is about $9.0\cross 10^{7}$ on the uniform matroid, the median
is only 583. Thus we can conclude that our generation method will achieve satisfactory
performance enough even for generation of isomorphism classes on most matroids except
a few matroids including uniform ones.

$\ell 3_{l}-2\theta 4$

$\wedge\ovalbox{\tt\small REJECT}_{3_{l}- 22}^{}\vee 3\iota- 228*\ovalbox{\tt\small REJECT}\not\in 3223_{1}arrow 23232222\prime \mathfrak{v}$

$+*+++$ :
$+:++*\xi_{\neq}^{I^{+*}}*\xi|_{+}^{*}:_{\sigma}^{1||_{+}^{1_{+}^{\xi\xi_{*}^{A}}}}+\ddagger\ddagger++$

$B2$ $87$
$\ell 92’97\dou|u$

.2 ’.7

Figure 1: Number of orientations and bases of simple matroids on 9 elements

4 Concluding Remarks
In this paper, we present computational analysis of orientations of matroids using the
database of matroids. We investigate the two problems: testing orientability and enumer-
ating orientations. Solving these problems fills the gap between matroids and oriented
matroids.

For oriented matroids, several studies have been made on practical methods for the
realizability problem which work satisfactory for small instances including non-uniform
ones [14] [13] [12]. Combining these methods with our method for enumerating ori-
entations, we can deternine realizability of matroids. This approach will be useful in
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investigation of properties of point configurations and hyperplane arrangement, which are
fundamental interests in discrete geometry.
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