
Unsolved Problems in Robustness of Geometric
Algorithms

Kokichi Sugihara
Department of Mathematical Informatics

Graduate School of Information Science and Technology
The University of Tokyo

e-mail: sugihara@mist.i.u-tokyo.ac.jp

Abstract

Geometric algorithms are not necessarily robust against numerical errors, be-
cause their correctness is guaranteed only in the error-free ideal world. Many ap-
proaches have been proposed to attain robustness, but still many problems remain
unsolved. We first review existing approaches, next list major unsolved problems,
and finally discuss possible directions to solve those problems.

1 Introduction
Robustness is one of the most serious issues In applications of geometric algorithms to
practical problems. Algorithms, even though their correctness has been proved mathemat-
ically, do not necessarily have a stable behavior when they are implemented in computers.
This is mainly because there is a great difference between the theoretical world where the
correctness of the algorithms is proved and the practical world where the algorithms are
implemented and used. Indeed, the theoretical world is constructed on the assumption
that given information is perfect and computation can be done without errors, whereas
the practical world is contaminated with many errors, uncertainties and noises. Therefore,
a theoretically correct algorithm can easily fail when executed in a computer.

The importance and seriousness of this issue have long been recognized, and many
approaches have been proposed to overcome the difficulty. Hence, it seems to be widely
believed that robustness could be achieved by these approaches, and consequently the-
oreticians should concentrate on the mathematical correctness of the algorithms they
design. However, the current situation is far from complete; many problems remain to be
overcome to attain numerical robustness in the real world.

This paper first reviews major existing approaches to the robustness of geometric
algorithms, next shows remaining problems, and finally discusses possible directions to
solve these problems.

数理解析研究所講究録
第 1641巻 2009年 99-105 99



2 Existing Approaches and Their Limitations

Many methods have been proposed for designing numerically robust geometric algorithms.
These can be classified into three approaches according to what extent they rely on nu-
merical values. They are: the tolerance approach, the exact-computation approach, and
the independent-test approach. In this section, we briefly review these approaches.

2.1 Tolerance Approach
In the first approach, numerical values are relied on moderately. Numerical errors gener-
ated in computers are usually very small. Therefore, we can expect inconsistencies caused
by numerical errors to be rare, and we can treat them as exceptions. This idea can be
categorized as the “tolerance approach”. In this approach, every numerical computation
for a geometric test is accompanied by its error analysis, and according to the estimated
error bound, the result of the test is judged as “yes”, “no”, or ”unknown”. For the “yes”
and “no” cases, they follow the procedure specified by the theoretical algorithm, whereas
for the “unknown” case, they follow the exceptional branches of processing. Typical ex-
amples of the methods belonging to these approaches are epsilon geometry [1] and the
hidden-variable method [3].

However, the way of making the exceptional branches usually depends on individual
problems and individual cases, and is far from general. Moreover, the resulting procedure
becomes complicated, because every geometric test generates three branches of processing
(i.e., the yes”, “no”, and く unknown cases) instead of two. Furthermore, it is not easy to
guarantee the correctness of the resulting three-branch procedure. Hence, this approach
was successfully applied only to a limited area of simple problems.

2.2 Exact Computation Approach

In the second approach, numerical values are treated as perfectly reliable information.
The simplest way to avoid inconsistency is to avoid having numerical errors at all, and
this can be done by employing exact arithmetic, if possible. Suppose, for example, that
the input data are strictly correct rational numbers and the algorithm employs only the
four basic operations $(+, -, \cross, \div)$ . Then, the results of computation can be precisely
represented by rational numbers. They contain no errors, and hence no misjudgments,
resulting in robust behavior of the algorithms. This approach to robustness is called the
”exact arithmetic approach”.

The exact arithmetic approach is too restrictive, because it cannot handle irrational
numbers. However, this restriction can be removed, because what we want to avoid
are misjudgments about the topological structure. Topological structures are usually
judged by the signs of computed numbers, and hence we can guarantee consistency if the
judgments are always done correctly, even if the computed numbers themselves contain
errors. Therefore, we attain robustness if we can provide multiple, but still finite, precision
that is precise enough to recognize the signs correctly [7]. This approach is called exact

100



geometric computation. This name was coined by Yap [9].
Let us collect the exact arithmetic approach, the exact geometric computation ap-

proach, and similar in one group, and name it as the ’exact computation paradigm”.
This paradigm is simple and powerful in the sense that consistency is automatically guar-
anteed by correct recognition of topological structures. For this simplicity, we have to pay
an expensive cost for multiple, and hence slow, computations. Thus, the main concern in
this paradigm is how to make the computation faster.

The most common method for acceleration is the floating-point filter. In this method,
we first try to decide the sign of a computed value by floating-point arithmetic, and if the
result is unreliable, we switch to exact arithmetic. Other acceleration methods include
the sophisticated use of floating-point operations for correct judgment of the sign of the
sum of real numbers and of an inner product.

In the exact computation paradigm, degeneracy is detected exactly, because the sign
of a computed value can become exactly $0$ . Thus, the algorithm is not complete unless all
degenerate cases are handled. To avoid this complication, we can use the symbolic pertur-
bation technique, by which degeneracy is automatically avoided by adding infinitesimally
small terms to input data.

This paradigm is used in many software libraries such as LEDA [2], CGAL and EGC
Core Library [9].

2.3 Topology-Oriented Approach
The third approach is quite opposite to the exact computation approach, in the sense
that it does not rely on the correctness of numerical values at all. It is important to note
that numerical errors do not directly cause algorithms to fail. Numerical errors sometimes
cause misjudgments of the combinatorial/topological structure of geometric objects; the
misjudgments sometimes generate inconsistencies and the inconsistencies cause algorithms
to fail. Hence, what we have to avoid to achieve robustness is inconsistency, but not
necessarily numerical errors.

The third approach, called the “topology-oriented approach”, is based on this recog-
nition. In this approach, topological tests done in the algorithm are divided into two
groups; the first group is a maximal set of “mutually independent” tests, and the second
is the group of the remaining tests, where the mutually independent tests mean that the
result of one test, i.e., the truth value, does not affect the result of the others.

We use numerical computation to evaluate the tests in the first group. Numerical
errors may generate incorrect results of the tests. However, since they are independent,
the results of the tests do not contradict each other; they form a consistent world.

For the other group of tests, instead of using numerical computation, we adopt the
logical consequences of the results of the tests of the first group. Hence, the resulting
values of all the tests are consistent.

Let us name this approach the “independent test paradigm”.
An algorithm designed in this paradigm has many good characteristics [8]: (i) it

runs fast because floating-point arithmetic can be used, (ii) it will never fail because

101



the consistency is guaranteed, no matter how low is the arithmetic precision, (iii) it
always gives some output and the output is topologically consistent, and (iv) degeneracy
is automatically avoided because inexact arithmetic cannot recognize degeneracy at all.

3 Remaining Problems
The two paradigms, the exact computation paradigm and the independent test paradigm,
are powerful and give completely robust geometric algorithms whenever they can be suc-
cessfully applied. However, they are not omnipotent; there still remain many difficulties.
Major difficulties are as follows.

3.1 Incorrect Input

Input to an algorithm is not necessarily correct. For example, suppose that a polyhedron
is given as the input. The description of the polyhedron is composed of topological data
specifying the incidence relations among vertices, edges and faces, and the metric data
such as the coordinates of the vertices. Numerical data are usually represented by rounded
values and hence are not exactly correct. On the other hand, the exact computation
paradigm is based on the assumption that the input is correct, and hence tries to treat
the input data as exactly correct information.

However, numerical data may contradict topological data. Suppose that the topolog-
ical data say that a face contains four vertices. Then, the exact computation paradigm
expects these four vertices to be numerically coplanar. However, the coordinates of the
vertices are represented inexactly, and hence the four vertices may not be coplanar. Sim-
ilarly, even if the topological data state that four faces are incident to a common vertex,
they may not be concurrent in the numerical sense. In that case, the input is inconsistent,
and hence cannot be used in the exact computation paradigm.

3.2 Cascaded Processing

Results of computation require higher precision if we want to represent them precisely.
Hence, if we apply computation repeatedly, the required precision raises quickly in an
exponential order. This happens, for example, if we iteratively apply set-theoretic oper-
ations to polyhedra. In the exact computation approach, this will result in explosion of
the required precision. In the topology-oriented approach, this will result in amplification
of geometric disturbance.

Therefore, one problem here is how to minimize the growth of arithmetic precision or
the growth of geometric disturbance. Sometimes the choice of the basic numerical data
will help. For example, in the Boolean combination of polyhedrons, explosion in precision
can be avoided if we choose the coefficients of the face equation as the basic numerical data
instead of the coordinates of the vertices [7]. However, this kind of individual convention
cannot be a general-purpose method.

102



3.3 High-degree Objects
Linear objects, such as lines and planes, require only a moderately high precision for
exact computation. However, nonlinear objects, such as curved surfaces, require much
higher precision for exact representation. Therefore, sometimes exact manipulation of
these objects demands intractably high precision.

The topology-oriented approach can be formally applied to these situations, because
floating-point arithmetic is used. However, it likewise encounters difficulty because the
rounding errors are relatively large and they will cause (consistent, but) incorrect topology,
which may generate large geometric disturbance.

3.4 Unwanted Side Effect of Perturbation
Symbolic perturbation is a powerful technique to avoid exceptional branches of process-
ing in exact computation, because it completely removes all the degeneracy. However,
sometimes we want to leave part of the degeneracy as it is, because otherwise an un-
wanted side effect takes place. For example, the Delaunay tetrahedrization is a useful
tool for generating meshes for the finite element method. However, if we apply symbolic
perturbation, four vertices of a square may generate a zero-volume tetrahedron [6], which
should be avoided in practical applications such as finite element methods and interpola-
tions. Contact detection problems and packing problems are other examples in which we
want to leave some part of degeneracy as is. Therefore, a selective perturbation scheme
is required.

3.5 Ill-deflnedness of Real Problems
The robustness issue is a matter of practical applications of geometric algorithms. In this
sense, we should not ignore another serious difficulty; that is, the gap between practi-
cal and theoretical problems. Practical problems arising in the real world are ill-defined
in many cases, while the algorithms designed in computational geometry are mainly in-
tended for well-defined problems. Hence, we always risk having to change the problems,
although they originally come from the practical world, into practically meaningless ones
unintentionally when we try to formulate them in a mathematical manner.

For example, suppose that we want to construct an algorithm for interpreting line
drawings as polyhedral objects, as humans can do. The problem might be described math-
ematically as the problem of judging whether there exists a polyhedron whose projection
coincides with the given line drawing. However, the result of this kind of mathematical
formulation is too strict when compared with the flexible human behavior of object recog-
nition. This can be understood if we consider a picture of a tmncated pyramid seen from
above; the correct projection is always degenerate in that the three side edges meet at a
common point (corresponding to the apex of the pyramid), and hence numerical pertur-
bation of the vertex positions will make the picture mathematically incorrect. Thus, the
machine perception becomes different from human perception [4].

103



4 Directions for the Future
It seems that all the five major difficulties listed in the last section are really difficult for
the exact computation paradigm. In this paradigm, the necessary precision is determined
by the geometric problem, and consequently the main concem is to raise the speed of the
arithmetic to the required precision. For this purpose we might use software techniques,
existing hardware, or both, and might also be able to design new hardware. In these
directions, we may be able to attack the second and the third difficulties, but some new
ideas appear to be necessary in order to attack the first, the fourth and the fifth difficulties.

On the other hand, in the independent test paradigm, computation can be done in
floating-point arithmetic and hence quickly; the main concern is to raise the quality of the
result of the computation. From this point of view, only the fourth difficulty is serious,
whereas the others might be tractable. Let us see how the independent test paradigm
might be able to cope with these difficulties.

The inconsistency of the input comes from the assumption that all the information of
the input is important. In other words, if we select only independent information from
this, we will get consistent information. One such trial is a “resolvable sequence” [5],
in which we select only an independent subset of data for unique determination of the
polyhedron.

The rapid increase in the required precision in cascaded operations or in high-degree
objects is serious to the exact computation paradigm, but is not serious to the independent
test paradigm. As the independent test paradigm uses only floating-point arithmetic, the
required precision does not increase, even if we repeatedly apply operations. The only
concern is how to keep the quality of the resulting object shape, so we need to develop
some techniques to select the optimal independent set or to collect the most probable
information from redundant data and$/or$ to select the optimal order of applications of the
repeated operations.

The degeneracy issue is serious in both paradigms. It seems that this difficulty is deeper
than other difficulties, because it comes from the nature of the geometric problems, but
not the way of processing them. Consequently, it seems that we need case-by-csse care
for individual problems rather than a unifying general method.

The last difficulty, the ill-definedness of real problems, is also serious if we want to solve
them using algorithms in computational geometry. Of course, the validity of the theory is
based on the fact that they treat well-defined problems. We should not change this basic
attitude, but it might be possible to attack ill-defined problems by the combinations of
well-defined algorithms. At least we could succeed in attaining human-like flexibility in
picture interpretation by removing redundant information from the algebraic structure of
a line drawing using combinatorial theory; refer to [4] for the details.

5 Concluding Remarks
We have surveyed major difficulties that remain to be overcome for robust geometric
computation. The robustness issue is related to practical applications in its nature, and

104



consequently the difficulties contain ill-definedness of real problems. One might think
that ill-defined problems are outside the scope of computational geometry, but I believe
that it is a fmitful direction of future studies in computational geometry to pay attention
to this kind of gap between theory and practice. In addition, I feel that the “independent
test paradigm” is one of the more promising approaches to these problems.

Acknowledgment
This work is supported by the MEXT Grand-in-Aid for Scientific Research (B), no.
20360044, and for Exploratory Research, no. 19650003.

References
[1] L. Guibas, D. Salesin and T. Stolfi: Epsilon geometry–Building robust algorithms

from imprecise computations. Proceedings of the 5th ACM Annual Symposium on
Computational Geometry. May 1989, Saarbr\"ucken, pp. 208-217.

[2] K. Mehlhom and S. Naher: LEDA: A Platform for Combinatorial and Geometric
Computing, Cambridge University Press, Cambridge, 1999.

[3] V. Milenkovic: Verifiable implementation of geometric algorithms using finite preci-
sion arithmetic. Artificial Intelligence, vol. 37 (1988), pp. 377-401.

[4] K. Sugihara: Machine Interpretation of Line Drawings. The MIT Press, Reading,
Massachusetts, 1986.

[5] K. Sugihara: Resolvable representation of polyhedra. Discrete and Computational
$Geometr^{v}y$, vol. 21 (1999), pp. 243-255.

[6] K. Sugihara: Sliver-free perturbation for the Delaunay tetrahedrization. Computer-
Aided Design, vol. 39 (2007), pp. 87-94.

[7] K. Sugihara and M. Iri: A solid modelling system free from topological inconsistency.
Joumal of Inforvnation Processing, vol. 12, no. 4 (1989), pp. 380-393.

[8] K. Sugihara and M. Iri: Construction of the Voronoi diagram for one million gener-
ators in single-precision arithmetic. Proceedings of the IEEE, vol. 80, no. 9 (1992),
pp. 1471-1484.

[9] C. K. Yap: Toward exact geometric computation. Computational Geometry: Theory
and Applications, vol. 7 (1997), pp. 3-23.

105


