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1. Introduction
The vortex methods have been developed and applied for analysis of complex, unsteady

and vortical flows in relation to problems in a wide range of industries, because they consist
of simple algorithm based on physics of flow. Nowadays, applicability of the vortex element
methods has been developed and improved dramatically, and it has become encouragingly
clear that the vortex methods have so much interesting features that they provide researchers
and engineers with easy-to-handle and completely grid-ffee Lagrangian calculation of
unsteady and vortical flows without use of any RANS type turbulence models. Leonardl
summarized the basic algorithm and examples of its applications. Sacpkaya2 presented a
comprehensive review of various vortex methods based on Lagrangian or mixed Lagrangian-
Eulerian schemes, the Biot-Savart law or the vortex in cell methods. Kamemoto3 summarized
the mathematical basis of the Biot-Savart law methods. Recently, Kamemoto4 reported several
attractive applications involving simulation of various kinds of unsteady flows with an
advanced vortex method, and Ojima and Kamemoto5 reported interesting results of a study on
numerical simulation of unsteady flows around a swimming fish by using their vortex method.

As well as many finite difference methods, it is a crucial point in vortex methods that the
number of vortex elements should be increased when higher resolution of turbulence
srucmres is required, and then the computational time increases rapidly. In order to reduce
the operation count of evaluating the velocity at each vortex element or particle $throu\phi$ a
Biot-Savart law, fast $N$-body solvers, by which the operation count is reduced Rom $O(N)$ to
$O(N\log N)$ , have been proposed by Greengard and Rohklin.6 On the other hand, in order to
reduce the computational load in calculation ofmrbulence stmcmres, Fukuda and Kamemoto7
proposed an effective redistribution model of vortex elements with consideration of
convective motion and viscous diffision in a three-dimensional core-spreading model.

Recently, in order to expand the applicability of the advanced vortex method, the group of
the present author has made attempts to apply it into fiirther complicated and vortical flows in
several fields. Kamemoto and Ojima8 applied the method into the fluid dynamics in sports
science, and they simulated three-dimensional, complex and unsteady flows around an
isolated 100 $m$ runner and also a ski-jumper. Iso and Kamemoto9 developed a coupled vortex
method and particle method analysis tool for numerical simulation of intemal unsteady two-
phase flows, and they numerically simulated intemal liquid-solid two-phase flows in a
vertical channel and a mixing tee. Furthemiore, expanding the concept of the Lagrangian
vortex method in which vorticity layers are expressed by a number of discrete vortex elements,
Ishimoto $1$ and the group of the present author have attempted numerical simulation of
behavior ofplasma in a magnetic field by introducing superparticles of electrons.

In tins paper, in order to overview the recent attempts, the mathematical background
and numerical procedure of the advanced vortex method applied to the recent studies are
briefly explained and the progressive studies on simulation of such hard-to-solve and vortical
flows as the complex flows around a 100 $m$ runner, the liquid-particle two phase flows in a
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channel and the vortical motion of plasma clouds in a magnetic field are digested. And finally,
a new direction of ffinher development of the vortex element dynamics is viewed in
conclusion.

2. Algorithms of Lagrangian Vortex Element Method
The govening equations for viscous and incompressible flow are described with the

vorticity transport equation and the pressure Poisson equation, which can be derived by taking
the rotation and the divergence ofNavier-Stokes equations, respectively.

$\frac{\partial w}{\partial t}+(u\cdot\Psi^{ad)w}=(\Phi\cdot\Psi^{ad)u+\Pi^{2}q)}$ (1)

$\forall p=\rho div$($u$ . grad u) (2)

Where $u$ is a velocity vector, and $v$ and $\rho$ respectively denote kinematic viscosity and fluid
density. The vorticity $\omega$ is defined as $a=rotu$. As explained by Wu and Thompson $1^{}$ , the
Biot-Savart law can be derived ffom the definition equation of vorticity as follows.

$u= \int_{V}(\omega_{0}x\nabla_{0}G)dv+\int_{s}\{(n_{0}\cdot u_{0})\cdot\nabla_{\theta}G-(n_{0}xu_{0})x\nabla_{0}G\}ds$ (3)

Here, subscript $0$

” in Eq.(3) denotes variable, differentiation and integration at a location $r_{0}$,
and $n_{0}$ denotes the normal unit vector at a point on a boundary surface $S$. And $G$ is the
fundamental solution of the scalar Laplace equation with the delta hmction 6 $(r- r_{0})$ in the right
hand side, which is written as $G=1/(4\pi|r- r_{o}|)$ for a three-dimensional field. In Eq. (3), the
inner product $(n_{0}. u_{0})$ and the outer product $(n_{0}\cross u_{0})$ stand for respectively normal and
tangential velocity components on the boundary surface, and they respectively correspond to
source and vortex distributions on the surface. Therefore, as shown in Fig.1, it is
mathematically understood that a velocity field of viscous and incompressible flow is amived
at the field integration conceming vorticity distributions in the flow field and the surface
integration conceming source and vortex distributions around the boundary surface.

Fig. 1 Flow field involving vorticity distribution region.
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Instead of the finite difference calculation of the pressure Poisson equation represented by
Eq. (2), the pressure in the flow field is calculated ffom the integration equation, which was
formulated by Uhlman12 as follows.

$\beta H+\int_{s}H\frac{\partial G}{\partial n}ds=-\int_{V}\nabla G(ux\omega)d\nu-\int_{s}\{G\cdot n\cdot\frac{\partial u}{\partial t}+\nu\cdot n\cdot(\nabla Gx\omega)\}ds$ (4)

Here, $\beta$ is $\beta=1$ inside the flow and $\beta=1/2$ on the boundary S. $H$ is the Bemoulli function
defined as $H=P/\rho+|u|^{2}/2$ . The value of $H$ on the boundary surface is calculated ffom Eq. (4)
by using the panel method.

One of the most important schemes in the vortex method is how to represent the
distribution of vorticity in the proximity of the body surface, taking account of viscous
di$\mathfrak{N}sion$ and convection of vorticity under the non-slip condition on the surface. In the
present method, a thin vorticity layer is considered along the solid surface, and discrete vortex
elements are introduced into the surrounding flow field considering the diffision and
convection of vorticity ffom discrete elements ofthe $t!\dot{u}n$ vorticity layer with vorticity $\omega$. The
details of treatnents have been explained in the paper written by Ojima&Kamemoto 13. It
will be noteworthy that as a linear distribution of velocity is assumed in the thin vorticity
layer, the ffictional stress on the wall surface is evaluated approximately Rom the following
equation as $\tau_{w}=\phi u/\partial n=-\mu\omega$. Once the pressure distribution and frictional stress around
the boundary surface are calculated, integration of the pressure and the shearing stress along
the surface yields the force acting on the body. When a vortex element, which is introduced
into the surrounding field, flows downstream and far ffom the solid surface, it can be replaced
with an equivalent discrete vortex element for simplification of numerical treatment by
considering conservation of vortex strength. The discrete vortex element is modeled by a
vortex blob which has a spherical structure with a radial symmetric vorticity distribution
proposed by Winkelmans &Leonardl4. The motion of the discrete vortex elements is
represented by Lagrangian fomi of a simple differential equation $dr/dt=u$. Then, trajectory of
a discrete vortex element over a time step is approximately computed Rom the Adams-
Bashforth method. On the other hand, the evolution of vorticity is calculated by Eq.(l) with
the three-dimensional core spreading method proposed by Nakanishi &Kamemotol5. It
should be noted here that in order to keep higher accuracy in expression of a local vorticity
distribution, a couple of additional schemes of re-distribution of vortex blobs are introduced
in the present advanced vortex method. When the vortex core of a blob becomes larger than a
representative scale of the local flow passage, the vortex blob is divided into a couple of
smaller blobs. On the other hand, if the rate of three-dimensional elongation becomes large to
some extent, the vortex blob is discretized into plural blobs in order to approximate the
elongated vorticity distribution much more properly. The detail of the redistribution model is
explained in the paper written by Fukuda and Kamemoto7.

3. Progressive Applications
3.1 Application to sports aerodynamics

In the study of numerical simulation of the flows around a 100 $m$ runner and a ski-
jumper by Kamemoto and Ojima8, a numerical model of a moving athlete is represented by
distributing 3,020 quadrilateral panels around its body-sutface as shown in Fig.2 (a). For the
moving conditions of each panel, the new co-ordinates of each panel, instantaneous velocity
and acceleration of the panel movement are given at each time step, and the one cycle of
motion is produced by $320steps$ of instantaneous body configuration as shown in Fig.2 (b) in
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which only eight characteristic steps of instantaneous running style are shown. The moving
boundary data are imported into the calculation at each time step, which are used to change
both the configuration of athlete body and the boundary condition during the calculation of
the flow field around the moving body. In order to examine the influence of runner’s posture,
calculations of flows around a runner with different forward-bent angles $(a=0^{o},$ $10^{o}$. $20^{o}$. $30$

$0)$ shown in Fig.2 (c) were perfomied. Moreover, a much more realistic flow around the
nmner was simulated by introducing continuous variation of the forward-bent angle ffom 5$0^{0}$

to $0^{o}$ degree with the elapsed time.

(a) Panel distribution (b) One cycle of running motion at $a=0^{o}$ (c) Definition of forward-bent angle $a$

Fig.2 Representation of a body configuration by quadrilateral panels.

In the study, in order to normalize length scale, the breadth of the runner’s shoulders 0.4 $m$

was used as the representative length $L$ for normalization of the length scale. The assumed
mmuing speed 10 $m/s$ was used as the representative velocity $U$ for normalization of the
velocity scale. As one cycle motion was represented 320 steps of instantaneous body
configuration, and as it is known that one cycle of sprint rumuing motion of a first class
runner takes approximately 0.45 $s$ , the size of time step of the present time marching
calculations was taken to be $1.40x10^{-3}s$ . The kinematic viscosity $\nu$ and density $\rho$ of the
atmosphere were respectively assumed as $1.43\cross 10^{5}m^{2}/s$ and 1.2 $kym^{3}$ . Therefore, the
Reynolds number of the flow around the runner becomes $Re=UL/v=2.8$xl $0^{5}$ .

Figure 3 shows four views of instantaneous pressure distributions around the runner’s body
surface at the bent angle $a=0^{o}$ . It is clearly observed that higher pressure regions are formed
on the face and ffontal surfaces of body and the left leg, and lower pressure spots are formed
on the back and side surfaces of body and the rear surface of the left foot. And it has been
known ffom the calculation that the time-averaged total drag force acting on the runner was

56



(a) $t=1.8\sec(a=30^{o})$

about 18 $N$ which corresponds to the value of drag coefficient Cd $\sim 0.8$ on the assumption of
drag area as about 0.4 $m^{2}$ .

Figure 4 shows instantaneous pressure distributions and flow pattems around a runner who
is continuously changing forward-bent posture from 5 $0^{0}$ to $0^{o}$ . It is seen in this figure that the
width of the wake formed behind the runner at the forward-bent angle is 3 $0^{0}$ is narrower and
it becomes wider as the forward-bent angle becomes smaller. It has been confirmed Rom this
calculations that the fluid force acting on the runner varies according to the angle of forward-
bent posture.

Fig.5 Time history of drag and lift forces during motion of continuously changing the
forward-bent posture ffom $50^{o}$ to $0^{o}$ with time.
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Figure 5 shows time history of drag and lift forces acting on the runner during motion of
continuously changing the foiward-bent posture ffom $50^{o}$ to $0^{o}$ with time. It is interesting to
fmd that as the forward-bent angle decreases, drag force tends to increase monotonously and
lift force is periodically flucmating but it tends to decrease ffom positive lift (up-force) to
negative one (down force).

3.2 Application of a coupled vortex element and particle method to liquid-solid two-
phase flows

In the study by Iso and Kmemoto9, both fluid phase and particle phase are treated by the
completely grid-ffee Lagrangian-Lagrangian simulation, without use of the Eulerian grids as
schematically shown in Fig.6. It is possible to simulate directly particle motion oriented by
the vortex-induced fluid dynamical forces. Detail of the method and examples applied to
intemal multiphase flows are described in the paper by Iso and Kamemotol6. Solid particles
were treated by the $pa\hslash icle$ trajectory tracking method as a Lagrangian calculation. Particle-
particle and particle-wall collisions aoe calculated by a deterministic method. To $simpli\theta$ the
problem in this study, the liquid-solid two-phase flows are treated as those of dilute mixture
of particles and it is assumed that the effect of particles on the liquid flow is neglected (one-
way model). And a solid particles is considered as a rigid sphere with a particle diameter.

Fig. 6 Schematic diagram ofnumerical method of the present Lagrangian-Lagrangian
simulation for intemal flows.

Based on the above assumptions, it is generally accepted that dominant forces on each
particle are the drag force, Magnus lift force, Saffinan lift force, force to accelerate the
virtually added mass in the ambient fluid, and gravitational force. The force on the particles
due to pressure gradient and the Basset force are neglected in this study. The equation of
motion for a particle is expressed as

$\frac{du_{p}}{dt}=\frac{1}{M_{p}}(F_{D}+F_{LM}+F_{IS}+F_{\nu^{r}M}+F_{G})$ (5)

Here, $u_{p}$ is the particle velocity vector, $M_{p}$ the particle mass, and $F$ the force vector on the
particle; namely, $F_{D}$ is the drag force due to relative velocity of the particle to the fluid, $F_{LM}$

the Magnus lift force due to rotational motion, $F_{IS}$ the Saffinan lift force due to velocity
gradient, $F_{VM}$ the force to accelerate the virtual added mass in the ambient fluid and $F_{G}$ the
gravitational force. In this paper, calculation formulas of the above forces on particles are
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omitted. They are similar to the formulas in the literature, for example, Tsuji et al.17 and
Yamamoto et al. 18

As the rotation of a particle is affected by the fluid viscosity, the equation of rotational
$particlerotationwhichistheoretica11yobtainedbyDenniseta1motionofeachparticleisnumerica11yso1vedbyconsiderin_{1}\S$ .

the viscous torque against

Particle-particle and particle-wall collisions were calculated by a detemiinistic method. The
traveling velocity and the rotational velocity of a particle after collision are calculated by the
equations of impulsive motion of a particle. For the calculation of particle-wall collision, the
collision is modeled as irregular bouncing of a particle on the virtual wall model proposed by
Tsuji et al.17, in which the wall is replaced with a virtual wall having an angle relative to the
real wall.

Physical motion of the particles is split up into two stages in order to reduce the
computational load. In the first stage, all particles are moved based on the equation ofmotion
without collisions. In the second stage, particle-particle collision is calculated, and then, the
velocity of a particle after the collision is replaced with post-collision velocity without
changing the position.

In the beginning, the two-dimensional liquid-solid two-phase flow in a vertical channel
was calculated to validate the coupled vortex element and particle method. The numerical
simulation was performed for the same conditions as those in the two-phase experiments of
Hishida et al. 20, 21. The flow field is schematically shown in Fig.5. Flow direction of both
phases is downwards. The Reynolds number is $R_{e}=U_{c}W/\nu=5.0\cross 10^{3}$ , based on the mean
velocity on the centerline $U_{c}=0.17m1s$ and the channel width $W=3.0x10^{-2}m$ . Here, $v$ is the
kinematic viscosity of water. Periodic boundary conditions for both phases were applied in
the streamwise direction due to restrictions on computational power. The length $L$ of the
computational region in the streamwise direction was equal to $3W$. Particles are introduced
into the channel using random numbers, so as to satisfy uniform distribution at the loading
mass ratio which is $m=1.1x10^{-2}$ . Density and diameter of the particles are $\hslash=2590kym^{3}$

(relative density: $\hslash/\rho_{f=}2.59$) and $d_{p}=500\mu m$, respectively.

$\ulcorner_{X}J^{r}$

A

Fig. 7 Schematic view of liquid-solid two
phase flow in a vertical channel.

Fig. 8 The time-averaged streamwise
velocities of fluid and solid particles.

Figure 8 shows the results for the time-averaged streamwise velocities of fluid and solid
particles. In this downward flow, the particle velocity is faster than the liquid, because the
density of particles is larger. Numerical results showed very good agreement with the
experimental data of Hishida et al. 20, 21. As the conclusion, these validations clarified the
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quantitative accuracy and the applicability of the special combination of vortex method and
particle trajectory tracking method to intemal two-phase flow of high Reynolds number.

Fig.9 Schematic view ofthe liquid-solid two-phase flow in the mixing tee.

The coupled vortex element and particle method was applied to the two-dimensional
liquid-solid two-phase flow in a mixing tee as a typical problem to mixing of liquid and solid
particles in ducts. The flow field is schematically shown in Fig.9. The flow field is not only
the basic component in industrial pipelines but also the simple mixing device for multi-phase
flow. For details, refer to Kawashima et $a1^{22,23}$ and Blancard et al.24. In Fig.9, the branch flow
merges into the main flow at a right angle. The cross-sections of the confluence are squares.
The widths of the main and branch channels are $W_{1}$ and $W_{2}$, respectively, and the width ratio
is $W_{2}/W_{1}=0.5$ $(W_{1}=20 mm, W_{2}=10 mm)$ . The volumetric flow rates in the main and branch
channels before confluence are $Q_{1}$ and $Q_{2}$ , respectively, and the confluent flow rate ratio
$Q_{2}/Q_{1}$ is changed as $Q_{2}/Q_{1}=1,2,3$ , which correspond to the values of fluid momentum ratio
$M_{2}/M_{1}$ of 2, 8, 18, respectively. The value of $Q_{2}/Q_{1}$ is controlled by changing only the
volumetric flow rate of the branch channel. The velocity in the main channel is $U_{1}=0.25m/s$ ,
and the velocity in the branch channel is $U_{2}=0.5,1.0,1.5n\vee s$ . Reynolds numbers are
$Re=(U_{3}W_{1})/v=1.0x10^{4},1.5x10^{4},2.0\cross 10^{4}$, based on the average velocity $U_{3}$ and the width
$W_{1}$ downstream of the confluent point. Here, $v$ is the kinematic viscosity of water. Particles
are introduced into the branch channel only, using random numbers, so as to satisfy uniform
distribution at the volume concentration $C_{V}=0.01$ . Density and diameter of particles are $\hslash^{=}$

2590 $kym^{3}$ (relative density: $\hslash/\rho_{f=}2.59$) and $d_{p}=425\mu m$, respectively. Direction of gravity
is downward in Fig.9.

$t$ $0$ 1 a a 5 7

(a) Vortex elements (b) Fluid velocity distributions
Fig. 10 Two snap shots of instantaneous distribution of vortex elements and fluid velocities.
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Fig. 11 Comparison between calculation and experiment for distribution ofparticles.

Figure 10 shows two snap shots of instantaneous distributions of vortex elements and fluid
velocity obtained by the numerical simulation. The condition of the confluent flow rate ratio
is $Q_{2}/Q_{1}=2$ , and the instantaneous non-dimensional times are $tUy’W_{1}=85.0$ and 87.5. The
contour of velocity expresses the streamwise fluid velocity. After two perpendicular flows
merge in the mixing tee, the confluent flow deflects and unsteady flow separation occurs at
the downward comer of thejunction. First, the confluent flow is accelerated in the contraction
region of the mixing point. Then, the flow is decelerated to the streamwise direction in the
expansion. Consequently, unsteady flow separation occurs and grows up ffom the bottom wall
of the main channel, because the adverse pressure gradient is strong in the flow direction. The
separation vortices aggregate, break up and diffuse downward. Such phenomenon was also
obseived in the experiments by ink trace visualization.

In Fig.11, the instantaneous and time-averaged distributions of solid particles for the
condition of $Q_{2}/Q_{1}=2$ are shown, and numerical results are compared with experimental
observations where the time-averaged experimental photographs were taken by long exposure.
Both, experimental and numerical results show that particles have mixed almost unifornly at
$x/W_{1}=3$ . As mentioned before, it is seen that the confluent flow deflected and the unsteady
separations occurred at the downward comer of the junction. The confluent flow becomes
unsteady and complex due to the unsteady separation of flow from the channel walls. Thus, in
the condition $Q_{2}/Q_{1}=2$ , the ability of the particle mixing is good.

3.3 Plasma particle trajectory tracking method
Expanding the concept of the Lagrangian vortex method in which vorticity layers are

expressed by a number of discrete vortex elements, Ishimotol and the group of the present
author have attempted numerical simulation ofbehavior of pure electron plasma in a magnetic
field by introducing a number of charged particles called superperticles.

It is known that the motion of non-neutral plasma in a magnetic field is similar to the
vortical flow of fluid. So far, formation of coherent vortex structures of two-dimensional
electron plasmas have been observed in experiments by $Kiwamoto^{25}and$ Sanpei et al26,
which were performed with the photo-cathode pure-electron plasma traps of a Malmberg-
Penning trap type. The vortex crystal formation in two-dimensional plasma turbulence was
theoretically investigated by Jin and Dubin27 and for numerical simulation of the various
phenomena in plasma, the particle-in-cell method, the leap-ffog method and others are
explained by Birdsall and Langdon28, Naitou29, Isiguro$3$ and Ohsawa31. The leap-ffog method
might be considered the same as the time-splitting method, but a deterministic time-splitting
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and Lagrangian method like the advanced vortex element method mentioned above is not
discussed in detail, so far.

In general, in a field with the intensity of electric field $E$ and the magnetic density $B$, the
motion of a charged particle with the strength of charge $q$ and the mass $m$ is expressed as
follows.

$m \frac{du}{dt}=q(\Xi+u^{x}B)$ (6)

Here, $u$ denotes the velocity of the center of the particle which is given by $dr/dt$, and the
motion consists of circular motion around the axis of $B$ and the motion ofdrifl in the direction
of $E\cross B$ . In the $rig\iota$-hand side of Eq. (6), the first temi $qE$ and the second $q(u\cross B)$

respectively correspond to the Coulomb force and the Lorentz force acting on the particle. In
the study, the two-dimensional motion of superpamcles of electrons in a uniform magnetic
field $B_{o}$ was calculated. Therefore, the intensity of electric field $E$ is calculated $fi\cdot om$ the
summation of individual intensity of electric field induced by each superparticle in the field
and the magnetic density $B$ is given by $(B_{o}+dB)$ in which $dB$ denotes fluctuation ofmagnetic
density induced by motions of the electronic superparticles and it is calculated by the Biot-
Savart law derived ffom the Maxwell equation. As the study was a first attempt for the group
of the present author to apply the concept of the vortex method, a simple superparticle model
was introduced, which has a spherical shape with the radius $r_{d}$ and the number of electrons
uniformly distributed in it is $N_{v}$ , and to simplify the numerical ffeamients, the effects of
electronic diffusion and collisions between particles were ignored. In order to compare the
calculation results with experiments by Kiwamoto25, the interaction between two clouds of
superparticles and the formation of vortex crystals ffom a ring cloud were calculated under
the conditions similar to the experimental ones.

$\sim$ .

$N1\bullet 253\bullet\bullet$
$\prime 1..\backslash \backslash _{\backslash \cdot=}:_{l^{\backslash }}..\dot{\alpha}_{\wedge^{\wedge}}^{:}\backslash ’..\cdot\cdot\cdot\cdot..\cdot.\cdot\cdot.\cdot$

$N|=5$ $\bullet\bullet$ $\infty$ $\oint_{\ddot{*}}$

, $-\backslash \cdot\sqrt{}\backslash ae_{:^{=}}\cdot..$.
$0\mu\S$ $0.2\mu s$ $0.5\mu s$ $1.0\mu s$ $10.0\mu\S$

Fig.12 Comparison of calculated results ofmerging of a pair of electronic plasma.

In the calculations of interaction between two clouds, the following conditions were used;
density of magnetic field $B_{o}=0.048N/Am$ , the charge of an electron $e=1.6021$ xl $0^{-19}C$, the
mass of an electron $m_{\epsilon}=9.109$ lx 1 $0^{}$ kg, the electric permittivity $a=8.8542$xl $0^{-12}C^{2}/(Nm^{2})$ ,
the electric perneability $\mu=1.2566x10^{6}N/A^{2}$ , the initial radius of a cloud $r_{i}=0.4$xl $0^{-3}m$, the
initial distance between two clouds $L=1.0x10^{-3}m$ . In order to examine the effect of the
number of electrons in a superparticle $N_{v}$ and the imitial number of superparticles in a cloud $N_{i}$

on the calculation results of evolution of interactive motion of plasmas, a couple of
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combinations of the numbers were introduced as $(N_{v}=100, N_{i}=253)$ and $(N_{v}=460, N_{i}=55)$ , and
three different values for the radius of superparticle were examined for each combination as $r_{d}$

$=2.5x10^{-5},$ 4xl $0^{}$ and 2.5xl $0^{}$ $m$ for the case $ofN_{i}=253$ , and $r_{d}=5x10^{-5},$ 4xl $0^{}$ and 5xl $0^{}$ $m$

for the case of $N_{i}=55$ . The calculation time step was fixed as $d=1$ xl $0^{-10}s$ .
In Fig.12, a couple of calculation results of evolution of merging of a pair of electronic

plasma clouds are shown, which were obtained for $(N_{i}=253, r_{d}\triangleleft-x10^{-7}m)$ and $(N_{i}=55,$ $r_{d}$

$\triangleleft-x10^{7}m)$. From comparison of the results, it is clearly observed that as the time proceeds,
the two clouds catch and join each other, and then they finally merge into a new isolated
cloud due to the interactive motion of superparticles. The calculated evolution of merging is
in qualitatively coincidence with the experiments25. And it has been confirmed that there are
no significant differences in the calculated merging processes corresponding to the differences
of not only the numbers of both superparticles in a cloud and electrons in a superparticle, but
also the radius of a superparticle, as far as this study is concemed.

Fig. 13 $Fomat_{-}ion$ of vortex crystal structure Rom a ring

In the calculation of the fomiation of vortex crystals ffom a ring cloud, the magnetic field
conditions are the same as those mentioned above. The initial outer radius and inner radius of
the ring cloud are $R_{o}=5\cross 10^{-3}m$ and $R_{i^{-}}\triangleleft x10^{-3}m$, respectively and the inner radius of the
conducting wall in which the ring cloud of plasma was coaxially trapped is $R_{w}=5.5$xl $0^{-3}m$.
The number of superparticles in the ring cloud is $N_{r}=398$ and the number of electrons in a
superparticle is $N_{v}=46$ . In Fig. 13, evolution of disturbance on motion of superparticls with
time and formation of six vortex crystals are clearly seen. It has been confirmed that the
calculated features of vortex crystal formation is also in qualitatively coincidence with the
experiments and numerical results reported by Kiwamoto25.
4. A View of New Direction of Discrete Vortex Dynamics

In the former section, three examples of applications of Lagrangian tracking methods based
on a vortex element method and a particle method. It seems very interesting that although the
fluid is assumed as continuum and the particles are discrete ffagnents of a material, the
phenomena of vortex formation are certainly observed in dynamic motion of both a fluid and
particles. It is well known that the dynamic behaviors of statistically many particles like
powder, heavenly bodies in the cosmos, cars on a crowded road, and so on, can be represented
by the goveming equations in the fluid dynamics. So far, there exist such research fields as
powder fluidization, ferrofluid, plasma flow, cosmic fluid, traffic flow and so on, and usually,
differential equations of fluid dynamics are applied into investigations of those motions.

However, it must be considered that the applicability of those equations to a
microscopically smaller field becomes poorer, because the most of differential equations of
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fluid dynamics are constructed for macroscopic flow fields on the assumption of continuum.
Therefore, it is not always correct to introduce infinitesimally smaller size of grids in the
numerical calculation with use of a huge parallel-computer system aiming to increase
accuracy ofthe numerical treatnents.

As shown in the former section, it is important to consider that the introduction of various
discrete elements is a key technology of the present numerical treamients, which is common
to the calculations of both the dynamic phenomena of vorticity transportation in a fluid and
the dynamic motion of particles. In the vortex method, the discrete element is a discrete
vortex blob in which the distribution of vorticity and the particle size are modeled. In the
paiticle method used for the two-phase flow calculation, the discrete element is a solid
particle itself in which mass and size are modeled. And in the particle method used in the
plasma vortex calculation, the discrete element consists of a superparticle in which a
distribution of electrons (mass and electric charge) and particle size are modeled. It seems a
stimulating fact for consideration of a new direction of discrete vortex dynamics that the
vortical phenomena not only in a fluid flow but also in a multi-particle flow can be analyzed
by the discrete element method. Although the present author had considered the vortex blobs
to be ffagments to discretize the continuous vorticity flield, recently he has looked them ffom
a different point of view to be a sort of superparticles, which essentially consists of a number
of elementary particles. Therefore, it will be very interesting to accumulate comprehensive
knowledge on various kinds of vortex motions Rom molecular dynamics to cosmetic flow by
investigating the fiactal features of the vortex motion and by modeling superparticles with
various scales and characteristics required in corresponding dynamic fields.

5. Conclusions
In this paper, aiming to overview the recent attempts of progressive application of the

advanced vortex method, mathematical background and numerical procedure of the method
aoe briefly explained, and characteristic results of the progressive studies on simulation of
complex flows around a 100 $m$ runner, liquid-particle two phase flows in a channel and
vortical motion of plasma clouds in a magnetic field are digested with explanation of the
particle methods used in the latter two studies. And finally, a new direction of further
development of the discrete particle methods for vortex dynamuics is discussed. The discussion
is summarized as follows.
1 $)$ The three examples of applications of the vortex method, the coupled vortex-particle

method and the plasma particle method, seem to suggest that most of the vortex motions
observed in various fields are essentially oriented to the discrete particle dynamics instead
of the continuous fluid dynamics.

2$)$ It is not always correct to introduce infinitesimally smaller size of grids in the numerical
calculation with use of a huge parallel-computer system aiming to increase accuracy of
the numerical treatnents, because the molecular dynamics govems the microscopic field
instead of the continuum dynamics.

3 $)$ Considein$g$ the above discussion, it seems interesting to accumulate comprehensive
knowledge on various kinds of vortex motions ffom molecular dynamics to cosmetic fluid
dynamics by investigating the ffactal features.

4$)$ It will be a new direction of expansion of the concept of discrete elements methods to
establish comprehensive algorithms of modeling physical behaviors of elementary
particles like vortex blobs and plasma superparticles which have various scales and
physical characteristics required in the corresponding fields.
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