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1. INTRODUCTION
Let $C$ be a closed and convex subset of a real Banach space. Then

a mapping $T$ : $Carrow C$ is called nonexpansive if $\Vert Tx-Ty||\leq||x-$
$y\Vert$ for all $x,$ $y\in C$ . In 1975, Baillon [3] originally proved the first
nonlinear ergodic theorem in the framework of Hilbert spaces: Let
$C$ be a closed and convex subset of a Hilbert space and let $T$ be a
nonexpansive mapping of $C$ into itself. If the set $F(T)$ of fixed points
of $T$ is nonempty, then for each $x\in C$ , the Ces\‘aro means

$S_{n}(x)= \frac{1}{n}\sum_{k=0}^{n-1}$ 丁$k_{X}$

converge weakly to some $y\in F(T)$ . In this case, putting $y=Px$ for
each $x\in C$ , we have that $P$ is a nonexpansive retraction of $C$ onto
$F(T)$ such that $PT=TP=P$ and $Px$ is contained in the closure of
convex hull of $\{T^{n}x : n=1,2, \ldots\}$ for each $x\in C$ . We call such a
retraction “an ergodic retraction”. In 1981, Takahashi [31, 33] proved
the existence of ergodic retractions for amenable semigroups of nonex-
.pansive mappings on Hilbert spaces. Rod\’e [26] also found a sequence of
means on a semigroup, generalizing the Ces\‘aro means, and extended
Baillon’s theorem. These results were extended to a uniformly con-
vex Banach space whose norm is Fr\’echet differentiable in the case of
commutative semigroups of nonexpansive mappings by Hirano, Kido
and Takahashi [13]. In 1999, Lau, Shioji and Takahashi [18] extended
Takahashi’s result and Rod\’e’s result to amenable semigroups of non-
expan.sive mappings in the Banach space.
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By using Rod\’e’s method, Kido and Takahashi [15] also proved a mean
ergodic theorem for noncommutative semigroups of linear bounded op-
erators in Banach spaces.

On the other hand, Edelstein [11] studied a nonlinear ergodic theo-
rem for nonexpansive mappings on a compact and convex subset in a
strictly convex Banach space: Let $C$ be a compact and convex subset
of a strictly convex Banach space, let $T$ be a nonexpansive mapping of
$C$ into itself and let $\xi\in C$ . Then, for each point $x$ of the closure of con-
vex hull of the $\omega$-limit set $\omega(\xi)$ of $\xi$ , the Ces\‘aro means $1/n \sum_{k=0}^{n-1}T^{k}x$

converge to a fixed point of $T$ , where the $\omega$-limit set $\omega(\xi)$ of $\xi$ is the set
of cluster points of the sequence $\{T^{n}\xi : n=1,2, \ldots\}$ . By using results
of Bruck [5], Atsushiba and Takahashi [1] proved a nonlinear ergodic
theorem for nonexpansive mappings on a compact and convex subset
of a strictly convex Banach space: Let $C$ be a compact and convex
subset of a strictly convex Banach space and let $T$ be a nonexpansive
mapping of $C$ into itself. Then, for each $x\in C$ , the Ces\‘aro means
$1/n \sum_{k=0}^{n-1}T^{k}x$ converge to a fixed point of $T$ . This result was extended
to commutative semigroups of nonexpansive mappings by Atsushiba,
Lau and Takahashi [2]. Suzuki and Takahashi [30] constructed a nonex-
pansive mapping of a compact and convex subset $C$ of a Banach spacel
into itself such that for some $x\in C$ , the Ces\‘aro means $1/n \sum_{k=0}^{n-}T^{k}x$

converge to a point of $C$ , but the limit point is not a fixed point of
$T$ . Motivated by the example of Suzuki and Takahashi, Miyake and
Takahashi [22] proved a nonlinear ergodic theorem for nonexpansive
mappings on a compact and convex subset of a general Banach space:
Let $C$ be a compact and convex subset of a Banach space and let $T$

be a nonexpansive mapping of $C$ into itself. Then, for each $x\in C$ ,
the Ces\‘aro means $1/n \sum_{k=0}^{n-1}T^{k}x$ converge. They also proved a non-
linear ergodic theorem for semigroups of nonexpansive mappings on a
compact and convex subset of a general Banach space.

Motivated by Kido and Takahashi [15], Hirano, Kido $and\backslash$ Takahashi
[13], Lau, Shioji and Takahashi [18], Atsushiba, Lau and Takahashi [2]
and Miyake and Takahashi [22], Miyake and Takahashi [23] first proved
weak and strong mean ergodic theorems for vector-valued weakly al-
most periodic functions (in the sense of Eberlein) which are defined on
an abstract semigroup and take values in a Banach space. Using these
results, they obtained well-known and new mean ergodic theorems for
commutative and noncommutative semigroups of nonexpansive map-
pings, affine nonexpansive mappings and linear bounded operators in
Banach spaces. In this paper, we summarize their results in [23] to
show that mean ergodic theorems for vector-valued functions can be
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applied, in the systematic way, to obtain well-known and new mean
ergodic theorems for semigroups of linear and non-linear operators in
Banach spaces, by considering such semigroups of operators as vector-
valued functions which are defined on a semigroup and take values in
a Banach space.

2. PRELIMINARIES
Throughout this paper, we denote by $S$ a semigroup with identity

and by $E$ a real Banach space. Let $\langle E,$ $F\rangle$ be the duality between
vector spaces $E$ and $F$ . For each $y\in F$ , we define a linear functional
$f_{y}$ on $E$ by $f_{y}(x)=\langle x,$ $y\rangle$ . We denote by $\sigma(E,\cdot F)$ the weak topology
on $E$ generated by $\{f_{y} : y\in F\}$ . If $X$ is a Banach space, we denote
by $X^{*}$ the topological dual of $X$ . We also denote by $\langle\cdot,$ $\cdot\rangle$ the canonical
bilinear form between $E$ and $E^{*}$ , that is, for $x\in E$ and $x^{*}\in E^{*},$ $\langle x,x^{*}\rangle$

is the value of $x^{*}$ at $x$ . If $A$ is a subset of $E\cdot$, then the closure of convex
hull of $A$ is denoted by $\overline{co}A$ .

We denote by $l^{\infty}(S)$ the Banach space of bounded real-valued func-
tions on $S$ with supremum norm. For each $s\in S$ , we define operators
$l(s)$ and $r(s)$ on $l^{\infty}(S)$ by

$(l(s)f)(t)=f(st)$ and $(r(s)f)(t)=f(ts)$

for each $t\in S$ and $f\in l^{\infty}(S)$ , respectively. Let $X$ be a subspace
of $l^{\infty}(S)$ which contains constants. Then, $X$ is said to be translation
invariant if $l(s)f\in X$ and $r(s)f\in X$ for each $s\in S$ and $f\in X$ . A
linear functional $\mu$ on $X$ is said to be a mean on $X$ if $\Vert\mu\Vert=\mu(e)=1$ ,
where $e(s)=1$ for each $s\in S$ . We often write $\mu_{\theta}f(s)$ instead of
$\mu(f)$ for each $f\in X$ . For $s\in S$ , we can define a point evaluation
$\delta_{s}$ by $\delta_{s}(f)=f(s)$ for each $f\in X$ . A convex combination of point
evaluations is called a finite mean on $S$ . As is well known, $\mu$ is a mean
on $X$ if and only if

$\inf_{\epsilon\in S}f(s)\leq\mu(f)\leq\sup_{s\in S}f(s)$

for each $f\in X$ ; see [34] for more details. If $X$ is translation invariant,
then a mean $\mu$ on $X$ is said to be left invariant (resp. right invariant)
if $\mu(l(s)f)=\mu(f)$ $($resp. $\mu(r(s)f)=\mu(f))$ for each $s\in S$ and $f\in X$ .
A mean $\mu$ on $X$ is said to be invariant if $\mu$ is both left and right
invariant. If there exists an invariant mean on $X$ , then $X$ is said to
be amenable. We know from [7] that if $S$ is commutative, then $X$ is
amenable. Let $\{\mu_{\alpha}\}$ be a net of means on $X$ . Then $\{\mu_{\alpha}\}$ is said to be
(strongly) asymptotically invari ant if for each $s\in S$ , both $l(s)^{*}\mu_{\alpha}-\mu_{\alpha}$

and $r(s)^{*}\mu_{\alpha}-\mu_{\alpha}$ converge to $0$ in the weak topology $\sigma(X^{*},X)$ (the
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norm topology), where $l(s)^{*}\cdot andr(s)^{*}$ are the adjoint operators of $l(s)$

and $r(s)$ , respectively. Such nets were first studied by Day [7].
We denote by $l^{\infty}(S, E)$ the Banach space of vector-valued functions

on $S$ that take values in a Banach space $E$ such that for each $f\in$

$l^{\infty}(S, E),$ $f(S)\subset E$ is bounded. We also denote by $l_{c}^{\infty}(S, E)$ the sub-
space of those elements $f\in l^{\infty}(S, E)$ such that $f(S)=\{f(s) : s\in S\}$ is
a relatively weakly compact subset of $E$ . Let $X$ be a subspace of $l^{\infty}(S)$

containing constants such that for each $f\in l_{c}^{\infty}(S, E)$ and $x^{*}\in E^{*}$ , the
function $s\mapsto\langle f(s),x^{*}\rangle$ is contained in $X$ . Then, for each $\mu\in X^{*}$ and
$f\in l_{c}^{\infty}(S, E)$ , we define a bounded linear functional $\tau(\mu)f$ on $E^{*}$ by

$\tau(\mu)f:x^{*}\mapsto\mu\langle f(\cdot),x^{*}\rangle$ .

It follows ffom the bipolar theorem that $\tau(\mu)f$ is contained in $E$ . We
know that if $\mu$ is a mean on $X$ , then $r(\mu)f$ is contained in the closure
of convex hull of $\{f(s) : s\in S\}$ . We also know that for each $\mu\in X^{*}$ ,
$\tau(\mu)$ is a bounded linear mapping of $l_{c}^{\infty}(S, E)$ into $E$ such that for each
$f\in l_{c}^{\infty}(S, E),$ $\Vert\tau(\mu)f\Vert\leq\Vert\mu\Vert\Vert f\Vert$ ; see [14].

Let $C$ be a closed and convex subset of $E$ and let $T$ be a mapping of $C$

into itself. Then, $T$ is said to be nonexpansive if $\Vert Tx-Ty\Vert\leq||x-y\Vert$

for each $x,$ $y\in C$ . Let $L(E),$ $A(C)$ and $N(C)$ be the semigroups
of linear bounded operators on $E$ , affine nonexpansive mappings and
nonexpansive mappings of $C$ into itself under operator multiplication,
respectively. If $S$ is a semigroup homomorphism of $S$ into $L(E)(A(C)$
or $N(C))$ , then $S=\{T(s) : s\in S\}$ is said to be a representation of $S$

as linear bounded operators on $E$ (as affine nonexpansive mappings on
$C$ or as nonexpansive mappings on $C$). A subspace $X$ of $l^{\infty}(S)$ is said
to be admissible if for each $x\in E$ (or $C$) and $x^{*}\in E^{*}$ , the function
$s\mapsto\langle T(s)x,x^{*}\rangle$ is contained in $X$ . We denote by $F(S)$ the set of
common fixed points of $S$ , that is, $F(S)= \bigcap_{s\in S}\{x\in\cdot C : T(s)x=x\}$ .

Let $C$ be a closed and convex subset of a Banach space $E$ and let $S=$
$\{T(s) : s\in S\}$ be a representation of $S$ as linear bounded operators on
$E$ (as afline nonexpansive mappings on $C$ or as nonexpansive mappings
on $C)$ such that $T(\cdot)x\in l_{c}^{\infty}(S, E)$ for some $x\in E$ (or $C$), let $X$ be
an admissible subspace of $l^{\infty}(S)$ which contains constants and let $\mu$ be
a mean on $X$ . Then, there exists a unique point $x_{0}$ of $E$ such that
$\mu\langle T(\cdot)x,$ $x^{*}\rangle=\langle x_{0},x^{*}\rangle$ for each $x^{*}\in E^{*}$ . We denote such a point $x_{0}$ by
$T(\mu)x$ . Note that $T(\mu)x$ is contained in the closure of convex hull of
$\{T(s)x:s\in S\}$ for each $x\in C$ ; see [31] and [13] for more details.

For each $s\in S$ , we define the operators $R(s)$ and $L(s)$ on $l^{\infty}(S, E)$

by

$(R(s)f)(t)=f(ts)$ and $(L(s)f)(t)=f(st)$
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for each $t\in S$ and $f\in l^{\infty}(S, E)$ , respectively. We denote by $\mathcal{L}\mathcal{O}(f)$

(resp. $\mathcal{R}\mathcal{O}(f)$ ) the set $\{L(s)f\in l^{\infty}(S, E) : s\in S\}$ of left translates of
$f$ (resp. the set $\{R(s)f\in l^{\infty}(S,$ $E)$ : $s\in S\}$ of right translates of $f$).
A function $f\in l^{\infty}(S, E)$ is said to be left (resp. right) almost periodic
if $\mathcal{L}O(f)$ (resp. $\mathcal{R}\mathcal{O}(f)$ ) is relatively compact in $l^{\infty}(S, E)$ ; the notion
of almost periodicity for real-valued functions on an abstract group is
due to von Neumann [24]. A function $f\in l^{\infty}(S, E)$ is also said to
be left (resp. right) weakly almost periodic if $\mathcal{L}O(f)$ (resp. $\mathcal{R}\mathcal{O}(f)$ )
is relatively weakly compact in $l^{\infty}(S, E)$ ; the notion of weakly almost
periodicity was introduced by Eberlein [10]. See also [9]. Note that
every weakly almost periodic function $f\in l^{\infty}(S, E)$ is contained in
$l_{c}^{\infty}(S, E)$ .

3. VECTOR-VALUED WEAKLY ALMOST PERIODIC FUNCTIONS

In 1934,. von Neumann first proved the existence of the mean val-
ues for real-valued almost periodic functions which are defined on an
abstract group. Later, Bochner and von Neumann extended von Neu-
mann’s result to vector-valued almost periodic functions which are de-
fined on an abstract group and take values in a Banach space.

Theorem 1 (von Neumann [24]). Let $G$ be a group and let $AP(G)$ be
the Banach space of real-valued almost periodic ftrnctions on G. Then,
for each $f$ in $AP(G)$ , the closure of convex hull of $\mathcal{R}\mathcal{O}(f)$ contains
exactly one constant function $c_{f}$ . In this case, putting $\mu(f)=c_{f},$ $\mu$ is
a linear functional on $AP(G)$ such that the following are satisfied:

(1) $\inf_{g\in G}f(g)\leq\mu(f)\leq\sup_{g\in G}f(g)$ ;
(2) $\mu(r(g)f)=\mu(f)$ for each $f\in AP(G)$ and $g\in G$;
(3) $\mu(l(g)f)=\mu(f)$ for each $f\in AP(G)$ and $g\in G$ ;
(4) $\mu_{x}(f_{\backslash }(x^{-1}))=\mu_{x}f(x)$ for each $f\in AP(G)$ .

Theorem 2 (Bochner and von Neumann [4]). Let $G$ be a group, let
$AP(G)$ be the Banach space of real-valued almost periodic functions on
$G$ and let $AP(G, E)$ be the closed subspace of $l^{\infty}(S, E)$ whose elements.
are almost periodic. Then, for each $f\in AP(G, E)$ , the closure of
convex hull of $\mathcal{R}\mathcal{O}(f)$ contains exactly one constant function $c_{f}$ . In
this case, putting $\tau(\mu)f=c_{f},$ $\tau(\mu)$ is a linear operator from $AP(G, E)$
into $E$ such that the following are satisfied:

(1) $\tau(\mu)c=c$ for each constant $c\in AP(G, E)$ ;
(2) $\tau(\mu)(R(g)f)=\tau(\mu)f$ for each $f\in AP(G, E)$ and $g\in G$;
(3) $\tau(\mu)(L(g)f)=\tau(\mu)f$ for each $f\in AP(G, E)$ and $g\in G$;
(4) $\tau(\mu)_{x}(f(x^{-1}))=\tau(\mu)f$ for each $f\in AP(G, E)$ .
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In 1949, Eberlein [10] introduced a notion of weak almost period-
icity for real-valued bounded functions which are defined on a locally
compact abelian group.

Theorem 3 (Eberlein [10]). Let $G$ be a locally compact abelian group
and let $WAP(G)$ be the Banach space of real-valued weakly almost pe-
riodic functions on G. Then, for each $f\in WAP(G)$ , the closure of
convex hull of $\mathcal{R}\mathcal{O}(f)$ contains exactly one constant function $c_{f}$ . In
this case, putting $\mu(f)=c_{f},$ $\mu$ is a linear fiinctional on $WAP(G)$ such
that the following are satisfied:

(1) $\inf_{g\in G}f(g)\leq\mu(f)\leq\sup_{g\in G}f(g)$ ;
(2) $\mu(r(g)f)=\mu(f)$ for each $f\in WAP(G)$ and $g\in G$ ;
(3) $\mu(l(g)f)=\mu(f)$ for each $f\in WAP(G)$ and $g\in G$ ;
(4) $\mu_{x}f(x^{-1})=\mu_{x}f(x)$ for each $f\in WAP(G)$ .

Recently, Miyake and Takahashi [23] introduced a notion of weak
almost periodicity in the sense of Eberlein for vector-valued functions
which are defined on an abstract semigroup and take values in a Banach
space, and also proved the existence of the mean values for vector-
valued weakly almost periodic functions.

Theorem 4. Let $f\in l^{\infty}(S, E)$ be a right weakly almost periodic func-
tion and let $X$ be a closed and translation invariant subspace of $l^{\infty}(S)$

containing constants such that for each $x^{*}\in E^{*}$ , the fimction $s\mapsto$

$\langle f(s),$ $x^{*}\rangle$ is contained in X. If $X$ has a left invariant mean, then there
$e\dot{m}_{b}sts$ a unique constant function in the closure $K$ of convex hull of

$\mathcal{R}\mathcal{O}(f)$ . In this case, the constant function is $\tau(l(\cdot)^{*}\mu)f=\tau(\mu)f$ for
each left invariant mean $\mu$ on X. In particular, if $\mu$ and $\nu$ are left
invariant means on $X$ , then $\tau(\mu)f=\tau(\nu)f$ .
Remark 1. It is well-known that if a semigroup $S$ is left (or right)
reversible, that is, any two right ideals has non-empty intersection,
then $WAP(S)$ has a left (or right) invariant mean; See DeLeeuw and
Glicksberg [9]. In particular, $WAP(G)$ has an invariant mean.

They also showed that (ergodic) means are well-defined for vector-
valued weakly almost periodic functions in the sense of Eberlein by
using a notion of ”vector-valued” means which was studied by Kada
and Takahashi [14].

Lemma 1. Let $f\in l^{\infty}(S, E)$ be a right weakly almost periodic function,
let $X$ be a closed and translation invariant subspace of $l^{\infty}(S)$ containing
constants such that for each $x^{*}\in E^{*}$ , the function $s\mapsto\langle f(s),x^{*}\rangle$

is contained in $X$ and let $\mu$ be a mean on X. Then, the function
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$s\mapsto\tau(l(s)^{*}\mu)f$ is contained in the closure $K$ of convex hull of $\mathcal{R}\mathcal{O}(f)$

in $l^{\infty}(S, E)$ .

Using two above results, weak and strong mean ergodic theorems
were obtained for vector-valued weakly almost periodic functions in
the sense of Eberlein.

Theorem 5. Let $f\in l^{\infty}(S, E)$ be a right weakly almost periodic func-
tion in the sense of Eberlein, let $X$ be a closed and translation invariant
subspace of $l^{\infty}(S)$ containing constants such that for each $x^{*}\in E^{*}$ , the
function $s\mapsto\langle f(s),x^{*}\rangle$ is contained in $X$ and let $\{\mu_{\alpha}\}$ be an asymp-
totically invariant net of means on X. Then, $\{\tau(l(\cdot)^{*}\mu_{\alpha})f\}$ converges
weakly to a constant function $p$ in the closure. $K$ of convex hull of

$\mathcal{R}\mathcal{O}(f)$ . In this case, $p(\cdot)=\tau(\mu)f$ in $E$ for each invariant mean $\mu$ on
X.

Theorem 6. Let $f\in l^{\infty}(S, E)$ be a right weakly almost periodic func-
tion in the sense of Eberlein, let $X$ be a closed and translation invariant
subspace of $l^{\infty}(S)$ containing constants such that for each $x^{*}\in E^{*}$ , the
function $s\mapsto\langle f(s),$ $x^{*}\rangle$ is contained in $X$ and let $\{\mu_{\alpha}\}$ be a strongly
asymptotically invariant net of means on X. Then, $\{\tau(l(\cdot)^{*}\mu_{\alpha})f\}$ con-
verges strongly to a constant function $p$ in the closure $K$ of convex hull
of $\mathcal{R}\mathcal{O}(f)$ . In this case, $p(\cdot)=\tau(\mu)f$ for each invariant mean $\mu$ on $X$ .

4. MEAN ERGODIC THEOREMS FOR SEMIGROUPS OF LINEAR AND
NON-LINEAR OPERATORS

By considering semigroups of operators in Banach spaces as vector-
valued functions which are defined on a semigroup and take values in a
Banach space, mean ergodic theorems for such functions can be applied
to obtain new and well-known mean ergodic theorems for semigroups of
linear and non-linear operators in Banach spaces in the systematic way.
See also Eberlein [10] and Ruess and Summers [27]. In this section, for
the purpose of explaining our idea, we show complete proofs of well-
known mean ergodic theorems for semigroups of linear operators and
nonexpansive mappings in Banach spaces, respectively.

Theorem 7. Let $S=\{T(s) : s\in S\}$ of $S$ be a representation of $S$ as
linear bounded operators on a Banach space $E$ such that for $s\in S$ ,
$\Vert T(s)\Vert\leq M$ and for each $x\in E,$ $\{T(s)x : s$ .

$\in S\}$ is relatively
weakly compact, let $X$ be a closed, translation invariant and admis-
sible subspace of $l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be a strongly
asymptotically invanant net of means on X. Then, for each $x\in E_{f}$
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$\{T(l(h)^{*}\mu_{\alpha})x\}$ converges strongly to a common fixed point $p$ of $S$ uni-
formly in $h\in S$ . In this case, $p=T(\mu)x$ and

$\{T(\mu)x\}=\overline{co}\{T(s)x:s\in S\}\cap F(S)$

for each invariant mean $\mu$ on $X$ .

Proof. For each $x\in E$ , we define a function $f_{x}\in l^{\infty}(S, E)$ by $f_{x}(s)=$

$T(s)x$ for each $s\in S$ . We show that for each $x\in E,$ $f_{x}$ is right weakly
almost periodic. In fact, we have, for each $s\in S$ ,

$(R(s)f_{x})(t)=T(ts)x=T(t)T(s)x=f_{T(s)x}(t)$

for each $t\in S$ . Hence, $\mathcal{R}\mathcal{O}(f_{x})$ is contained in $\{f_{y} : y\in C\}$ , where
$C=c^{-}o\{T(s)x : s\in S\}$ . We define a mapping $\Phi$ of $E$ into $l^{\infty}(S, E)$ by
$\Phi(x)=f_{x}$ for each $x\in E$ . Then, $\Phi$ is a bounded linear mapping and
hence is weak-to-weak continuous. Since $C$ is weakly compact, $\mathcal{R}\mathcal{O}(f_{x})$

is contained in a weakly compact subset $\Phi(C)$ of $l^{\infty}(S, E)$ . So, for each
$x\in E,$ $f_{x}\in l^{\infty}(S, E)$ is right weakly almost periodic.

It follows from Theorem 2 that $\{T(l(\cdot)^{*}\mu_{\alpha})x\}$ converges strongly
to a constant function $q$ in $l^{\infty}(S, E)$ . In this case, $q(\cdot)=T(\mu)x$ for
each invariant mean $\mu$ on $X$ . Hence, for each $x\in E,$ $\{T(l(h)^{*}\mu_{\alpha})x\}$

converges strongly to a point $T(\mu)x$ in $C$ uniformly in $h\in S$ where $\mu$

is an invariant mean on $X$ . Since, for each $s\in S$ and $x^{*}\in E^{*}$ ,
$\langle T(s)T(\mu)x,x^{*}\rangle=\langle T(\mu)x,$ $T(s)^{*}x^{*}\rangle=\mu\langle T(\cdot)x,T(s)^{*}x^{*}\rangle$

$=\mu\langle T(s)T(\cdot)x,x^{*}\rangle=\mu\langle T(s\cdot)x,x^{*}\rangle$

$=l(s)^{*}\mu\langle T(\cdot),x^{*}\rangle=\mu\langle T(\cdot),x^{*}\rangle$

$=\langle T(\mu)x,x^{*}\rangle$

where $T(s)^{*}$ is the adjoint operator of $T(s)$ , we have $T(s)T(\mu)x=$
$T(\mu)x$ for each $s\in S$ .

It remains to show that $\{T(\mu)x\}=\overline{co}\{T(s)x : s\in S\}\cap F(S)$ for
each $x\in C$ . Since $\mu$ is an invariant mean on $X$ , we have $T(\mu)x=$
$T(r(s)^{*}\mu)x=T(\mu)T(s)x$ for each $s\in S$ and hence $T(\mu)x=T(\mu)y$ for
each $y\in\overline{co}\{T(s)x:s\in S\}$ . This completes the proof. $\square$

Theorem 8 (Miyake and Takahashi [22]). Let $C$ be a compact and
convex subset of a Banach space $E_{f}$ let $S=\{T(s) : s\in S\}$ be a rep-
resentation of $S$ as nonexpansive mappings on $C_{2}$ let $X$ be a closed,
translation invariant and admissible subspace of $l^{\infty}(S)$ containing con-
stants and let $\{\mu_{\alpha}\}$ be an asymptotically invariant net of means on $X$ .
Then, for each $x\in C,$ $\{T(l(h)^{*}\mu_{\alpha})x\}$ converges strongly to a point $p$

uniformly in $h\in S$ . In this case, $p=T(\mu)x$ for each invariant mean
$\mu$ on $X$ .
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Proof. For each $x\in C$ , we define a function $f_{x}\in l^{\infty}(S, E)$ by $f_{x}(s)=$

$T(s)x$ for each $s\in S$ . We show that for each $x\in C,$ $f_{x}$ is right almost
periodic. In fact, we have, for each $s\in S$ ,

$(R(s)f_{x})(t)=T(ts)x=T(t)T(s)x=f_{T(s)x}(t)$

for each $t\in S$ . Hence, $\mathcal{R}\mathcal{O}(f_{x})$ is contained in $\{f_{y} : y\in C\}$ . We define
a mapping $\Phi$ of $C$ into $l^{\infty}(S, E)$ by $\Phi(x)=f_{x}$ for each $x\in C$ . Then,
we have, for each $x,$ $y\in C$ ,

$\Vert\Phi(x)-\Phi(y)\Vert=\Vert f_{x}-f_{y}\Vert$

$= \sup_{t\in S}\Vert f_{x}(t)-f_{y}(t)\Vert$

$= \sup_{t\in S}\Vert T(t)x-T(t)y\Vert$

$\leq\Vert x-y\Vert$

and hence $\Phi$ is norm-to-norm continuous. Since $C$ is compact, $\mathcal{R}O(f_{x})$

is contained in a compact subset $\Phi(C)$ of $l^{\infty}(S, E)$ . So, for each $x\in C$ ,
$f_{x}\in l^{\infty}(S, E)$ is right almost periodic.

It follows from Theorem 1 that $\{T(l(\cdot)^{*}\mu_{\alpha})x\}$ converges strongly to
a constant function $q$ in $l^{\infty}(S, E)$ . In this case, $q(\cdot)=T(\mu)x$ for each
invariant mean $\mu$ on $X$ . Hence, $\{T(l(h)^{*}\mu_{\alpha})x\}$ converges strongly to a
point $T(\mu)x$ uniformly in $h\in S$ where $\mu$ is an invariant mean on $X$ .
This completes the proof. 口
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