0000000000
0 16450 20090 114-123 114

HANLRETILAERXOERL

Periodic solutions of the short pulse model equation
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Abstract

The short pulse model equation describes the propagation of ultra-short optical
pulses in nonlinear media. We develop a systematic method for solving the short
pulse equation and address the construction of the two-phase periodic solutions

and their properties. The detail of the content of this paper is described in Ref.
[11].

1.1 Maxwell equation
We start from the following Maxwell equation

div D =p, div B =0, rotE:—aa—?, rotH=j+%% (1.1a)
D=¢E+P, B=yH (1.1d)

where E and H are electric and magnetic field vectors, respectively, and D and B
are corresponding electric and magnetic flux density.

We assume that p = 0 and j = 0 and consider the one-dimensional propagation.
Then Eq. (1.1) reduces to

E= Es(.’E, t)83, H= Hz(.’L‘, t)eg (12)
O0H, 0D3; OF; 0H,
= = lo——. 1.
oz ~ ot oz Mot (1.3)

Using (1.3) and the relation D3 = ¢y E3 + P, we eliminate H; from (1.3) to obtain
1

E;: — CZE“ = Py (1.4)
where we have put E = Ej3, P = P3/(€oc?),c® = (eouo)~!. We further assume the
relation o

P=Pin+Pu= [ x(t=7)Blz1dr +xE* (1.50)
—00

Xtt = Xo6(t). (1.5b)



Substituting (1.5) into (1.4), we obatin the nonlinear wave equation

1
E,. — EiEtt = XoF + x3(E®)s. (1.6)

1.2 Singular perturbation

In accordance with Schéfer and Wayne (2004), we apply the singular perturba-
tion method to Eq. (1.6) to derive the short pulse (SP) equation. We expand E
with respect to the small parameter ¢

E(z,t) = eup(d, X) + €2uy (¢, X) + - - - (1.7a)
where the new independent variables ¢ and X are defined by
t— 2
o= ec’ X = ex. (1.7b)

If we introduce (1.7) into (1.6), we obtain, at the lowest order O(e), the following
PDE
2 0%y %}
T 09X XoUo t+ X3 342
After an appropriate change of the variables, we arrive at the normalized form of
the SP equation:

(1.8)

ot = U+ %(ua)u. (1.9)

1.3 Remarks
e The SP equation is a model equation describing the propagation of ultra-short
optical pulses in nonlinear media.
e The SP equation has been derived in a mathematical context concerning the
integrable PDE (Robelo (1989)).
e The following solutions are known for the SP equation:

Soliton and breather solutions: Sakovich et al (2006), Kuetche et al (2006),
Matsuno (2007)

Periodic solutions of traveling type (one-phase solutions): Parkes (2008)
¢ Analogous integrable equations (Matsuno (2006))

1
Uy = QU + 5(1 — B2 — uug,

B = 2: Short-pulse model for Camassa-Holm equation

B = 3: Short-pulse model for the Degasperis-Procesi equation, Vakhnenko equa-
tion

a = 0, 8 = 2: Hunter-Saxton equation

All the above equations have the solutions expressed by the parametric reprsen-
tation.
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2. Exact method of solution
2.1 Transformation to the sine-Gordon equation
Introduce the new variable r:

r? =1+l (2.1

We rewrite the SP equation (1.9) into the form

Ty = (%u%)z. (2.2)

By means of the hodograph transformation (z,t) — (y,7)

dy = rdz + %uZTdt, dr = dt (2.3a)

or equivalently

g 0 0 0 1,0
3_x_r6y’ 6t—67'+2u7~5§ (2.3b)

(2.1) and (2.2) are transformed to
r’=1+r%d, 1 =rfuu, (2.4)
Using the transformation
uy =sing, ¢ =o(y,7) (2.5)
(2.4) can be put into the form
-71: = cos ¢. (2.6)

It follows from (2.4)-(2.6) that u = ¢,. Substituting this into (2.5), we obtain the
sine-Gordon(sG) equation :

¢yr = sin @. (2.7)
We see from (2.3) that x = z(y, 7) satisfies the following linear PDE
1 1
Ty = ;, Ty = —-—2'11,2. (28)

2.2 Parametric representation of the solution
Since the integrability of Eq. (2.8), i.e. z,, = z,, is assured by (2.4), we can
integrate (2.8) to obtain

v
z(y,7) = / cos¢ dy +d (2.9)
where d is an integration constant. The expression of u in terms ¢ is given by

u(y, ) = ¢, (2.10)



2.3 A criterion for the single-valued functions
To derive a criterion for single-valued functions, we may simply require that
u; = tan ¢ exhibits no singularities. Thus, if

~2<o<%, (modm), (~vV2+1< tan% <v2-1).  (211)

then the parametric solutions (2.9) and (2.10) will become single-valued functions
for all values of z and ¢.

3. Periodic solutions

Here, we are concerned with the construction of the periodic solutions of the SP
equation, particularly focusing on the two-phase solutions.
3.1 Method of solution

We first introduce the two independent phase variables £ and 7 according to

t t
€=ay+g+€o,n=ay—5+no : (3.1)

where a(# 0),& and 7 are arbitrary constants. Then, the sG equation is trans-
formed to

Cb&f — ¢gy =sin g, ¢ = P(&, 77)' (3‘2)

We seek solutions of the sG equation of the form
= 4tan™! [f—(-Q] : 3.3
¢ 9(n) (3.9

This ¢ satisfies the sG equation provided that
fP=—kft+puft+v (3.4a)
g*=rg*+ (u—1)g% — v. (3.4b)
Now, the parametric representation of u follows from (2.10) and (3.3)
_4fg9+fd

To obtain the parametric form of z, we note the relation
8f*g*

(f2+¢2)%

We modify the right-hand side of (3.6) by introducing the function Y = Y'(¢,7)

_ a(f?) +ea(g?)
I a

cos p=1-— (3.6)

(3.7)
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We calculate Y,. Using (3.4), we can modify this in the form

a
Y, = (GEYar [ —2k(c1 f® + 3c1 f1 g% — 3caf?g" — c26®) — deaf?g?
+2(er + ¢2) {~2f9f'd +2uf%" - v(f* - )} |. (38)
If we put ¢; + c; = 0 and ¢; = —2/a, then (3.8) simplifies to
8f%¢

Y, = 4k(f* +¢°) - (f2 + ¢g2)?’ (3.9)
If we compare (3.6) and (3.9), we obtain

cos ¢ =1+Y, —4s(f* + ¢°). (3.10)

Finally, substituting (3.10) into (2.9) and integrating, we obtain the parametric
representation of z:

r=y- SL29 “( [ i+ [¢man)+a @

3.2 Examples

Here, we present the three examples of the periodic solutions:
a. Example 1

1

f(€) = A cn(B¢, kg), g(n) = ca(@n k) (3.12)
k% = —1—:_1225 (1 + ﬁ_%T%_flT)) (3.13a)
k2 = 1—::4275 (1 - 97(1—1:14—2)) (3.13b)

Q=5+ 1——1—%. (3.13¢)

The inequality 0 < k; < 1 implies that the parameter 3 must be restricted by the
condition A

The parametric solution takes the form

_4A-8 sn(BE, ks)dn(BE, ky)en(Qn, kg) + Q en(BE, ky)sn(Qn, kg)dn(Qn, k)
a A2cn?(B€, kf)en2(Qn, kg) + 1

(3.15a)
43 cen(B¢, ky)en(Qn, ky
a A2cn?(BE, ky)en?(Qn, k g)+1{A25“('55’ ks)dn(BE, kr)en(Qn, k)

T=y+ —



k2
- 5 k,f2 cn(BE, ky)sn(Qn, kg)dn (0, kg)}
9
k2
"% [E (8, ky) — kj*BE ~ “—Azﬂﬂ,’;,gz {EB©n, k) - kfﬂn}} +d. (3.15b)

Properties of the solution

e The solution is a multiply peridic function. It becomes a single-valued function
f0<A<v2-1

¢ Under the condition L = m¢L¢/a = myL,/a, (m¢, m,) = 1 where L¢ = 4K (ks)/8
and L, = 4K (k,)/R, the solution has a period A

_ , [ B(k)) k2 B(k,) 1
A=L [1 —48 {K(ki) T RO-R R T PO A }] (3.16)

where K (k) and E(kys) are the complete elliptic integral of the first and second
kinds, respectively. Figure 1 shows a profile of u at ¢t = 0 for Example 1.

0.75¢
0.5t
0.25¢

= 0 |
—-0.25-/ 3
-0.5
-0.75¢

-10 -5 0 5 10 15

Figure 1: A = 02,m¢ = 1,m, = 2,a = 1.0, = 0.5832,Q = 1.124,k; =
0.3837, k; = 0.0958, A = 10.37. ’

Long-wave limit A — oo
In the long-wave limit, the parametric solution reduces to

u 4AQ —A sinh 3£ cos Qn + cosh B¢ sin Qn
a cosh? B¢ + A2 cos?

_ _2_2 sinh 28& + A sin 2Qn
a cosh? B¢ + A2 cos? Qp

(3.17a)

T ~

+d. (3.17b)
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Figure 2: Long-wave limit of the solution depicted in Figure 1.

b. Example 2

_ 4 Sn(BE ky) __ 1

1O=4 @5y "~ @@ g, (319)

A2

2 _ 1 _ A2

kf=1-A+ _———ﬂ2(1 — A7) (3.19a)

1 1
kg =1- yvl + m (3.19b)
Q=pA (3.19¢)

1 1

U= 4_‘4 B dn(B¢, ky)dn(Qn, k,) + kgg sn(B§, ky)en(BE, ky)sn(Qn, kg)en(n, ky)
Coa A2sn?(BE, kg)dn®(Qn, k) + cn2(BE, ky)
(3.21a)
43 1
rT=y—

‘a A2sn?(B€, k;)dn%(Qn, kg) + cn2(BE, ky) %

x [(4%4n®(Qn, k,) — 1)sn(BE, ky)en(BE, ky)dn(BE, ky)

+k2 A%sn2(B€, ky)sn(Qn, k,)en(Sm, kg)dn (9, kg)] +47f- (—E(BE, ks) + AE(Qn, k,))+d
(3.21b)

sfown (SRl e

Figure 3 shows a profile of u at ¢t = 5 for Example 2.




Figure 3: A = 0.2,m¢ = 2,m, = 1l,a = 1.0,8 = 1.027,Q = 0.2053, ky =

0.9998, k, = 0.8421, A = 5.938.

Long-wave limit A — oo

o 43 A cosh 3¢ cosh Q9 + A sinh B¢ sinh Qn
a A2sinh? B¢ + cosh® Oy
28 A%sinh 28¢ — Asinh 2Qp

" @ AZsinh? B€ + coshZ

+d.

Figure 4: Long-wave limit of the solution depicted in Figure 3.

c. Example 3

_ _ cn(Qn, ky)
f(&) = A dn(BE, ky), g(n) = mﬁ
1 1

2 el
ki=1 A2+B2(A2—1)

(3.23a)

(3.23b)

(3.24)

(3.250)
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A2
2 A2 -
K =1- 4"+ 5re (3.25b)
Q:—i— (3.25¢)
A A?
—_— < < — .
A2_1‘6—A2—1’A>1 (3.26)

_4A Q dn(BE, ky)dn(Qn, k) + Bk3 sn(BE, ky)en(BE, kp)sn(Qn, kg)en(Q2n, k)
a A2dn?(B¢, ks)sn2(Qn, k) + cn?(Qn, kg)

48 1
T =Y T A2an?(BE, Ky )su (O, ky) + cn2(Sn, Kg)

<[5 (1~ 420?88, kp))sn (@, ky)on (n, k;)dn(Qm, ky)

(3.27a)

—k§A2SD(B€, kf)Cn(,Bf, kf)dn(,Bf, kf)snz(ﬂn’ ky)] 4ﬂ (E(ﬂga kf) - —E(QT], g)) +d

(3.27b)

R

Figure 5 shows a profile of u at t = 5 for Example 3.

1 QQ 0 Q

14 T

Figure 5: A = 5,m¢ = 2,m, = l,a = 1.0, = 1.027,Q = 0.2053,k; =
0.9998, k, = 0.8421, A = 5.938.

Long-wave limit A — oo

4.3 cosh B¢ cosh Qn + Asinh B€ sinh Qn
e cosh? B¢ + A?sinh? Qp

2ﬁ sinh 28¢ — Asinh 2Qn

a cosh® B¢ + A?sinh? Qp

(3.29a)

+d. (3.29b)
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Figure 6: Long-wave limit of the solution depicted in Figure 5.

4. Conclusion
e By means of a novel method of exact solution, we obtained periodic solutions of
the SP equation and investigated their properties.

e Of particular interest is the nonsingular periodic solution which reduces to the
breather solution in the long-wave limit.

e The construction of a more general class of periodic solutions is under study. It is

produced by the multiphase solutions of the sG equation expressed by Riemann’s
theta functions.
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