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NFALSE: Another Ring-Based Public Key Cryptosystem with Faster Encryption
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Abstract— We propose a variant of NTRU, whose main feature is fast encryption and decr;gtion; the time

complexity is almost linear time in a security parameter. While NTRU is defined over a ring

[(X]/<X" - 1),

ours over Z[X]/(X" + 1), where n is the power of 2. This change admits us to use FFT and prevents Gentry’s

folding attack.
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1 Introduction

At the beginning of the research on public-key encryp-
tion, many researchers studied fast encryption procedure,
since the encryption procedure costs O(n*) steps in the RSA
and the ElGamal cryptosystems, where # is the security pa-
rameter.

In 1996, Hoffstein, Pipher, and Silverman proposed a
fast ring-based encryption scheme, NTRU [8]. The ring is
mainly Z,[X]/(X" — 1), denoted by Rx»_1,4. The public key
in NTRU is & € Ryn_ 4. For a plaintext m € L(d) and a
randomness r € £(d), the ciphertext is obtained by

c=hor+m,

where L(d) denotes the set of {0, 1}-coefficient polynomials
of degree at most n — 1 with exactly d coefficients set to 1
and ® denotes the multiplicative operation in Ryr-1,4. The
main feature of NTRU is faster encryption and decryption
than that of the RSA and the ElGamal cryptosystems. In
precise, time complexity of each algorithm for encryption
and decryption is O(n? log? ¢) in NTRU.

On real implementations, Bailey, Coffin, Elbirt, Silver-
man, and Woodbury implemented NTRU in constrained
devices with encryption taking O(n?logq) costs. Lee,
Kim, Song, and Park [12], and Buchmann, Doring, and
Lindner [2] reported efficient software implementations for
NTRU, whose encryption cost is O(dnloggq) in the worst
case.

There were attempts for faster encryption for NTRU by
modifying the parameters. In [17], Silverman observed
that setting n = 2* allows us to use FFT and the encryp-
tion cost is reduced to O(nlog? q). Gentry observed that
X o1=0 - + 1) over Z and this induces a
ring homomorphism. By this observation, he succeeded an
attack for NTRU with » = 256 in [6] and recommended that
n should be a prime.
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There were also attempts for NTRU by modifying a
ring. In [5], Gaborit, Ohler, and Solé proposed a variant
of NTRU, named CTRU and claimed that this variant al-
lows setting » = 2, where a ring is (F2[TD[X]/{X ~ 1),
After one month from this proposal, Arnault cryptanalysed
CTRU [1]. Independently, Kouzmenko gave the analysis of
CTRU in his master thesis [11], which was based on sim-
ple linear algebra. In 2008, Vats also cryptanalysed CTRU
in 2008 [18]: he gave the same algebraic attack as Kouz-
menko’s one, and extended the results by giving a faster
attack.

Coglianese and Goi [3] gave another variant of
NTRU which is defined over a k x k matrix ring over
Z,[X1/(X” — 1), MaTRU, where n = n’k?>. The com-
plexity for encryption of MaTRU is O(n2klog?q) =
O log? q/k).

Our work: We attempt to set n = 2%, which enables us
to use FFT in encryption. Differently from Silverman’s at-
tempt, we use a ring Z,[X]/(X" + 1). This change of a base
of a ring prevents Gentry’s attack, since a polynomial X + 1
is irreducible over Z if r» = 2%,

Organization: In Section 2, we define the basic notions
and notations. We briefly review NTRU in Section 3. Sec-
tion 4 gives the definition of lattices and NTRU lattices.
Section 5 reviews Gentry’s folding attack. In Section 6, we
recall the properties of the polynomial X" + 1. We propose
our new variant of NTRU in Section 7.

2 Preliminaries

We say a function e(n) is negligible in n if e(n) =
2~(logm  We denote by v, o v, the concatenation of two
vectors vy and v;. Let {ay, ..., a;) denote an ideal generated
byay,...,a.

Let b(X) € Z[X] denote a monic polynomial of degree
n. Ry denotes Z[X]/(b). For a positive integer n, NTRU is
defined on a quotient ring Ry»_; = Z[X]/(X" — 1). For a
monic polynomial b(X) of degree n, we identify R, with Z”
by identifying £ = 37 fiX' € Ry with £ =*(f,..., fio1) €
z".
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Name Ring n gandp  Ref.
NTRU Z[X]/(X"~1) Primes gq,peZ [8]
NTRU-Composite  Z[X]/(X" - 1) 2k ¢peZ [17]
CTRU FATIXD/IX" - 1) Any gq,peF[T] [5]
MaTRU M (Z[X1(X"-1)) Any g peZ [3]
NFALSE (Ours) ZIX} (X" + 1) 2k ¢.PEZ

Table 1: Variants of NTRU.

Let B denote {0, 1}", and B(d) the set of all polynomials
of degree at most n — 1 with exactly d coefficients set to
1 and all the other coefficients set to 0. We define 7~ as
{-1,0,+1}". T(d,,d,) denotes the subset of 7~ such that
each polynomial in 77(d), d;) has exactly d, coefficients set
to 1 and 4, coefficients set to —1. We define X(dr) as {fi ®
£+ fi 1 fi € B(dF) for all i}. For an integer a and a subset
S € Ry, we define aS as {af : f € S}. Forasubset S ¢ R,
S denotes the set of the polynomials in S which have the
inverses in Ry, i.e., S* = {fe S:If 1 e R ).

3 Brief Sketch of NTRU

In this section, we briefly review NTRU. For details, see
the original paper [8] and proposals of the parameters [9,
10,7, 19].

‘Let 5(X) = X" — 1. The subsets of Ry 4, Ly, Lo, Lm, L,
and Lr are defined later. They are used for key generation
and encryption. The parameter p may be a polynomial 2+
rather than small prime such as 2 or 3.

Key Generation:

1. Choose f € Ly and g € L, uniformly at ran-
dom. f must be invertible in R, and R; ;.
2. Set Fy; = ' in Ry,
3. Compute A=p®g® F,.
4. The public key is A and the secret key is f.
Encryption: A plaintextis me £L,,.

1. Select r € £, uniformly at random.
2. Computec=h®@r+m.
3. The ciphertext is c.

Decryption: A ciphertextis ¢ € Rp .
1. Compute @’ = f® cin Rp,,.
2. Computtea =p®@g®r+ f®minR, from a’
by using a centering algorithm.
3. Compute F, = f~1in R, .
4. Compute ¢ = F,® ain R, ,.
5. The obtained plaintext is nr.
Remark 3.1. We first confirm the following equation:
ad=fRhr+m=pRgAr+ f@minR,,.

The centering algorithm sets the coefficients of a into [4 —
q/2, A+q/2) for some 4. Using the centering algorithm, we
have, with high probability,

a=pRgeAr+ fOminR,.

Thus, we obtain
m = F,@a = F,&(pogar+fem) = F,@fem=min R, .

In order for the decryption process to work cotrectly, it is
necessary that |al,, < g/2, where, for any x € R;, x|, is
defined as max;{x;} — min,{x;} and called width. The subsets
Ly, Lg, Ly, Ly, and L are carefully chosen to satisfy the
above norm bound with overwhelming probability.

There are five instantiations of NTRU, NTRU-1998 [8],
NTRU-2001 [9], NTRU-2005 [10], NTRU-2007 {7], and
NTRU-2008 [19]. Table 2 summarizes the parameter sets
of these instantiations. Table 3 reports example parameters
of NTRU-2008.

Parameter Sets n dr & d, d; Expected Security
ees449epl 449 134 149 128-bit
ees613epl 613 55 204 128-bit
ees76lepl 761 42 253 128-bit
ees853epl 853 268 284 256-bit
eesl171epl 1171 106 394 256-bit
ees1499¢epl 1499 79 499 256-bit

Table 3: Example of the parameter sets in NTRU-2008 [19].

4 NTRU Lattices

Lattices: In this paper, we use the basic notions and no-
tations of lattices. A lattice is an additive discrete subgroup
of R™. A lattice L ¢ R™ of rank » has a basis B € R™” such
that L(B) = {Bx : x € Z"}, where the rank of B is n. For de-
tails on lattices and cryptography based on lattice problems,
see, e.g., the textbook by Micciancio and Goldwasser [15]
and the latest survey by Micciancio and Regev [16].

4.1 NTRU Iattices
Let p~! be the inverse of p in Z,. An NTRU lattice [4] is
generated by a basis

H = Rot(1) Rot(0)
" IRot(p™'h) Rot(g)|"

As noted by Coppersmith and Shamir [4], the lattice L(H)
includes a short vector f o g containing a secret key since
plh=f1®g (mod q).
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Parameter Sets ¢ p Ly Ly Ly L Lr Ref.
NTRU-1998 2 3 T(dy,dr— 1y T (dg> dy) T 7@ d,) : 18]
NTRU-2001  prime 2+X {1+p®@F:Fe Lr}  B(dy) B B(d,) Bdr)  [9]
NTRU-2005 prime 2 {l+p®F:FeLr} BN/2)F B X(d) X(dr)  [10]
NTRU-2007  2* 3 {14+p@F:FeLr) T(dndr—1) T(dpdy—1) T(dpds~1) Tdpd,~1) [7]
NTRU-2008 2k 3 {(1+peF:FeLp) T (dg, dg) T 7(d.,d,) 7 (dr) [19]

Table 2: Parameter sets. In NTRU-1998, f must be invertible in Rp.

S Gentry’s Folding Attack

In [6], Gentry proposed an attack against NTRU-
Composite. Let us assume that » is a composite number.
The factor of n will be denoted by d.

For f = (fo...../ns1) € Z[X]/{X"-1), the d-
dimensional folded polynomial of f is defined by
O<i<n O<i<n O<i<n
9d(f)=[ Z ﬁ, Z ﬁ’-"’ f]‘
i=0modd i=Imodd i=d-1 mod d

This mapping 6; is a ring homomorphism from
Z[X]1/(X" - 1) to Z[X]/(X? — 1) (see [6, Theorem 1]). We
mention that 6; has a good property with respect to norms.
For the {w-norm, we have that ||6()ll, < (n/d) Al
obviously.

Let us set n = 2% and d = n/2. Gentry considered the fol-
lowing folded NTRU lattices of rank » instead of the NTRU
lattices of rank 2n: Since (f, g) is in the NTRU lattice
spanned by & and its norm is short, so (64(f), 64(g)) is rel-
atively short in the folded NTRU lattice L of rank ». Thus,
using the LLL algorithm, one may obtain (64(f), 6(g)). We
omit the details of extracting (£, g) from (64(f), 6.(g)). For
the details, see [6].

5.1 Another Foldings

As noted in [6, Section 5.1}, we have another folding by
a ring homomorphism 6 : Z[X]/{(b(X)) — Z[X])/{s(X))
for some B(X) = s(X) - #X), which is given by 6(f) =
S(X) + (s(X)). Gentry’s folding attack may be useful if the
following two conditions hold: (1) the degree of s is rel-
atively high, that is, N/c for some constant ¢ and (2) the
mapping 6 preserves a good norm bound, i.e., there exists a
constance ¢’ such that for any f € Ry, [10(f)ll. < ||l

6 The properties of X" + 1

In the hash function SWIFFT [14], the polynomial X + 1
serves a fast computation and a security proof. We employ
the polynomial to use it in the encryption scheme.

In this section, we review the properties of the polyno-
mial, its expansion factor and FFT-like computations.

6.1 Small Expansion Factor

The expansion factor of a polynomial f captures the re-
lation of the norms in the ring R and the quotient ring Ry.

We define an expansion factor, which is a restricted version
of that proposed by Lyubashevsky and Micciancio [13):

EF(f) = max d .
D= edes,  lgmod Al /ligl,
A simple calculation shows that EF(x" + 1,2) = 2.
Since the expansion factor of X” + 1 is 2, we have that,
for any two polynomials f and g of degree at most n — 1,

If® gllow < 211£8llw-

6.2 Serving a FFT-like computation

Mathematical backgrounds: Let ¢ be a prime. Recall
that for an element in Z;, its multiplicative order divides
q — 1. Thus, there is a subgroup of order 2 in Z;. Let
w denote an element of multiplicative order 2n = 2¥*! in
Z,. By setting w as the above, the polynomial X" + 1 has n
roots, w',w?, ..., w?! thatis, X" + 1 = X - wAh
over Z,. By the Chinese remainder theorem, we have a ring
homomorphism

Z,[X1/<b')

= Zy[X1/(X = w) X Zo[X] /(X = W) x -« X Zo[X]/(X = w? 1),

For a polynomial f € Ry~ 14, we define

J = DFT,u(f) = UW), fW), ..., FOW2™1)).

Let © denote a component-wise multiplication. So, DFT
induces the above ring homomorphism from (Ryr+1 4, ®, +)
to (D, G, +).

Computational backgrounds: It is well-known that
DFT(f) can be computed by O(nlog ) additions and mul-
tiplications. From the definition, it is easy to verify that

wl Wl woo.. w! fo
wl W wo w3 =1 N
DFTn,w(J) =1 . . . . " :

WO el W=D Wwr=1)n=1)

By reordering, we obtain the following equation.

n-1

_ [DF T2 (f) + W, w3, ..., w2y DF T 0,0(f)
DFT,(/) = (DFTnfi,wzue) —ww w1y 0 DF T (f0)

where fo = (fo./2.---. fo-2) and f, = (fi, ..o, St
Computing recursively, we can obtain DFT,(f) with
O(nlog n) additions and multiplications.

)



7 Our Proposal

In order to use a FFT-like computation to compute mul-
tiplications, n should be the power of 2, say 2* for some .
However, since X*' — 1 has a factor X2 — 1, Gentry’s fold-
ing attack works well in practical. To prevent the attack, we
set the base polynomial 4'(X) = X2' + 1 which is irreducible
over Z. Additionally, the polynomial X +1 serves FFT-like
computations in Z,[X]/ (X% + 1) for suitable g.

7.1 Proposal
Our proposal is as follows:
Key Generation:

1. Choose F € Lr and g € L, uniformly at ran-
dom. 1 + 3F must be invertible in R,.

Set Fy = f~' inR,.

Compute F;, = DFT(F,) and g = DFT(g).
Compute & = 3(g 0 F,).

The public key is & and the secret key is f =
DFT(1 + 3F).

Encryption: A plaintextis me £,,.

whwn

1. Select r € £, uniformly at random.

2. Compute # = DFT(r) and 1 = DFT(m).
3. Compute & = hO ¥ + #t.

4. The ciphertext is &.

Decryption: A ciphertext is ¢.

1. Compute @ = foé.

2. Compute @’ = DFT (&)

3. Compute a by using the centering algorithm as
in NTRU.

4. Compute m’ = ain R,.

5. The obtained plaintext is m.

Notes: In encryption, the ciphertext is & rather than c.
This enables us to decrease the number of DFT in decryp-
tion.

7.2 Correctness
As in NTRU, we have that

ad=fRhor+m=30gr+f+minRy,.
If we have that
a=3®ger+ fominRy,
we can obtain that
m = a =30g@r+fom = 33g3r+(1+3F)®m = min Ry 3.
We note that
lall <213-g-r+ f- mil,,

where - denote the multiplicative operation in R. Thus, if
3-g-r+ f-ml, <q/4, wehavethata =3@g@r+fem
in Ry.. Hence, the expansion factor of the base polynomial
&’ plays a key role for correct decryptions. This is one of
the reason that we set b’ as X™ + 1.
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7.3 On Gentry’s attack

NFALSE prevents Gentry’s folding attacks and its exten-
sions by choosing the ring Z[X]}/(X" + 1), since X" + 1 is
irreducible over Z if n is the power of 2.
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