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1 Introduction

This is based on the author’s recent work with R. Magnanini [MS2, MS3]. Let $\Omega$ be
a domain in $\mathbb{R}^{N}$ with $N\geq 3$ , and let $u=u(x, t)$ be the unique bounded solution of
the following problem for the heat equation:

$\partial_{t}u=\triangle u$ in $\Omega\cross(0, +\infty)$ , (1.1)

$u=1$ on $\partial\Omega\cross(0, +\infty)$ , (1.2)

$u=0$ on $\Omega\cross\{0\}$ . (1.3)

The problem we consider is to characterize the boundary $\partial\Omega$ such that the solution
$u$ has a stationary isothermic surface, say $\Gamma$ . A hypersurface $\Gamma$ in $\Omega$ is said to be a
stationary isothemic surface of $u$ if at each time $t$ the solution $u$ remains constant
on $\Gamma$ (a constant depending on $t$ ). Examples we easily notice are isoparametric hy-
persurfaces. Namely, $\Gamma$ and $\partial\Omega$ are either parallel hyperplanes, concentric spheres,
or concentric spherical cylinders. This complete classification of isoparametric hy-

persurfaces was given by Levi-Civita [LC] and Segre [Seg].
Almost complete characterizations of the sphere have aJready been obtained by

[MSl, MS2] with the help of Aleksandrov’s sphere theorem [Alek]. In this note,
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we consider some characterizations of the hyperplane. Assume that $\Omega$ satisfies the
uniform exterior sphere condition and $\Omega$ is given by

$\Omega=\{x=(x’, x_{N})\in \mathbb{R}^{N}:x_{N}>\varphi(x’)\}$ , (1.4)

where $\varphi=\varphi(x’)(x’\in \mathbb{R}^{N-1})$ is a continuous function on $\mathbb{R}^{N-1}$ . We recall that $\Omega$

satisfies the uniform extenor sphere condition if there exists a number $r_{0}>0$ such
that for every $\xi\in\partial\Omega$ there exists a ball $B_{r_{0}}(y)$ satisfying $\overline{B_{r_{0}}(y)}\cap\overline{\Omega}=\{\xi\}$ , where
$B_{r0}(y)$ denotes an open ball centered at $y\in \mathbb{R}^{N}$ and with radius $r_{0}>0$ . Then we
have

Theorem 1.1 ([MS3]) Assume that there enists a stationary isothermic surface $\Gamma\subset$

$\Omega$ . Then, under one of the following conditions $($ i), (ii), and (iii), $\partial\Omega$ must be a
hyperplane.

(i) $N=3$ .

(ii) $N\geq 4$ and $\varphi$ is globally Lipschitz continuous on $\mathbb{R}^{N-1}$ .

(iii) $N\geq 4$ and there enists a non-empty open subset $A$ of $\partial\Omega$ such that on $A$ either
$H_{\partial\Omega}\geq 0$ or $\kappa_{j}\leq 0$ for all $j=1,$ $\cdots,$ $N-1$ , where $H_{\partial\Omega}$ and $\kappa_{1},$ $\cdots,$ $\kappa_{N-1}$

are the mean curvature of $\partial\Omega$ and the principal $cun$)$atures$ of $\partial\Omega$ , respectively,

with respect to the upward normal vector to $\partial\Omega$ .

Remark. When $N=2$ , this problem is easy. Since the curvature of the curve $\partial\Omega$

is constant $hom(2.3)$ in Lemma 2.1 in Section 2 of this note, we see that $\partial\Omega$ must
be a straight line.

2 Outline of the proof of Theorem 1.1

In this section we give an outline of the proof. For the details, see [MS2, MS3]. Let
$d=d(x)$ be the distance fumction defined by

$d(x)=$ dist $(x, \partial\Omega)$ , $x\in\Omega$ . (2.1)

We start with a lemma.
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Lemma 2.1 The following assertions hold:

(1) $\Gamma=\{(x’, \psi(x’))\in \mathbb{R}^{N} : x’\in \mathbb{R}^{N-1}\}$ for some real analytic function $\psi=$

$\psi(x’)(x’\in \mathbb{R}^{N-1})$ ;

(2) There exists a number $R>0$ such that $d(x)=R$ for every $x\in\Gamma$ ;

(3) $\varphi$ is real analytic and the mapping: $\partial\Omega\ni\xi\mapsto x(\xi)\equiv\xi+R\nu(\xi)\in\Gamma$ is a
diffeomorphism, where $\nu(\xi)$ denotes the upward unit nomal vector to $\partial\Omega$ at
$\xi\in\partial\Omega$ , that is, $\partial\Omega$ and $\Gamma$ are parallel hypersurfaces with distance $R$;

(4) the following inequality holds:

$- \frac{1}{r_{0}}\leq\kappa_{j}(\xi)<\frac{1}{R}(j=1, \cdots, N-1)$ for $eve\eta\xi\in\partial\Omega$ , (2.2)

where $r_{0}>0$ is the radius of the uniform exterior sphere condition for $\Omega$ ;

(5) there exists a number $c>0$ satisfying

$\prod_{j=1}^{N-1}(\frac{1}{R}-\kappa_{j}(\xi))=c$ for every $\xi\in\partial\Omega$ . (2.3)

Proof. The strong maximum principle implies that $\frac{\partial u}{\partial x_{N}}<0_{\rangle}$ and (1) holds. Since
$\Gamma$ is stationary isothermic, (2) follows from a result of Varadhan [Va]:

$- \frac{1}{\sqrt{s}}\log W(x, s)arrow d(x)$ as $sarrow\infty$ ,

where $W(x, s)=s \int_{0}^{\infty}u(x, t)e^{-st}dt$ for $s>0$ . The inequality $- \frac{1}{r_{0}}\leq\kappa_{j}(\xi)$ in (2.2)

follows from the uniform exterior sphere condition for $\Omega$ . See Lemma 2.2 of [MS2]
together with Lemma 3.1 of [MSl] for the remainder. $\square$

Let us proceed to the proof of Theorem 1.1. Set

$\Gamma^{*}=\{x\in\Omega:d(x)=\frac{R}{2}\}$ . (2.4)

Denote by $\kappa_{j}^{*}$ and $\hat{\kappa}_{j}(j=1, \cdots, N-1)$ the principal curvatures of $\Gamma^{*}$ and $\Gamma$ ,
respectively, with respect to the upward unit normal vectors. Then, the mean
curvatures $H_{\Gamma^{r}}$ and $H_{\Gamma}$ of $\Gamma^{*}$ and $\Gamma$ are given by

$H_{\Gamma} \cdot=\frac{1}{N-1}\sum_{j=1}^{N-1}\kappa_{j}^{*}$ and $H_{\Gamma}= \frac{1}{N-1}\sum_{jarrow-1}^{N-1}\hat{\kappa}_{j}$ ,
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respectively. These principal curvatures have the following relationship:

$\kappa_{j}=\frac{\kappa}{1+\frac{jR*}{2}\kappa_{j}^{*}}=\frac{\hat{\kappa}_{j}}{1+R\hat{\kappa}_{j}}$ $(j=1, \cdots, N-1)$ . (2.5)

Let $\mu=cR^{N-1}$ . Then, it follows from (2.3) and (2.5) that

$\prod_{j=1}^{N-1}(1-R\kappa_{j})=\mu,\prod_{j=1}^{N-1}(1+R\hat{\kappa}_{j})=\frac{1}{\mu}$ , and $\prod_{j=1}^{N-1}\frac{1-\kappa_{j}^{*}}{1+\frac{\frac{R}{R2}}{2}\kappa_{j}^{*}}=\mu$. (2.6)

We distinguish three cases:

(I) $\mu>1$ , (II) $\mu<1$ , and (III) $\mu=1$ .

Let us consider case (I) first. By the arithmetic-geometric mean inequality and the
first equation of (2.6) we have

$1-RH_{\partial\Omega}= \frac{1}{N-1}\sum_{j=1}^{N-1}(1-R\kappa_{j})\geq\{\prod_{j=1}^{N-1}(1-R\kappa_{j})\}^{\frac{1}{N-1}}=\mu^{\frac{1}{N-1}}>1$ .

This shows that
$H_{\theta\Omega} \leq-\frac{1}{R}(\mu^{\frac{1}{N-1}}-1)<0$ . (2.7)

Since
$(N-1)H_{\partial\Omega}=$ &v $( \frac{\nabla\varphi}{\sqrt{1+|\nabla\varphi|^{2}}})$ in $\mathbb{R}^{N-1}$ ,

by using the divergence theorem we get a contradiction as in the proof of Theorem
3.3 in $[$MS2]. In case (II), by the arithmetic-geometric mean inequality and the
second equation of (2.6) we have

$1+RH_{\Gamma}= \frac{1}{N-1}\sum_{j=1}^{N-1}(1+R\hat{\kappa}_{j})\geq\{\prod_{j=1}^{N-1}(1+R\hat{\kappa}_{j})\}^{\frac{1}{Narrow 1}}=\mu^{-\frac{1}{N-1}}>1$.

This shows that
$H_{\Gamma} \geq\frac{1}{R}(\mu^{-\frac{1}{N-1}}-1)>0$ , (2.8)

which yields a contradiction similarly.
Thus, it remains to consider case (III). By the above arguments we have

$H_{\theta\Omega}\leq 0\leq H_{\Gamma}$ . (2.9)
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Let us consider case (i) of Theorem 1.1 first. Since $N=3$ and $\mu=1$ , it follows from
the third equation of (2.6) that

$2H_{\Gamma}*=\kappa_{1}^{*}+\kappa_{2}^{*}=0$.

We observe that $\Gamma^{*}$ is a graph of a function on $\mathbb{R}^{2}$ . Therefore, by the Bernstein’s
theorem for the minimal surface equation, $\Gamma^{*}$ must be a hyperplane. This gives the
conclusion desired. (See [GT, Giu] for the Bernstein’s theorem.)

Secondly, we consider case (iii) of Theorem 1.1. We have

$1-RH_{\partial\Omega}= \frac{1}{N-1}\sum_{j=1}^{N-1}(1-R\kappa_{j})\geq\{\prod_{j=1}^{N-1}(1-R\kappa_{j})\}^{\frac{1}{N-1}}=1$ .

Hence, condition (iii) implies that

$\kappa_{j}\equiv 0$ on $A(j=1, \cdots, N-1)$ .

Then by the anaJyticity of $\partial\Omega$ we get

$\kappa_{j}\equiv 0$ on $\partial\Omega(j=1, \cdots, N-1)$ ,

which shows that $\partial\Omega$ must be a hyperplane.
Thus it remains to consider case (ii) of Theorem 1.1. In this case, there exists a

constant $L\geq 0$ satisfying

$\sup_{R^{N-1}}|\nabla\varphi|=L<\infty$ .

Then, it follows from (1) and (3) of Lemma 2.1 that

$\sup_{R^{N-1}}|\nabla\psi|=\sup_{R^{N-1}}|\nabla\varphi|=L<\infty$ . (2.10)

Hence, in view of this and (3) of Lemma 2.1, we can define a number $K^{*}>0$ by

$K^{*}= \inf\{K>0:\psi\leq\varphi+K in \mathbb{R}^{N-1}\}$ . (2.11)

Then we have
$\varphi\leq\psi\leq\varphi+K^{*}$ in $\mathbb{R}^{N-1}$ . (2.12)

We define a real analytic function $h$ on $\mathbb{R}^{N-1}$ by

$h(x’)=\varphi(x’)+K^{*}$ for $x’\in \mathbb{R}^{N-1}$ .
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Moreover, by writing

$M(h)= div(\frac{\nabla h}{\sqrt{1+|\nabla h|^{2}}})$ and $M( \psi)=div(\frac{\nabla\psi}{\sqrt{1+|\nabla\psi|^{2}}})$ ,

from (2.9) and (2.12) we have

$M(h)\leq 0\leq M(\psi)$ and $\psi\leq h$ in $\mathbb{R}^{N-1}$ . (2.13)

Hence, the method of sub- and super-solutions with the help of (2.10) yields that
there exists $v\in C^{\infty}(\mathbb{R}^{N-1})$ satisfying

$M(v)=0$ and $\psi\leq v\leq h$ in $\mathbb{R}^{N-1}$ , and $\sup_{R^{N-1}}|\nabla v|<\infty$ .

(See [MS3] for the details.) Therefore, Moser’s theorem [Mo], Corollary, p. 591,
implies that $v$ is affine. We set $\eta=\nabla v\in \mathbb{R}^{N-1}$ .

On the other hand, by the definition of $K^{*}$ in (2.11), there exists a sequence $\{z_{n}\}$

in $\mathbb{R}^{N-1}$ satisfying
$\lim_{narrow\infty}(h(z_{n})-\psi(z_{n}))=0$ . (2.14)

Define a sequence of functions $\{\varphi_{n}\}$ by

$\varphi_{n}(x’)=h(x’+z_{n})-h(z_{n})(=\varphi(x’+z_{n})-\varphi(z_{n}))$ .

From (2.2) and (2.10) we see that all the second derivatives of $\varphi$ are bounded in
$\mathbb{R}^{N-1}$ . Hence we can conclude that there exists a subsequence $\{\varphi_{n’}\}$ of $\{\varphi_{n}\}$ and
a function $\varphi_{\infty}\in C^{1}(\mathbb{R}^{N-1})$ such that $\varphi_{n’}arrow\varphi_{\infty}$ in $C^{1}(\mathbb{R}^{N-1})$ as $n’arrow\infty$ . Since
$M(\varphi_{n})\leq 0$ in $\mathbb{R}^{N-1}$ , we have that $M(\varphi_{\infty})\leq 0$ in $\mathbb{R}^{N-1}$ in the weak sense. Also,

since $0\leq h(x’+z_{n’})-v(x’+z_{n’})$ in $\mathbb{R}^{N-1}$ , with the help of (2.14), letting $n’arrow\infty$

yields that
$0\leq\varphi_{\infty}(x’)-\eta\cdot x’$ in $\mathbb{R}^{N-1}$ .

Consequently, we have

$M(\varphi_{\infty})\leq 0=M(\eta\cdot x’)$ and $\varphi_{\infty}\geq\eta\cdot x’$ in $\mathbb{R}^{N-1}$ , and $\varphi_{\infty}(0)=0=\eta\cdot 0$ . $(2.15)$

Hence, the strong comparison principle implies that $\varphi_{\infty}(x’)\equiv\eta\cdot x’$ in $\mathbb{R}^{N-1}$ . Here
we have used Theorem 10.7 together with Theorem 8.19 in [GT]. Therefore we
conclude that

$\varphi(x’+z_{n})-(v(x’+z_{n})-K^{*})arrow 0$ in $C^{1}(\mathbb{R}^{N-1})$ . (2.16)
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Similarly, we can obtain

$v(x’+z_{n})-\psi(x’+z_{n})arrow 0$ in $C^{1}(\mathbb{R}^{N-1})$ . (2.17)

Therefore, it follows from (3) of Lemma 2.1, (2.16), and (2.17) that the distance
between two hyperplanes determined by two affine functions $v$ and $v-K^{*}$ must be
$R$ . Hence, since $v-K^{*}\leq\varphi\leq\psi\leq v$ in $\mathbb{R}^{N-1}$ , we conclude that

$\psi\equiv v$ and $\varphi\equiv v-K^{*}$ in $\mathbb{R}^{N-1}$ ,

which shows that $\partial\Omega$ is a hyperplane. $\square$

3 Concluding remarks

Let us explain the relationship between Theorem 1.1 and Theorems 3.2, 3.3, and 3.4
in [MS2]. When $\mu=1$ , we have

$1+RH_{\Gamma}= \frac{1}{N-1}\sum_{j=1}^{N-1}(1+R\hat{\kappa}_{j})\geq\{\prod_{j=1}^{N-1}(1+R\hat{\kappa}_{j})\}^{\frac{1}{N-1}}=1$ .

Therefore, the assumption of Theorem 3.2 that $H_{\Gamma}\leq 0$ implies that $\hat{\kappa}_{j}\equiv 0(j=$

$1,$ $\cdots,$ $N-1)$ . This shows that $\Gamma$ is a hyperplane, and hence $\partial\Omega$ must be a hyperplane.
Thus, Theorem 3.2 is contained in Theorem 1.1 with its proof. In the case where
$\Omega$ is given by (1.4), Theorem 3.3 is contained in Theorem 1.1 with condition (iii).

Since Theorem 3.4 does not assume the uniform exterior sphere condition for $\Omega$ ,

Theorem 3.4 is independent of Theorem 1.1.
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