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1 Introduction and Preliminaries

We consider the Cauchy-Dirichlet problem for Hamilton-Jacobi equations

u(z,t) + H(z, Du(z,t)) =0 in  x (0, 00), (1.1)
(CD) u(z,t) = g(z,t) on 99 x (0, 0), (1.2)
u(z,0) = f(z) in Q, (1.3)

under the following standing assumptions on the Hamiltonian H = H(z,p) : Q@ x R" —
R, f:Q—R,g:90 x [0,00) — R and the bounded domain  C R™:

(Al) H € C(Q2 x R™),
(A2) the function p — H(z,p) is strictly convex for each z € 0,

(A3) the function H is coercive, i.e., lim, o inf{H (z,p) | z € Q,p € R*\U(0,7)} = oo,
where U(z,r) :={y e R* | |z —y| <},

(A4) feC(), ge C(O0 x [0,00)) and f(z) < g(x,0) for any z € 39,

(A5) for each z € 09, there are a constant r > 0, a C'-diffeomorphism & : R® — R”
and a function b € C(R™"!) such that

d(QNU(z,7)) ={(z',zn) ER" xR |z, > b(z')} N B(U(2,7)).

Here u : § x [0,00) — R is the unknown function and we set u, := Ou/dt and
Du := (0u/0z,,...,0u/0z,).

We are concerned with the large time behavior of solutions of (CD) in the viscosity
sense. We are dealing with two cases. '

Case (A): the function g is asymptotically time periodic, i.e.,
g9(z,t) — g1(z,t) — 0 uniformly on 892 as t — oo,

where g; € C(0Q2 x R) is a time—périodic function with period 1. -
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Case (B): the function g(z,t) = g2(x) + g3(¢) is diverging as t — oo. More precisely,
we assume that

(g), 93(t) mo0ast—o00 or (g)_ gs(t) — —ooast— oco.

The study of the large-time behavior of solutions of the Cauchy problem for Hamilton-
Jacobi equations goes back to the works of Kruzkov, Lions and Barles [1]. Since the
works by Namah-Roquejoffre [16] and Fathi [5], there has been much interest on the
subject by many authors. We refer to the literatures [3, 17, 4, 10, 2, 7, 8, 9, 13, 14]
and so on and references therein. This article reviews recent results on the asymptotic
behavior of viscosity solutions of (CD).

Before closing the introduction, we state some basic propositions. We define the
function u : Q2 x [0,00) — R by

u(z,t) = inf{/T L(v(s),¥(s)) ds + h(y(r),7) | v € C(z,¢), 7 € [0, 2], (v(7),T) € OQyp},

(1.4)
where h : 9,Q — R denotes the function given by A(z,0) = f(z) for z € Q and
h(z,t) = g(z,t) for (z,t) € 0 x (0,00) and 5,Q := N x (0,00) U x {0}.

Theorem 1.1. The function u: Q x [0,00) — R is continuous on 2 x [0,00) and is a
viscosity solution of (CD).

Theorem 1.2. Let T > 0 and set Qr := Q x (0,T). Let u,v € C(Qr) be a viscosity
subsolution and a viscosity supersolution of (1.1) and (1.2), respectively. Assume that
u<wvonQx{0}. Thenu<v on Qr.

We define the constant cyz by
cy = inf{a € R | there exists a viscosity solution v € C(Q?) of H(z,Du) < a in Q}.

Proposition 1.3. Let a € R be a constant. (i) There exists a viscosity solution in
C(Q) of

H(z,Du(z)) <a inQ,

(80), { H(z,Du(z)) >a on Q,

if and only if a = cgx. (ii) For any h € C(0N), there exists a viscosity solution in Cc(Q)
of

H(z,Du(z))=a in Q,
{ u(z) = h(z) on OS2,

if and only if a > cy.

We refer to [13, 15] for the proof of the above results.
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2 Case (A)

We describe briefly some results obtained in [15].
Theorem 2.1 ([15, Theorem 4.1]). There ezists a viscosity solution in C($ x R) of
u(z,t) + H(z, Du(z,t)) =0 in Q xR,
(P) u(z,t) = g1(z,t) on 0N x R,
u(z,t + 1) = u(z, t) on  x R
if and only if cy < 0.
We state one of our main theorems.

Theorem 2.2. Let u € C(Q x [0,00)) be the viscosity solution of (CD). If cy > O,
then

u(z,t) — (min{d., (z,y) +vs(y) A Vg,,, (W) lye Ay} —cut) — 0
uniformly for x € Q as t — oo, where
dey (2,y) = sup{v(z) —v(y) | v € C(Q), H(z, Dv) < cy in Q},

vf(z) := min{de, (z,y) + f(y) | y € O},
vy, (z) := inf{d., (z,y) + 9., W) |y €0Q} forallz,yeQ,

g H(x) = ig{){g(x, s)+cus} for all z € 6Q.
Zc s>
If cg < 0O, then
u(z,t) — wy(z,t) — 0 uniformly for x € Q as t — 0o,

where

wp(a,t) = inf{ [ L), 5O 4+ aa(a(r), ) |
' T € (=00, t), v € AC((—00,t],Q),v(t) = z,v(T) € 8Q}.
If cyg = 0, then
u(z,t) — min{d., (z,y) + vs(y) A Vg, , W) |y € Acpr } Awp(z,t) — 0
uniformly for x € Q as t — oo.
Here we write a A b = min{a, b} for a,b € R. The set A, is defined by
Ay ={v€Q|de,(-y) is a viscosity solution of (8C),, }

and this set is called the Aubry set. We remark that min{de, (,y) + vs(y) A vg_ (y) |

y € Acy } is a viscosity solution of (SC).,, and that w, is a viscosity solution of (P) if
cy < 0. We refer to Section 4 in [15] for the proof of convergence of u and to Section
5 in [15] for representations for asymptotic solutions.
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3 Case (B)

We first consider the case where (g); is assumed and we assume for simplicity that gs
is increasing. We will use the following assumptions.

(g1) The function g3 has a super-linear growth, i.e., lim; .o, g3(¢)/t = +oo.
(g2) gs € C*([0,00)) and the function gs satisfies that lim, .o g3(t) = 0.

Here, we write §(t) = dg(t)/dt for any g € C*([0, 00)). Let u be the viscosity solution
of (CD).

Proposition 3.1. Assume that (gl) or (g2) holds. Then there exists My > 0 such that
lu(z, t) — (—cmt) A gs(t)| < My for all (z,t) € Q x [0, 00).

Proof. We first consider the cases where (gl) is assumed or where (g2) and cy > 0 are
assumed. Note that —cgxt < ga(t) for some t; > 0; all £ > ¢;. In view of [13, Theorem
3.1], there exists a viscosity solution 1 € C(Q) of (SC).,. Then ¥(z) — cyt & C; are a
viscosity supersolution and a viscosity subsolution of (1.1) and (1.2) on 892 x (¢1, c0)
for some C; > 0, respectively. By Theorem 1.2, we get

»(x) — et — Cy < ulz,t) < (x) —cgt+C1 on Q x [t;,00)

if C; is sufficiently large. Therefore, we have |u(z,t) + cyt| < M; for some M; > 0 and
all (z,t) € Q x [0, 00).

We next consider the case where (g2) and cyg < 0 are assumed. Then it is easily
seen that —cyt > g3(t) for some t3 > 0 and all ¢t > ¢, Set v(x,t) := u(z,t) — g3(t) for
all (z,t) € Q x [0,00). Then v satisfies

vi(z,t) + H(z, Du(z,t)) = —gs(t) in Q x (0, 00), (3.1)

v(z,t) = go(z) on 092 x (0, 00), (3.2)
v(z,0) = f(z) — g3(0) in ) (3.3)

in the viscosity sense. Note that —g3(t) < 0 and also that by (g2), we may assume that
cg < —ga(t) for all t > t, by replacing ¢, by a sufficiently large constant if necessary.
Let ¢; and ¢, be a viscosity solution of H(z, Du) = cy in 2, u = g, on 02 and a
viscosity solution of H(z, Du) = 0 in Q, u = go on 0N, respectively. Then for some
constant Cy > 0, ¢; — Cy and ¢, + C, are a viscosity subsolution and a viscosity
supersolution of (3.1) and (3.2) in Q X (t2,00), respectively. By Theorem 1.2, we have
$1(x) — Cy < v(z,t) < ¢o(x) + Cy on Q x [tz,00). Therefore, we may assume that
lu(z,t) — gs(t)| < M for all (z,t) € Q x [0, 00), by replacing M, by a sufficiently large
constant. : O
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Theorem 3.2. (i) Assume that (g1) holds. Then u(z,t) — (Voo (x) —cut) — 0 uniformly
on  ast — 00, where veo(z) = min{d,, (z,y) + vs(¥) | v € A, }. (ii) Assume that
(82) holds. If cy > 0, then u(z,t) — (Voo(Z) — cyt) — 0 uniformly on Q ast — oo,
and if cg < 0, then u(z,t) — (vg,(z) + g3(t)) — O uniformly on O as t — oo, where
Vg, (%) = min{do(z,y) + g2(y) | y € 9Q} and do(z,y) := sup{v(z) —v(y) | v €
C(Q), H(z,Dv) < 0in Q}.

Proof. Set u.,(z,t) = u(z,t) + cut for (z,t) € Q x [0,00). Then, u., satisfies

{ (Uey )e(z,t) + H(z, Ducgy(z,t)) =cyp in Q x (0,00),
Uey (T,8) = go(z) + g3(¢) + cxt on 90 x (0, o)

in the viscosity sense. If we assume (gl) or we assume (g2) and cyx > 0, then it is clear
that u.,, is bounded on Q x [0, 00) in view of Proposition 3.1 and that go(z) + gs(t) +
cgt — oo uniformly for £ € 92 as t — oo. From this, we find a constant £ > 0 such
that go(z) + g3(t) + cut > uc, (z,t) for all (z,t) € (£, o). Therefore, we see easily that

(Uey)t(z, t) + H(z, Ducy (2,t)) < cy in  x (%, 00),
(Ueg )t(Z,t) + H (T, Ducy(z,t)) > cg on Q x (£,00).

Thus, Theorems 2.1 and 6.3 in [13] guarantees (i).

In the case where (g2) and cy < 0 are assumed, by Proposition 3.1, u(:,t) — gs(t)
is bounded on Q x [0,00). Thus we may define the functions wj;,w,, € C(Q) by
wi (z) = limsup;_ . (u(z,t) — g3(t)), wy(z) := liminf}  (u(z,t) — gs(t)), where
limsup; . and liminf; ,  are half relaxed limits. Due to the stability property of
viscosity solutions and the convexity of H(z, -), w, and w,, are a viscosity subsolution

and a viscosity solution of

(D) { H(z,Du(z))=0 inQ,

u(z) = ga(x) on 0S.

If cy < 0, the comparison principle of viscosity solutions of (D) holds (see [14,
Theorem 5.3]). Therefore, w},(z) < wg,(z) for all z € Q. We also see that v, is a
viscosity solution of (D). We may conclude from these that u(z,t) — g3(t) — vg,(x)
uniformly on Q as t — oo. O

We next consider the case where (g)_ is assumed and we assume for simplicity that
gs is decreasing.

Proposition 3.3. Assume that (g2) holds. Then there emists M, > 0 such that
|u(zx,t) — (—cut) A g3(t)] < Mz for all (z,t) € Q x [0, 0).
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Theorem 3.4. Assume that (g2) holds. Ifcyg > 0, then u(z,t)— (minyeACH {dey, (z,y)+
vi(y)Avg  (y)}—cut) — 0 uniformly onQ ast — oco. Ifcy < 0, then u(z, t)— (vgy () +
9oy -
93(t)) — 0 uniformly on Q as t — oo.
The proofs of Proposition 3.3 and Theorem 3.4 are almost same as that of Propo-
sition 3.1 and Theorem 3.2, respectively, except for the case where ¢y = 0. In the case
where cg = 0, uniqueness of viscosity solutions of (D) does not hold. Therefore we

cannot apply the argument of Theorem 3.2 (b) to a proof of Theorem 3.4 (b) in the
case cy = 0. We give a proof of it here.

Proof of Theorem 3.4 in the case cy = 0. Fix any € > 0,z € 2 and ¢ > 0. There exist
Ye € C(z,t), 7. € [0,¢] such that (v¢(7),7) € 8,@Q and

u(z,t) +e> /t L(Ye(X), Ye(A)) dA + h(y(7e), Te)-

Te

In view of Proposition 3.3 and [14, Lemma 6.1], we have
C = u(xr,t)—gs(t)+e¢

> / LO%(A), e(N) dA + B(v(re), ) — gs(t)
= Vgs (7€(t)) — Vg, (76(75)) + h(7(Te) Te) 93(t)'

for some C' > 0. If we suppose that 7. > 0, then we have —gs(t) < C — (vg, (7e(t)) —
g, (Ye(7)) + A(7(7e), 7)) < C’, which implies a contradiction if ¢ > 0 is sufficiently
large. From this, we may assume that 7. > 0 for such a ¢t > 0. Note that vg, (7e(7)) <
92(75(7-5)) and g3(t) < g3(Te)' Therefore,

U(SC, t) - gS(t) +e 2> Vg, (-73) - 'Ug_z (76(7_6)) + 92('}%(7-6)) + gS(Te) - g3(t>
> vg, () — g2(Ve(7e)) + g2(7e(7e)) + g3(t) — g3(t) = vy, ().

From this, we get w, (x) > vy, (z) for all z € Q.

Since we have H(z, Dwy,(z)) < 0 in Q and wi, (z) < g2(x) on 09, we get wf (z) <
dey (2, y) + W} (y) < dey (2, y) +g2(y) forallz € Q y € 0Q. Therefore, wf, (x) < Vg, ()
forallz € Q Thus we have v,,(z) = wj, (z) = w, (z) on Q. O

We next use the following assumption:
(83) g3 € C'((0,00)) and the function gz satisfies that lim;,c g3(t) = —o0.

Proposition 3.5. Assume that (g3) holds. Then

lu(z,t) — g3(t)| < C  for all (z,t) € 02 x [0, 0), (3.4)
u(z,t) — g3(t) > 00 forallz € Q ast — oo. (3.5)
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Lemma 3.6. Set Ho(r) := maX,cq < H(z,9) +7 form > 0 and Ho(r) :== 0 forr =0.
There exist a constant Ty > 0 and a positive increasing function f € C([T1,00)) such
that

f(f) + Ho(f(t)) < —g3(t) forae. t e (Th,0), (3.6)
f(t) > 00 ast— oo. (3.7)

Proof. Set a; := 0and b := Hy(a;). Note that Hy is strictly increasing and Hy(r) — oo.
Define the sequence {an}tnenn>2 by @, := Hy'(b+ (n — 1)). We choose a sequence
{T}nen C (0, 00) such that for each n € N,
-g3(t) 2b+(n+1) forae t=>T,
Tn+1 > Tn + apy1 —an + 1.

We define the function f : [T}, 00) — [0,00) by

£t) = an+t—T, for te [T, Tn+an —an),
T Qn+1 for t € [Tn + Qpt1 — a'naTn+1)

for any n € N. Then f satisfies required properties. Indeed, we see that
f(t) + Ho(f(t)) = 1+ Ho(an +t = Tp) < 1+ Ho(ans1) =b+n+1 < —gs(?)

fora.e. t € (T, Ty, + apn+1 — ay,) and,

F(&) + Ho(f(t)) = 0+ Ho(an41) = b+n < —ga(t)

for a.e. t € (T, + an+1 — an, Tny1). Moreover, since f(t) > any1 = Hy'(b+n) for all
t > Tpi1, we see that f(t) — oo as n — oo. O

Proof of Proposition 3.5. It is clear that (3.4) holds, so we only prove (3.5). Let Hy
and f be the functions and 7; be the constant given in Lemma 3.6. We extend the
function f as a positive continuous function on R and by abuse of notation we denote
the resulting function by f again. Let p € C*°(R) be a standard mollification kernel,
ie, p>0,suppp C [—1,1] and [ p(t)dt = 1, where suppp := {t € R | p(t) # 0}.
Set pn(t) := np(nt) and f,(t) := pn * f(t) for t € R. Note that f, € C®°R), f. — f
locally uniformly on R as n — oo and by Jensen’s inequality,

Fa(t) + Ho(fa(8)) < pn * (F + Ho(f))(t) € —pn * g3(t)

for any t > Tj.

Set wy(z,t) := a~td(z) f.(t) for all (z,t) € Q x [0, 00), where d(z) := min{|z — y| |
y € 9Q} and a := max{|z —y| | z,y € Q} V1. Let ¢ € C}(Q x [0,00)) and w, — ¢
take a local maximum at (zo,%) € © X (T1,00). Note that the function d satisfies
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|Dd(z)] < 1in Q in the viscosity sense and z — d(z) — ag(z,to)/ fn(to) takes a local
maximum at zo. Thus we have |Dé(zo,t0)] < a™ fu(to) < fu(to). Moreover we have
¢:(z0, to) = a1 d(wo) fn(to)-

We calculate that

$¢(z0,to) + H (20, D$ (%0, %)) < a™*d(%0) fa(to) + Ho(| De(o, to)])
< falto) + Ho(fu(t0)) < —pn * g3(to)-

In view of the stability property of viscosity solution, we see that w(z,t) = a=1d(z) f(t)
satisfles wy(z,t) + H(z, Dw(z,t)) < —g3(t) in Q x (T1,00) in the viscosity sense. Not-
ing that w(z,t) = 0 for any z € 952, we have w(z,t) — C < go(z) for all (z,t) €
98 x (T1,00). Due to Theorem 1.2, by replacing C by a larger number if necessary,
w(z,t) — C < u(z,t) for all (z,t) € O x [T}, 00), which guarantees that u(z,t) — +oo
for each =z € Q. |

We finally give an example. The following example illustrates the fact that in the

case (g)., if we do not assume (gl) or (g2), the statements of Theorem 3.2 do not hold
in general.

Example. Let the function H and the domain 2 be any function and bounded domain
which satisfy (A1)-(A3) and (A5). We define the function g € C([0, 00)) by

(==t -(r*=1))+(n—-1)2 for te€[n*-1,n%),
9(t) = { n? fzfr tent(n+1)-1)

for any n € N. It is easily seen that the function g goes to plus infinity, and does not
satisfy (gl) and (g2).
We consider the problem,

{ ug(z,t) + H(z, Du(z,t)) =0 in Q x (0, 00), (3.8)
u(z,t) = g(t) on 3,Q. (3.9)

Then the viscosity solution of this problem is given by the function

t

u(z,t) = inf{/ L(v(s),%(s)) ds+g(7) | v € C(z,t), 7 € [0, 8], (7(7),T) € OQp},

T (3.10)
for (z,t) € Q x [0, c0).

Recall (see [10, Proposition 2.1]) that there exist constants p > 0 and C; > 0
such that L(z,&) < C for all (z,£) € Q x B(0,p). Set Cy := (a/2p) V 1, where
a = max{|z — y| | z,y € N}.

Fix £ € Q. Take 2z, € 09 such that |z — z;| = min{|z — 2| | 2 € N} =: d(z). Set
Y(A) := z, for A € [0,t — p~id(z)), Y(A) = zz + p(A — t + p71d(2))|z — 2|z — 25)
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for A€ [t —p~'d(z),t] if z € Q and y()\) = z if z € Q. Then we have v € C(z,t). By
(3.10), we get

u(z,t) < »/t-—C L(y(A),¥(A)) dA 4+ g(t — C2) < Co(Cr V rfeaf%c]L(x, 0)[) + g(t — Co).

Set C3 := C2(C1 V max g |L(z,0)|). In particular, we have for any n € N,
u(z,n?) — g(n?) < Cs + g(n* — C3) — g(n?) < —2n + C3 + 1,

which implies that u(z,n*) — g(n*) — —oco0 as n — oo. This observation tells us that
Proposition 3.1 does not hold if ¢y < 0.

Moreover, we set H(z,p) := [p| — 1, @ := U(0,27!) and consider the problem (3.8)
and (3.9). Then the viscosity solution is given by the function u(z, t) = min{t—7+g(7) |
v € C(z,t),|¥| < 1,7 € [0,t], (v(7),7) € 8,Q}. If t = n* — 1, the optimal exit time 7*
is n* —1 — (27! — |z|), which implies

u(z,n® = 1) = g(n = 1) = 3 — fol + g(n* — 1~ fal) = g(n* ~ 1) = 3 |
Thus {u(-,n* — 1) — g(n* — 1)}nen is bounded. Therefore, we see that there exist
diverging sequences {an }nen, {bn}tnen C [0,00) such that u(z,a,) — g(a,) — —oo as
n — oo and u(z, b,) — g(bn) is bounded for any z € Q.
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