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Abstract

This paper investigates a relationship between the maximum princi-
ple with an infinite horizon and dynamic programming and sheds new
light upon the role of the transversality condition at infinity as necessary
and sufficient conditions for optimality with or without convexity assump-
tions. We first derive the nonsmooth maximum principle and the adjoint
inclusion for the value function as necessary conditions for optimality that
exhibit a relationship between the maximum principle and dynamic $prx$

gramming. We then present sufficiency theorems that are consistent with
the strengthened maximum principle, employing the adjoint inequalities
for the Hamiltonlan and the value function. Synthesizing these results,
necessary and sufficient conditions for optimality are provided for the con-
vex case. In particular, the role of the transversality conditions at infinity
is clarified.

Key Words: Nonsmooth maximum principle; Infinite horizon; Value
function; Transversality condition; Adjoint inclusion; Necessary and suf-
ficient conditions.
MSC2000: $49K24,49L20$ .

’This research is supported by a Grant-in-Aid for Scientific Research (No. 18610003) from
the Ministry of Education, Culture, Sports, ScIence and ?bchnology. This is a condensed
version of the full paper with the same title. Most of the proofs of the theorems are omitted.
The complete version of this paper is available upon request.

数理解析研究所講究録
第 1654巻 2009年 35-55 35



1 Introduction
The maximum principle in optimal control is a fundamental instrument in dy-
namic optimization theory. It is usually formulated in a finite horizon, but
one often needs to treat the case for an infinite horizon, especially in eco-
nomic growth theory. While the maximum principle with an infinite horizon
was treated in a simple manner by Pontryagin et al. [29, Section 24], it was
Shell [34] (later Halkin [24]) who first pointed out, by way of counterexample,
that the transversality condition with a finite horizon cannot be extended in an
intuitive way to that with an infinite horizon as a part of necessary conditions
for optimality. Since then, the maximum principle with an infinite horizon has
been elaborated by, for instance, Aseev and Kryaziimskiy [3], Aubin and Clarke
[4], Cartigny and Michel [14], Feinstein and Luenberger [21], Michel [27], Seier-
stadt and Sydsaeter [33] and Ye [39] with primal attention to the transversality
condition at infinity.

On the other hand, solutions to optimal control problems can be charac-
terized by dynamic programming, which is based on the value function as a
solution to the $Hamilton-Jacobi$-Bellman (HJB) equation. Under some regu-
larity conditions, the value function is a smooth solution to the HJB equation.
It is well-known, however, that the regularity conditions are violated in many
cases of interest and the value function fails to be continuously differentiable
even if the underlying data are smooth. Indeed, one may expect the value func-
tion to be, at best, Lipschitz continuous, even in the smooth data case. (For
the differentiability of the value function, see Cannarsa and Frankowska [13]. $)$

To overcome this difficulty, there exist two lines of research. One is “non-
smooth analysis” initiated by Clarke [16, 17], which employs generalized gra-
dients of the value function and generalized solutions to the extended HJB
equation, and the linkage between the maximum principle and dynamic pro-
gramming has been established by Clarke and Vinter [18] and Vinter [37]. The
other, a somewhat later development, is the concept of “viscosity solutions” to
the HJB equation, which makes use of the notion of super- and subdifferentials,
proposed by Crandall and Lions [19] and Crandall, Evans and Lions [20]. The
value function is shown to be a unique viscosity solution of the HJB equation
and the connection between the adjoint equation for the Hamiltonian and that
for the value function has been investigated by Barron and Jensen [7], Cannarsa
and Frankowska [13], Frankowska [22], $Miric\check{a}[28]$ and Zhou [42]. For relations
between viscosity solutions to the HJB equation and generalized solutions to
the extended HJB equation, see Frankowska [23] and Zhou [43].

The purpose of this paper is to investigate a relationship between the max-
imum principle with an infinite horizon and dynamic programming and shed
new light upon the role of the transversality condition at infinity as necessary
and sufficient conditions for optimality with or without convexity assumptions.

In this paper, we mitigate the smoothness assumptions by introducing the
technique of nonsmooth analysis along the lines of Clarke [16, 17]. We first derive
the nonsmooth maximum principle and the adjoint inclusion for the value func-
tion as necessary conditions for optimality that exhibit a relationship between
the maximum principle and dynamic programming. The necessary conditions
under consideration are direct extensions of those of Clarke and Vinter [18] and
Vinter [37] to an infinite horizon setting. The nonsmooth maximum principle
with an infinite horizon demonstrated by Ye [39] is generalized by taking into
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account unbounded controls and nonautonomous systems.
We then present sufficient conditions for optimality under nonsmooth non-

convex hypotheses. Two sufficiency theorems are provided. The first is an
extension of the finite horizon result by Zeidan [40, 41] to the infinite horizon
setting, which is stated in terms of the adjoint inequality for the Hamiltonian
that is consistent with the strengthened maximum principle. The second, which
exploits the adjoint inequality for the value function, is novel in the literature
in that the sufficient condition is related to the adjoint inclusion of the value
function as well as the adjoint inequality for the Hamiltonian.

Synthesizing these results, it is possible to characterize optimal solutions and
provide necessary and sufficient conditions for optimality if one restricts atten-
tion to the convex case. In particular, the role of the transversality conditions at
infinity is clarified. This characterization is analogous to the result for the finite
horizon case by Rockafeller [30], who systematically developed dual problems of
optimal control under convexity hypotheses. To this end, the convexity of the
value function and the concavity of the Hamiltonian are established.

2 Preliminary
This section collects some preliminary results on generalized gradients for lo-
cally Lipschitz functions. When the function under investigation is a convex
function, the results are reduced to the traditional subdifferential calculus. A
basic reference for the results treated in this section is Clarke [16].

Denote by $\langle x,y\rangle$ the inner product of the points $x,$ $y\in \mathbb{R}^{n}$ . The norm of $x$

is given by $\Vert x\Vert=\langle x,$ $x\rangle\#$ . A function $f$ ; $\mathbb{R}^{n}arrow \mathbb{R}$ is Lipschitz of rank $K\geq 0$

near a given point $x\in \mathbb{R}^{n}$ if there exists some $\epsilon>0$ such that:

$|f(y)-f(z)|\leq K\Vert y-z\Vert$ for every $y,$ $z\in x+\epsilon B$ .

Here, $B$ is the open unit ball in $\mathbb{R}^{n}$ . A function $f$ is said to be locally Lipschitz
on $X\subset \mathbb{R}^{n}$ if $f$ is Lipschitz near $x$ for every $x\in X$ .

Let $f$ be Lipschitz near $x\in \mathbb{R}^{n}$ . The generalized directional derivative of $f$

at $x$ in the direction $v\in \mathbb{R}^{n}$ , denoted by $f^{o}(x;v)$ , is defined as follows:

$f^{o}(x;v)= \lim_{yarrow,\lambda\downarrow}\sup_{0^{x}}\frac{f(y+\lambda v)-f(y)}{\lambda}$.

The generalized gradient of $f$ at $x$ , denoted by $\partial f(x)$ , is defined by:

$\partial f(x)=\{\zeta\in \mathbb{R}^{n}|\langle\zeta, v)\leq f^{o}(x;v)\forall v\in \mathbb{R}^{n}\}$ .
Note that $\partial f(\cdot)$ induces a set-valued mapping from $\mathbb{R}^{n}$ into itself and we denote
it by $\partial f$ : $\mathbb{R}^{n}=\mathbb{R}^{n}$ .

The set of points at which a given function $f$ fails to be differentiable is
denoted by $\Omega_{f}$ . Radenmacher’s theorem states that a Lipschitz function on an
open subset of $\mathbb{R}^{n}$ is differentiable almost everywhere on that subset. Thus, if
$f$ is Lipschitz near $x$ , then its generalized gradient is given by:

$\partial f(x)=$ co $\{\lim_{\nuarrow\infty}\nabla f(x^{\nu})|x^{\nu}arrow x,$ $x^{\nu}\not\in N\cup\Omega_{f},$ $\nu=1,2,$ $\ldots\}$ ,
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where $\nabla f(x^{\nu})$ is the gradient of $f$ at $x^{\nu},$ $N$ is any set of Lebesgue measure $0$

in $\mathbb{R}^{n}$ and the convex hull is taken over all limit points $\nabla f(x^{\nu})$ for which $\{x^{\nu}\}$

is any sequence converging to $x$ while avoiding the set $N\cup\Omega_{f}$ and such that
$\nabla f(x^{\nu})$ converges.

Let $F:\mathbb{R}^{n}arrow \mathbb{R}^{m}$ be a vector-valued function, written in terms of component
functions as $F(x)=(f_{1}(x), \ldots, f_{m}(x))$ such that each $f_{i}$ (and hence $F$) is
Lipschitz near a given point $x\in \mathbb{R}^{n}$ . Denote by $JF(y)$ the $m\cross n$-Jacobian
matrix of partial derivatives whenever $y\in \mathbb{R}^{n}$ is a point at which the partial
derivatives exist and by $\Omega_{F}$ the complement of the set of all such points. The
generalized Jacobian of $F$ at $x$ , denoted by $\partial F(x)$ , is defined by:

$\partial F(x)=$ co $\{\lim_{\nuarrow\infty}JF(x^{\nu})|x^{\nu}arrow x,$ $x^{\nu}\not\in\Omega_{F},$ $\nu=1,2,$ $\ldots\}$ .

The meaning of the convex hull is similar as above. It follows that:

$\partial F(x)\subset\partial f_{1}(x)\cross\cdots\cross\partial f_{m}(x)$ ,

where the right-hand side of the inclusion denotes the set of all matrices whose
$i$ th row belongs to $\partial f_{i}(x)$ for each $i$ .

The half-open interval $[0, \infty)$ of the real line is equipped with the $\sigma$-algebra
$\mathcal{L}$ of Lebesgue measurable subsets of $[0, \infty)$ . Denote the product of the $\sigma-$

algebra of $\mathcal{L}$ and the a-algebra $\mathcal{B}^{n}\cross \mathcal{B}^{m}$ of Borel subsets of the product space
$\mathbb{R}^{n}\cross \mathbb{R}^{m}$ by $\mathcal{L}\cross \mathcal{B}^{n}\cross \mathcal{B}^{m}$ .

The t-section of a subset $\Omega$ of $[0$ , oo $)\cross \mathbb{R}^{n}$ is denoted by $\Omega(t)$ , that is, $\Omega(t)=$

$\{x\in \mathbb{R}^{n}|(t,x)\in\Omega\}$ for $t\in[0, \infty)$ .
For later use, we present the following result.

Theorem 2.1. (i) Let $\Omega$ be an $\mathcal{L}\cross \mathcal{B}^{n}$ -measurable subset of $[0, \infty)\cross \mathbb{R}^{n}$ . If
$f$ : $\Omegaarrow \mathbb{R}$ is an $\mathcal{L}\cross \mathcal{B}^{n}$ -measurable function such that $f(t, \cdot)$ is locally
Lipschitz on $\Omega(t)$ for every $t\in[0, \infty)$ , then $\partial_{x}f$ : $\Omega\ni \mathbb{R}^{n}$ is $\mathcal{L}\cross \mathcal{B}^{n_{-}}$

measurable.

(ii) Let $x_{0}\in \mathbb{R}^{n}$ and $\epsilon>0$ be given. If $f$ : $(x_{0}+\epsilon B)\cross \mathbb{R}^{m}arrow \mathbb{R}$ is upper
semicontinuous and $f(\cdot, y)$ is Lipschitz on $x_{0}+\epsilon B$ for every $y\in \mathbb{R}^{m_{J}}$ then
$\partial_{x}f$ : $(x_{0}+\epsilon B)\cross \mathbb{R}^{m}\Rightarrow \mathbb{R}^{n}$ is upper semicontinuous.

3 Necessary Condition for Optimality
We are given $\mathcal{L}\cross \mathcal{B}^{n}\cross \mathcal{B}^{m}$-measurable functions $L$ : $[0, \infty)\cross \mathbb{R}^{n}x\mathbb{R}^{m}arrow \mathbb{R}$ and
$f$ : $[0,$ $\infty)\cross \mathbb{R}^{n}\cross \mathbb{R}^{m}arrow \mathbb{R}^{n}$ , an $\mathcal{L}x\mathcal{B}^{n}$-measurable subset $\Omega$ of $[0,$ $\infty)\cross \mathbb{R}^{n}$ and
a set-valued mapping $U$ : $[0, \infty)3\mathbb{R}^{m}$ with the $\mathcal{L}\cross \mathcal{B}^{m}$ -measurable graph.
An $\epsilon$-tube about the continuous function $x:[0, \infty)arrow \mathbb{R}^{n}$ is a set of the form:

$T(x(\cdot);\epsilon)=\{(t,x)\in[0, \infty)\cross \mathbb{R}^{n}|x\in x(t)+\epsilon B\}$ ,

with $\epsilon>0$ .
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The optimal control problem under investigation is the following:

$\min J(x(\cdot),u(\cdot)):=\int_{0}^{\infty}L(t,x(t), u(t))dt$

s.t. $\dot{x}(t)=f(t, x(t), u(t))$ a.e. $t\in[0, \infty)$ ,
(P)

$x(0)=x_{0}$ ,
$x(t)\in\Omega(t)$ for every $t\in[0, \infty)$ ,
$u(t)\in U(t)$ a.e. $t\in[0, \infty)$ .

Here, the minimization is taken over all locally absolutely continuous functions
(arcs) $x:[0, \infty)arrow \mathbb{R}^{n}$ and $\mathcal{L}$-measurable functions $u:[0, \infty)arrow \mathbb{R}^{m}$ satisfying
the control system for the problem (P).

Because the objective integral functional with an infinite horizon admits its
values to be infinite, there are several criteria for optimality (see, for example,
Feinstein and Luenberger [21], Halkin [24], Kamihigashi [25], Seierstadt and
Sydsaeter [33], Takekuma [35] $)$ . For simplicity, we restrict ourselves to the class
of pairs $(x(\cdot), u(\cdot))$ of functions for which the improper integral converges, as
in Aseev and Kryaziimskiy [3], Aubin and Clarke [4], Cartigny and Michel [14],
Michel [27], Pontryagin et al. [29] and Ye [39].

A process on a given subinterval $I$ of $[0, \infty)$ is a pair $(x(\cdot), u(\cdot))$ of functions on
$I$ of which $x:Iarrow \mathbb{R}^{n}$ is alocally absolutely continuous function and $u:Iarrow \mathbb{R}^{m}$

is a measurable function such that the control system for (P) with $I$ in place of
$[0, \infty)$ and the initial condition $x(t)=x_{0}$ , where $t$ is the left endpoint of $I$ , is
satisfied. A process $(x(\cdot),u(\cdot))$ on $I$ is admissible if the integrand $L(\cdot, x(\cdot),u(\cdot))$

is integrable on $I$ . A process on $I$ is minimizing if it minimizes the value of the
integral functional $\int_{I^{Ld_{i}}}t$ over all admissible processes on $I$ . When $I=[0, \infty)$ ,
we shall abbreviate the domain on which processes are defined. In this section,
$(x_{0}(\cdot),u_{0}(\cdot))$ is taken to be a fixed minimizing process on $[0, \infty)$ for (P).

We define the value function $V:\Omegaarrow$ RU $\{\pm\infty\}$ by:

$V(t,x)= \inf\{\int^{\infty}L(s,x(s),u(s))ds\}$ ,

where the infimum is taken over all admissible processes $(x(\cdot), u(\cdot))$ on $[t,$ $\infty)$

for which $x(t)=x\in\Omega(t)$ . When no such admissible processes exist, the value
is supposed to be $+\infty$ , as usual.

3.1 Maximum Principle with an Infinite Horizon
The basic hypotheses to derive necessary conditions for optimality are as follows.

Hypothesis 3.1. (i) $L(\cdot,x, \cdot)$ is measurable for every $x\in \mathbb{R}^{n}$ and $L(t, \cdot, u)$

is Lipschitz of rank $k_{L}(t)$ on $\Omega(t)$ for every $(t, u)\in$ graph $(U)$ with $k_{L}$ an
integrable function.

(ii) There exists an integrable function $\varphi$ on $[0, \infty)$ such that $|L(t,x_{0}(t),u)|\leq$

$\varphi(t)$ for every $(t, u)\in$ graph $(U)$ .

(iii) $f(\cdot, x, \cdot)$ is measurable for every $x\in \mathbb{R}^{n}$ and $f(t, \cdot , u)$ is Lipschitz of rank
$k_{f}(t)$ on $\Omega(t)$ for every $(t, u)\in$ graph $(U)$ with $k_{f}$ a locally integrable
function.
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(iv) The function $k$ on $[0, \infty)$ given by $k(t)$ $:=k_{L}(t) \exp(\int_{0}^{t}k_{f}(s)ds)$ is inte-
grable.

(v) There exists an $\epsilon$-tube about $x_{0}(\cdot)$ contained in $\Omega$ such that $V(t, \cdot)$ is
Lipschitz of rank $K$ on $x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ .

The Lipschitz continuity of the value function in the condition (v) of the
hypothesis is nonstringent because, as seen in Appendix $A$ , the condition is
implied ffom the hypothesis guaranteeing the existence of minimizing processes
for every initial condition. In particular, when $\Omega=[0, \infty)\cross \mathbb{R}^{n}$ , it is redundant
because it is obtained from other conditions (i) to (iv) of the hypothesis.

The Pontryagin (or pseudo) Hamiltonian $H_{P}$ and the (true) Hamiltonian $H$

for (P) are given respectively by:

$H_{P}(t, x,u,p)=\langle p,$ $f(t,x,u)\rangle-L(t,x,u)$ ,

and
$H(t, x,p)= \sup_{u\in U(t)}\{\langle p, f(t,x, u)\rangle-L(t,x, u)\}$ .

Theorem 3.1. Suppose that Hypothesis S. 1 is satisfied. Then, there exists
a locally absolutely continuous function $p$ : $[0, \infty)arrow \mathbb{R}^{n}$ with the following
properties.

(i) $-\dot{p}(t)\in\partial_{x}H_{P}(t, x_{0}(t),u_{0}(t),p(t))a.e$. $t\in[0, \infty)$ .

(ii) $H_{P}(t,x_{0}(t),u_{0}(t),p(t))=H(t,x_{0}(t),p(t))a.e$. $t\in[0, \infty)$ .
(iii) $-p(t)\in\partial.V(t,x_{0}(t))a.e$ . $t\in[0, \infty)$ .

(iv) $-p(0)\in\partial_{x}V(0,x_{0}(0))$ .

Theorem 3.1 does not exclude the possibility that $-p(t)\not\in\partial_{x}V(t, x_{0}(t))$ for
every $t$ in the null set of $[0, \infty)$ . The question naturally arises whether this null
set can be eliminated in special circumstances. The proof of the following result
is the same as that of Clarke and Vinter [18].

Corollary 3.1. The condition (iii) of Theorem 3.1 can be strengthened to:

$-p(t)\in\partial_{x}V(t,x_{0}(t))$ for every $t\in[0, \infty)$ ,

if (i) $\partial_{x}V(\cdot, x_{0}(\cdot))$ : $[0, \infty)3\mathbb{R}^{n}$ is upper semicontinuous; or (ii) $\Omega(t)$ is convex
for every $t\in[0, \infty)$ and $V(t, \cdot)$ is a convex function on $\Omega(t)$ for every $t\in[0, \infty)$ .

3.2 Auxiliary Result
Theorem 3.1 can be proven by extending the necessary condition for the finite
horizon case provided by Clarke and Vinter [18] to the infinite horizon case.
To this end, we introduce a perturbed infinite-horizon optimal control problem
with free left endpoints and deduce the maximum principle for it. The adjoint
variable of the finite horizon problem restricted to the arbitrarily fixed finite
interval $[0, T]$ is extended to $[0, \infty)$ as $Tarrow\infty$ by making use of the diagonal-
ization method based on the equicontinuity of the relevant sequence of adjoint
variables.
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3.2.1 Perturbed Problem

Fix $\epsilon>0$ such that the $\epsilon$-tube about $x_{0}($ . $)$ is contained in $\Omega$ given in Hypothesis
3.1(v). A triplet $(x(\cdot), u(\cdot), v(\cdot))$ of functions on $[0, \infty)$ is called a perturbed
process if it satisfies the perturbed control system:

$\dot{x}(t)=f(t, x(t), u(t))+v(t)$ a.e. $t\in[0, \infty)$ ,
$x(t)\in x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ ,
$u(t)\in U(t)$ a.e. $t\in[0, \infty)$ ,
$v(t)\in B$ a.e. $t\in[0, \infty)$ .

Here, an $\mathcal{L}$-measurable function $v$ : $[0, \infty)arrow \mathbb{R}^{n}$ is viewed as a new control
function.

Define the function $\sigma_{\epsilon}$ : $[0, \infty)\cross \mathbb{R}^{n}arrow \mathbb{R}$ by:

$\sigma_{\epsilon}(t, v)=\max\{\langle p, v\rangle|p\in\partial_{x}V(t, x_{0}(t)+\epsilon\overline{B})\}$ .
Here, $\overline{B}$ is the closure of $B$ . Since $\partial_{x}V(t, \cdot)$ is compact-valued and upper semi-
continuous (see Clarke [16, Proposition 2.1.1]), $\partial_{x}V(t,x_{0}(t)+\epsilon\overline{B})$ is compact
for every $t\in[0, \infty)$ . Therefore, the maximum in the above is indeed attained.

Lemma 3.1. $($ i) $\sigma_{\epsilon}$ is $\mathcal{L}\cross \mathcal{B}^{n}$-measurable and $\sigma_{\epsilon}(t,$ $\cdot)$ is continuous for every
$t\in[0, \infty)$ ;

(ii)
$\sigma_{\epsilon}(\cdot,v(\cdot))[0,\infty)$

.
is locally integrable on $[0, \infty)$ if $v(\cdot)$ is locally integrable on

The following result is an obvious extension of Clarke and Vinter [18, Lemma
8.4].

Lemma 3.2. If $(x(\cdot), u(\cdot), v(\cdot))$ is a perturbed process, then:

$\int_{0}^{t}L(s, x(s), u(s))ds+\int_{0}^{t}\sigma_{\epsilon}(s, -v(s))ds-V(0,x(O))\geq 0$,

for every $t\in[0, \infty)$ with the equality at $(x_{0}(\cdot), u_{0}(\cdot), v(\cdot)\equiv 0)$ .
Consider the following perturbed infinite-horizon optimal control problem

with free left endpoints:

$\min\int_{0}^{\infty}L(t,x(t),u(t))dt+\int_{0}^{\infty}\sigma_{\epsilon}(t, -v(t))dt-V(0,x(0))$

s.t. $\dot{x}(t)=f(t, x(t), u(t))+v(t)$ a.e. $t\in[0, \infty)$ ,
$(P_{\epsilon})$

$x(t)\in x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ ,
$u(t)\in U(t)$ a.e. $t\in[0, \infty)$ ,
$v(t)\in B$ a.e. $t\in[0, \infty)$ .

Here, $u(\cdot)$ and $v(\cdot)$ are control functions and $x(\cdot)$ is a state function. Note that,
by Hypothesis 3.1, for every perturbed process $(x(\cdot), u(\cdot), v(\cdot))$ , we have:

$|L(t, x(t), u(t))-L(t,x_{0}(t),u_{0}(t))|$

$\leq|L(t, x(t), u(t))-L(t,x_{0}(t),u(t))|+|L(t, x_{0}(t), u(t))-L(t, xo(t), uo(t))|$
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$\leq k_{L}(t)\Vert x(t)-x_{0}(t)\Vert+2\varphi(t)$

$\leq\epsilon k_{L}(t)+2\varphi(t)$ ,

a.e. $t\in[0, \infty)$ . Thus, the improper integral $\int_{0}^{\infty}Ldt$ converges over all perturbed
process. A perturbed process is admissible for the problem $(P_{\epsilon})$ if the improper
integral $\int_{0}^{\infty}\sigma_{e}dt$ converges. A minimizing process for $(P_{e})$ is a perturbed pro-
cess that minimizes the objective integral functional of $(P_{\epsilon})$ over all admissible
process. By Lemma 3.2, $(x_{0}(\cdot),u_{0}(\cdot),v(\cdot)\equiv 0)$ is a minimizing process for $(P_{\epsilon})$ .

3.2.2 Necessary Condition for the Perturbed Problem

Let $l$ : $\mathbb{R}^{n}arrow \mathbb{R}$ be locally Lipschitz. Consider the following free left and right
endpoint infinite-horizon problem:

$\min l(x(0))+\int_{0}^{\infty}L(t,x(t),u(t))dt$

s.t. $\dot{x}(t)=f(t,x(t),u(t))$ a.e. $t\in[0, \infty)$ , $(Q^{\infty})$

$x(t)\in\Omega(t)$ for every $t\in[0, \infty)$ ,
$u(t)\in U(t)$ a.e. $t\in[0, \infty)$ .

We say that a process is admissible for the problem $(Q^{\infty})$ if the improper integral
$\int_{0}^{\infty}Ldt$ converges.

A necessary condition for $(P_{\epsilon})$ is obtained from that for the more general
problem $(Q^{\infty})$ . While the following result was exploited by Ye [39] with a
sketchy outline of the proof, the suggested proof requires an adequate diago-
nalization method. For completeness, we render an alternative proof. (The
compactness argument in Step 3 in the sequel is where we depart from the
argument by Ye [39]. $)$

Theorem 3.2. Let $(x_{0}(\cdot), u_{0}(\cdot))$ be a minimizing process for $(Q^{\infty})$ with Hypoth-
esis 3.1. Then, there exists a locally absolutely continuous function $p:[0, \infty)arrow$

$\mathbb{R}^{n}$ such that

(i) $-\dot{p}(t)\in\partial_{x}H_{P}(t,x_{0}(t),u_{0}(t),p(t))a.e$. $t\in[0, \infty)$ ,

(ii) $H_{P}(t,x_{0}(t), u_{0}(t),p(t))=H(t,x_{0}(t),p(t))a.e$. $t\in[0, \infty)$ ,

(iii) $p(0)\in\partial l(x_{0}(0))$ .

3.3 Proof of Theorem 3.1
Now, back to the necessary condition for $(P_{\epsilon})$ . Since $(x_{0}(\cdot), u_{0}(\cdot), v(\cdot)\equiv 0)$ is
a minimizing process for $(P_{\epsilon})$ by Lemma 3.2, it follows from Theorem 3.2 that
there exists a locally absolutely continuous function $p_{\epsilon}$ : $[0, \infty)arrow \mathbb{R}$“ such that

(1) $-\dot{p}_{\epsilon}(t)\in\partial_{x}H_{P}(t, x_{0}(t), u_{0}(t),p_{\epsilon}(t))$ a.e. $t\in[0, \infty)$ ,

(2) $H_{P}(t, x_{0}(t), u_{0}(t),p_{e}(t))=H(t,x_{0}(t),p_{\epsilon}(t))$ a.e. $t\in[0, \infty)$ ,

(3) $\max_{v\in B}\{\langle p_{\epsilon}(t), v\rangle-\sigma_{\epsilon}(t, -v)\}=0$ a.e. $t\in[0, \infty)$ ,

(4) $-p_{\epsilon}(0)\in\partial_{x}V(0, x_{0}(0))$ .
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Since $||\dot{p}_{\epsilon}(t)\Vert\leq\psi(t)$ a.e. $t\in[0\}\infty)$ and $\Vert p_{\epsilon}(t)\Vert\leq K+\int_{0}^{t}\psi(s)ds$ for every
$t\in[0, \infty)$ with $\psi(t)=Kk_{f}(t)\exp(\int_{0}^{t}k_{f}(s)ds)+k_{L}(t)$ , where $K$ is the Lips-
chitz bound of $V(0, \cdot)$ given in Hypothesis 3.1(v). Thus, the net $\{p_{\epsilon}(\cdot)\}$ is an
equicontinuous family of locally absolutely continuous functions on $[0, \infty)$ and,
hence, the similar diagonalization process as in Step 3 of the proof of Theorem
3.2 yields: there exists a locally absolutely continuous function $p:[0, \infty)arrow \mathbb{R}^{n}$

such that, for every compact subset $I$ of $[0, \infty)$ , the net $\{p_{\epsilon}(\cdot)\}$ contains a subnet
(which we do not relabel) such that $p_{\epsilon}(\cdot)$ converges uniformly to $p(\cdot)$ on $I$ and

$\dot{p}_{e}(\cdot)$ converges weakly to $\dot{p}(\cdot)$ in $L^{1}(I;\mathbb{R}^{n})$ as $\epsilonarrow 0$ . Therefore, by taking the
limits in the conditions (1), (2) and (4) along a suitable subnet as in Step 4 of
the proof of Theorem 3.2, at the limit, we obtain the conditions (i), (ii) and (iv)
of the theorem.

Finally, we investigate the implication of the condition (3) according to the
argument by Clarke and Vinter [18]. Take a point $t\in[0, \infty)$ at which (3) is
true. Then:

$-p_{e}(t)\in\overline{co}\partial_{x}V(t,x_{0}(t)+\epsilon\overline{B})=:\Pi_{\epsilon}(t)$,

for otherwise $-p_{\epsilon}(t)$ and the closed convex set $\Pi_{\epsilon}(t)$ can be strictly separated,
i.e., there exists a vector $v$ in $B$ such that:

$\langle p_{\epsilon}(t),v\rangle>\max\{-\langle p,v\rangle|p\in\Pi_{e}(t)\}=\sigma_{\epsilon}(t, -v)$

in contradiction of (3). Thus, $-p_{\epsilon}(t)\in\Pi_{\epsilon}(t)$ a.e. $t\in[0, \infty)$ and passing to the
limit along a subnet yields:

$-p(t) \in\bigcap_{e>0}$ co $\partial_{x}V(t,x_{0}(t)+e\overline{B})$ a.e. $t\in[0, \infty)$ . (3.1)

We claim that the condition (iii) of the theorem:

$-p(t)\in\partial_{x}V(t,x_{0}(t))$ a.e. $t\in[0, \infty)$ ,

holds. Otherwise, we can strictly separate the point $-p(t)$ and the closed convex
set $\partial_{x}V(t, x_{0}(t))$ , i.e., there exists $v\in \mathbb{R}^{n}$ and $\delta>0$ such that:

$- \langle p(t),v\rangle-\delta>\max\{\langle p,v\rangle|p\in\partial_{x}V(t,x_{0}(t))\}=V^{o}(t,x_{0}(t);v)$ .

Since the generalized partial derivative $V^{o}(t, \cdot;\cdot)$ is upper semicontinuous (see
Clarke [16, Proposition 2.1.1] $)$ :

$- \langle p(t),v\rangle-\frac{1}{2}\delta>V^{Q}(t,x;v)$ ,

whenever $x\in x_{0}(t)+\epsilon B\subset\Omega$ for some $\epsilon>0$ . Then:

$- \langle p(t),v\rangle-\frac{1}{2}\delta>\sup\{\langle p,v\rangle|p\in\partial_{x}V(t,x_{0}(t)+\epsilon\overline{B})\}$

$= \max\{\langle p,v\rangle|p\in\overline{co}\partial_{x}V(t,x_{0}(t)+\epsilon\overline{B})\}$.

But this implies that:

$-p(t)\not\in\overline{co}\partial_{x}V(t,x_{0}(t)+\epsilon\overline{B})$ ,

in contradiction of (3.1). Therefore, the condition (iii) of the theorem is true.
This completes the proof of Theorem 3.1. $\square$
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4Sufficient Conditions for Optimality
We now turn for the important issue of sufficient conditions; that is, conditions
that assure that a given admissible process is in fact an optimal solution of the
problem.

4.1 Sufficiency Theorems
Deflnition 4.1. An admissible process $(x_{0}(\cdot),u_{0}(\cdot))$ for (P) is locally minimizing
in $T(x_{0}(\cdot);\epsilon)$ if there exists some $\epsilon>0$ such that $(x_{0}(\cdot), u_{0}(\cdot))$ minimizes the
functional $J(x(\cdot), u(\cdot))$ over all admissible processes $(x(\cdot), u(\cdot))$ satisfying $x(t)\in$

$x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ .
Note that, if $\epsilon=+\infty$ , then $(x_{0}(\cdot), u_{0}(\cdot))$ is a minimizing process for (P).

Hypothesis 4.1. (i) $L(t, \cdot, \cdot)$ is lower semicontinuous on $\Omega(t)\cross U(t)$ for every
$t\in[0, \infty)$ .

(ii) $f(t, \cdot, \cdot)$ is continuous on $\Omega(t)\cross U(t)$ for every $t\in[0, \infty)$ .

(iii) $U(t)$ is closed for every $t\in[0, \infty)$ and graph $(U)$ is $\mathcal{L}x\mathcal{B}^{m}$-measurable.

(iv) For every $t\in[0, \infty)$ and for every bounded subset $Z$ of $\mathbb{R}^{n}\cross \mathbb{R}^{n}$ , the set:

$\{u\in U(t)|$ ョ$(x,v)\backslash \in Z:f(t,x, u)=v\}$ ,

is bounded.

The following result is an extension of Zeidan [41] to the infinite horizon
case.

Theorem 4.1. Suppose that Hypothesis 4.1 is satisfied. Let $(x_{0}(\cdot), u_{0}(\cdot))$ be
an admissible process for (P) such that there exist a locally absolutely continu-
ous function $p:[0, \infty)arrow \mathbb{R}^{n}$ , a locally absolutely continuous $n\cross n$-symmetnc
matnix-valued function $P$ on $[0, \infty)$ and some $\epsilon>0$ with the following properties.

(i) For $a.e$ . $t\in[0, \infty)$ and for every $v\in\epsilon B$ and $u\in U(t)$ :

$H_{P}(t, x_{0}(t)+v, u,p(t)-P(t)v)$

$\leq H_{P}(t, x_{0}(t), u_{0}(t),p(t))-\langle\dot{p}(t)+P(t)\dot{x}_{0}(t),$ $v \rangle+\frac{1}{2}\langle v,\dot{P}(t)v\rangle$ .

(il) For every $\eta>0$ , there enists some $t_{0}\in[0, \infty)$ such that:

$\frac{1}{2}$ ( $v,$ $P(t)v\rangle<\langle p(t),$ $v\rangle+\eta$ for every $v\in\epsilon B$ and $t\in[t_{0}, \infty)$ .

Then, $(x_{0}(\cdot), u_{0}(\cdot))$ is a locally minimizing process in $T(x_{0}(\cdot);\epsilon)$ for (P).

Note that the condition (i) of the theorem implies the condition (ii) of The-
orem 3.1. When $\epsilon=+\infty$ and the matrix-valued function $P$ in the theorem
happens to be identically the zero matrix, the condition (i) of the theorem
reduces to the supergradient inequality for $H$ :

$H(t, x_{0}(t)+v,p(t))-H(t,x_{0}(t),p(t))\leq-\langle\dot{p}(t),$ $v\rangle$ , (4.1)
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for every $v\in \mathbb{R}^{n}$ . The condition (4.1) is imposed by Feinstein and Luenberger
[21] to obtain the sufficiency result. This is, of course, satisfied if $H(t, x,p(t))$
is concave in $x$ for every $t\in[0, \infty)$ . Thus, the condition (i) of the theorem can
be viewed as a strengthening of the necessary conditions (i) and (ii) of Theorem
3.1 under the convexity hypothesis.

If $P(t)$ is negative semidefinite for every $t\in[0, \infty)$ and $\lim_{tarrow\infty}p(t)=0$ , then
the condition (ii) of the theorem is satisfied. On the other hand, if $P=0$ , then
the condition (ii) of the theorem is equivalent to the transversality condition at
infinity:

$\lim_{tarrow\infty}p(t)=0$ . (4.2)

For the finite horizon case, sufficient conditions for optimality were given
by Mangasarian [26] under the hypothesis that the Hamiltonian $H_{P}$ is concave
and differentiable in $(x,u)$ , whose result was extended by Seierstadt and Syd-
saeter [33] to the infinite horizon case. Thus, the above observation leads to
an extension of the Mangasarian sufficiency theorem with an infinite horizon as
follows.

Corollary 4.1. Suppose that Hypothesis 4.1 is satisfied. Let $(x_{0}(\cdot), u_{0}(\cdot))$ be an
admissible process for (P) and $p:[0, \infty)arrow \mathbb{R}^{n}$ be a locally absolutely continuous
function with the following properties.

(i) $H(t, \cdot,p(t))$ is concave on $\mathbb{R}^{n}$ for every $t\in[0, \infty)$ .
(ii) $-p(t)\in\partial.H(t, x_{0}(t),p(t))a.e$ . $t\in[0, \infty)$ .
(iii) $H_{P}(t, x_{0}(t), u_{0}(t),p(t))=H(t, x_{0}(t),p(t))a.e$ . $t\in[0, \infty)$ .

(iv) $\lim_{tarrow\infty}p(t)=0$ .

Then, $(x_{0}(\cdot), u_{0}(\cdot))$ is a minimizing process for (P).

For the derivation of the transversality condition (4.2) as a necessary con-
dition for optimality, see Aseev and Kryaziimskiy [3] and Michel [27] for the
smooth case and Ye [39] for the nonsmooth case.

Consider the following transversality condition at infinity:

$\lim inftarrow\infty\langle p(t),$ $x(t)-x_{0}(t)\rangle\geq 0$ , (4.3)

for every admissible arc for (P). To obtain the sufficiency result, Seierstadt
and Sydsaeter [33] imposed the condition (4.3) in addition to the conditions (i)
and (ii) of the corollary as well as the differentiability assumption on $(L, f)$

and Feinstein and Luenberger [21] assumed (4.3) for the nonsmooth nonconcave
Hamiltonians along with the condition (4.1).

Note that the condition (4.3) is implied by the condition (4.2) if every ad-
missible arc is bounded. However, (4.3) is difficult to check in practice when
admissible arcs are unbounded because it involves possible information on the
limit behavior of all admissible arcs. The condition (4.2) on its own right needs
no such information and improves upon (4.3). Its derivation as a sufficient con-
dition can be found in Cartigny and Michel [14] for the case of smooth concave
Hamiltonians with the strong integrability condition on every admissible arc,
which is unnecessary in Corollary 4.1.
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Let $V$ be an extension of the value function on $\Omega$ (which we do not relabel)
to $[0, \infty)\cross \mathbb{R}^{n}$ given by $V(t, x)=+\infty$ for $(t, x)\not\in\Omega$ . We now provide a new
sufficient condition in terms of the adjoint inequality for the value function.

Theorem 4.2. Suppose that Hypothesis 4.1 is satisfied. Let $(x_{0}(\cdot), u_{0}(\cdot))$ be an
admissible process for (P) such that there exist a locally absolutely continuous
function $p:[0, \infty)arrow \mathbb{R}^{n}$ and a locally absolutely continuous $n\cross n$-symmetiic
matrix-valued function $P$ on $[0, \infty)$ with the following propentes.

(i) For $a.e$ . $t\in[0, \infty)$ and for every $v\in \mathbb{R}^{n}$ and $u\in U(t)$ :

$H_{P}(t,x_{0}(t)+v,u,p(t)-P(t)v)$

$\leq H_{P}(t,x_{0}(t),u_{0}(t),p(t))-\langle\dot{p}(t)+P(t)\dot{x}_{0}(t),v\rangle+\frac{1}{2}\langle v,\dot{P}(t)v)$ .
(ii) For every $v\in \mathbb{R}^{n}$ and $t\in[0, \infty)$ ;

$V(t,x_{0}(t))- \langle p(t)+P(t)x(t),v\rangle+\frac{1}{2}\langle v,$ $P(t)v\rangle\leq V(t,x_{0}(t)+v)$ .

(iii) $\lim_{tarrow\infty}V(t, x_{0}(t))=0$ .
Then, $(x_{0}(\cdot), u_{0}(\cdot))$ is a minimizing process for (P).

For the case in which $P=0$ in the theorem, the condition (ii) of the theorem
reduces to the subgradient inequality for $V(t, \cdot)$ :

$V(t,x_{0}(t)+v)-V(t,x_{0}(t))\geq-\langle p(t),v\rangle$ ,

for every $v\in \mathbb{R}^{n}$ . This is, indeed, satisfied if $V(t, x)$ is convex in $x$ for every $t\in$

$[0, \infty)$ . Thus, the condition (ii) of the theorem can be viewed as a strengthening
of the adjoint inclusions (iii) and (iv) of Theorem 3.1.

While the role of the limit behavior of the value function at infinity in the
condition (iii) of the theorem is novel in optimal control theory, it is clarified in
the derivation of the sufficiency result for convex problems of calculus of varia-
tions with an infinite horizon by Benveniste and Scheinkman [12] and Takekuma
[36].

4.2 Proof of Sufficiency Theorems
Let $F$ : $[0, \infty)\cross \mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be an $\mathcal{L}x\mathcal{B}^{n}\cross \mathcal{B}^{n}$-measurable function.
Consider the problem of Lagrange in calculus of variations:

$\min(x(\cdot)):=\int_{0}^{\infty}F(t,x(t),\dot{x}(t))dt$, (L)

where the minimum is taken over all locally absolutely continuous functions
(arcs) $x:[0, \infty)arrow \mathbb{R}^{n}$ satisfying the initial condition $x(O)=x_{0}$ . We say that
$x(\cdot)$ is an admissible arc if $J(x(\cdot))$ is finite and the initial condition is satisfied
and that $x_{0}(\cdot)$ is locally minimizing in $T(x_{0}(\cdot);\epsilon)$ for the problem (L) if there
exists some $\epsilon>0$ such that $x_{0}(\cdot)$ minimizes $J(x(\cdot))$ over all admissible arcs
$x(\cdot)$ satisfying $x(t)\in x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ . The Hamiltonian for (L)
is given by:

$\ovalbox{\tt\small REJECT}(t,x,p)=\sup_{v\in R^{n}}\{(p,v\rangle-F(t,x,v)\}$ .
The sufflciency theorem for problems of Bolza due to Zeidan [40] is adapted to
the infinite horizon setting here.
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Theorem 4.3. Let $x_{0}(\cdot)$ be an admissible arc for (L). Suppose that there exist
a locally absolutely continuous function $p$ : $[0, \infty)arrow \mathbb{R}^{n}$ , a locally absolutely
continuous $nx$ n-symmetri $c$ matnx-valued function $P$ on $[0, \infty)$ and some $\epsilon>0$

with the following properties.

(i) For every $v\in \mathbb{R}^{n}$ and $a.e$ . $t\in[0, \infty)$ :

$F(t, x_{0}(t),\dot{x}_{0}(t)+v)-F(t, x_{0}(t),\dot{x}_{0}(t))\geq\langle p(t),$ $v\rangle$ .

(ii) For every $v\in\epsilon B$ and $a.e$ . $t\in[0, \infty)$ :

$\ovalbox{\tt\small REJECT}(t, x_{0}(t)+v,p(t)-P(t)v)-\ovalbox{\tt\small REJECT}(t,x_{0}(t),p(t))$

$\leq-\langle\dot{p}(t)+P(t)\dot{x}_{0}(t),v\rangle+\frac{1}{2}\langle v,\dot{P}(t)v\rangle$ .

(iii) For every $\eta>0_{f}$ there exists some $t_{0}\in[0, \infty)$ such that:

$\frac{1}{2}\langle v,$ $P(t)v\rangle<\langle p(t),$ $v\rangle+\eta$ for every $v\in\epsilon B$ and $t\in[t_{0}, \infty)$ .

Then, $x_{0}(\cdot)$ is a locally minimizing arc in $T(x_{0}(\cdot);\epsilon)$ for (L).

Define the function $F:[0,\infty)\cross \mathbb{R}^{n}x\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ by:

$F(t, x, v)= \inf\{L(t, x, u)|u\in U(t):f(t, x, u)=v\}$ . (4.4)

(Note that the infimum over the empty set is taken to be $+\infty.$ ) An established
technique for transforming the problem of optimal control (P) into that of cal-
culus of variations (L) is available here (see Rockafeller [31, 32]). It is based on
the observation that the Hamiltonian $H$ for (P) coincides with the Hamiltonian
X‘ for (L) on $\Omega$ . Indeed:

$\sup_{v\in R^{n}}\{\langle p, v\rangle-F(t, x,v)\}$

$= \sup_{v\in R^{n}}\{\langle p, v\rangle-\inf\{L(t,x, u)|u\in U(t) : f(t, x, u)=v\}\}$

$= \sup_{u\in U(t)}\{(p,$
$f(t, x, u)\rangle-L(t,x,u)\}$ ,

and, hence, for every $(t,x,p)\in[0, \infty)x\mathbb{R}^{n}\cross \mathbb{R}^{n}$ :

$\ovalbox{\tt\small REJECT}(t,x,p)=H(t, x,p)$ . (4.5)

The following result is a special case of the equivalence theorem due to
Rockafeller [32]. (See also Clarke [16, Theorem 5.4.1].)

Equivalence Theorem. Suppose that Hypothesis 4.1 is satisfied. Let $F$ be
given in (4.4). Then, $x_{0}(\cdot)$ is a minimizing arc for (L) if and only if there is a
control function $u_{0}$ : $[0,$ $\infty)arrow \mathbb{R}^{m}$ corresponding to $x_{0}(\cdot)$ such that $(x_{0}(\cdot),$ $u_{0}(\cdot))$

is a minimizing process for (P).

Proof of Theorem 4.1. The argument is based on Zeidan $[$41 $]$ and Clarke $[$16,
Theorem 5.4.2]. Hypothesis 4.1 assures that $F$ is $\mathcal{L}x\mathcal{B}^{n}x\mathcal{B}^{n}$-measurable and
$F(t, \cdot, \cdot)$ is lower semicontinuous for every $t\in[0, \infty)$ . (See Clarke [16, Theorem
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5.4.1] and Rockafeller [32]. $)$ The condition (i) of the theorem and (4.5) imply
that:

$F(t, x_{0}(t),\dot{x}_{0}(t))=L(t, x_{0}(t),u_{0}(t))$ a.e. $t\in[0, \infty)$ . (4.6)
On the other hand, (4.4) implies that $f(x(\cdot))\leq J(x(\cdot), u(\cdot))$ for every admissi-
ble process $(x(\cdot), u(\cdot))$ for (P) with $x(t)\in x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ . There-
fore, to show that $(x_{0}(\cdot), u_{0}(\cdot))$ is a locally minimizing process in $T(x_{0}(\cdot);\epsilon)$ for
(P), it suffices to demonstrate that $x_{0}(\cdot)$ is a locally minimizing arc in $T(x_{0}(\cdot);\epsilon)$

for (L), which is guaranteed if the conditions (i) and (ii) of Theorem 4.3 are
shown to be met. It is easy to verify that the condition (i) of Theorem 4.1 and
(4.5) imply that:

$\ovalbox{\tt\small REJECT}(t,x_{0}(t),p(t))=\langle p(t),\dot{x}_{0}(t)\rangle-F(t,x_{0}(t),\dot{x}_{0}(t))$ $a.e$ . $t\in[0, \infty)$ .
Thus, the condition (i) of Theorem 4.3 is satisfied. The condition (i) of Theorem
4.1 and (4.5) again yield the condition (ii) of Theorem 4.3. $\square$

Proof of Theorem 4.2. Let $(x_{0}(\cdot), u_{0}(\cdot))$ be an admissible process for (P) satis-
fying the conditions of the theorem. It suffices to show that:

$V( O, x_{0}(0))=\int_{0}^{t}L(s,x_{0}(s), u_{0}(s))ds+V(t, x_{0}(t))$ , (4.7)

for every $t\in[0, \infty)$ , because taking the limit as $tarrow\infty$ in (4.7) yields:

$V(0, x_{0}(0))= \int_{0}^{\infty}L(s, x_{0}(s),u_{0}(s))ds$,

from which the optimality of $(x_{0}(\cdot), u_{0}(\cdot))$ follows.
Suppose to the contrary that (4.7) is not true. By the definition of $V$ , there

exists some $\eta>0$ such that:

$V( O, x_{0}(0))+\eta<\int_{0}^{T}L(t, x_{0}(t), u_{0}(t))dt+V(T, x_{0}(T))$ , (4.8)

for some $T\in[0, \infty)$ . Again by the definition of $V$ , there exists an admissible
process $(x(\cdot), u(\cdot))$ for (P) such that:

$\int_{0}^{\infty}L(t, x(t), u(t))dt<V(0,x_{0}(0))+\eta$ .

Thus, the inequality (4.8) implies the existence of an admissible process $(x(\cdot), u(\cdot))$

for (P) such that:

$\int_{0}^{T}L(t, x(t), u(t))dt+V(T, x(T))<\int_{0}^{T}L(t,x_{0}(t), u_{0}(t))dt+V(T, x_{0}(T))$ .
(4.9)

It follows from (4.4) that:
$L(t, x(t), u(t))-L(t, x_{0}(t), u_{0}(t))\geq F(t, x(t),\dot{x}(t))-F(t,x_{0}(t),\dot{x}_{0}(t))$ , (4.10)

a.e. $t\in[0, \infty)$ . As noted in the proof of Theorem 4.1, the conditions (i) and
(ii) of Theorem 4.3 are satisfied for $\epsilon=+\infty$ . Thus, integrating the inequality
(4.10) together with the condition (ii) of the theorem yield:

$\int_{0}^{T}[L(t, x(t), u(t))-L(t, x_{0}(t), u_{0}(t))]dt\geq-(V(T, x(T))-V(T, x_{0}(T)))$ ,

which contradicts (4.9). $\square$
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5 Necessary and Sufficient Conditions for Opti-
mality

In this section, we derive the necessary and sufficient conditions for optimality
under convexity hypotheses. Convex problems of optimal control examined here
clarify the role of the limit behavior of the value function for a complete charac-
terization of optimality. Furthermore, we investigate the role of transversality
conditions at infinity and derive them as necessary and sufficient conditions for
optimality under some additional assumptions.

5.1 Limit Behavior of the Value Function at Infinity

As demonstrated in the Appendix, the hypothesis that follows is derived from
the convexity hypothesis on the primitive $(L, f, \Omega, U)$ .

Hypothesis 5.1. (i) $\Omega(t)\cross U(t)$ is convex for every $t\in[0, \infty)$ .
(ii) $H(t, \cdot,p)$ is concave on $\mathbb{R}^{n}$ for every $(t,p)\in[0, \infty)\cross \mathbb{R}^{n}$ .
(iii) $V(t, \cdot)$ is convex on $\Omega(t)$ for every $t\in[0, \infty)$ .

Theorem 5.1. Suppose that Hypotheses 3.1, 4.1 and 5.1 are satisfied. $An$

admissible process $(x_{0}(\cdot), u_{0}(\cdot))$ is a minimizing process for (P) if and only if
the following conditions are satisfied.

(i) There exists a locally absolutdy continuous function $p:[0, \infty)arrow \mathbb{R}^{n}$ such
that

(a) $-\dot{p}(t)\in\partial_{x}H(t,x_{0}(t),p(t))a.e$ . $t\in[0, \infty)$ ,
(b) $H_{P}(t,x_{0}(t),u_{0}(t),p(t))=H(t,x_{0}(t),p(t))a.e$ . $t\in[0, \infty)$ ,
(c) $-p(t)\in\partial_{x}V(t, x_{0}(t))$ for every $t\in[0, \infty)$ ,

(ii) $\lim_{tarrow\infty}V(t,x_{0}(t))=0$ .

5.2 Transversality Condition at Inflnity

To derive a sharper result on the transversality condition at infinity, one must
specify the problem in more detail. The following hypothesis is in accordance
with the standard conditions in economic growth theory such as Benveniste and
Scheinkman [12] and Takekuma [36].

Hypothesis 5.2. (i) $\Omega(t)\subset \mathbb{R}_{+}^{n}$ for every $t\in[0, \infty)$ .
(ii) $0\in U(t)$ a.e. $t\in[0, \infty)$ .

(iii) $f(t, 0,0)=0$ a.e. $t\in[0, \infty)$ .

(iv) $L(t,0,0)\leq 0$ a.e. $t\in[0, \infty)$ .

(v) $L(t, \cdot,u)$ is nondecreasing on $\Omega(t)$ for every $u\in U(t)$ a.e. $t\in[0, \infty)$ .

Theorem 5.2. Suppose that Hypotheses 3.1, 4.1, 5.1 and 5.2 are satisfied. $An$

admissible process $(x_{0}(\cdot),u_{0}(\cdot))$ is a minimizing process for (P) if and only if
there exists a locally absolutely continuous function $p:[0, \infty)arrow \mathbb{R}^{n}$ such that
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(i) $-\dot{p}(t)\in\partial_{x}H(t,x_{0}(t),p(t))a.e$. $t\in[0, \infty)$ ;

(ii) $H_{P}(t, x_{0}(t),u_{0}(t),p(t))=H(t,x_{0}(t),p(t))a.e$ . $t\in[0, \infty)$ ;

(iii) $-p(t)\in\partial_{x}V(t,x_{0}(t))$ for every $t\in[0, \infty)$ ;

(iv) $\lim_{tarrow\infty}\langle p(t),$
$x_{0}(t)\rangle=0$ .

While the transversality condition at infinity:

$\lim_{tarrow\infty}\langle p(t),x_{0}(t)\rangle=0$ ,

is familiar in economic growth theory, the derivation of this condition as a
necessary and sufficient condition for optimality in optimal control is novel in
the literature. Aseev and Kryaziimskiy [3] obtained this as a necessary condition
for optimality under somewhat restrictive smoothness assumptions with quas\’i-
linear control systems.

For convex problems of Lagrange in calculus of variations, Araujo and Scheinkman
[2], Benveniste and Scheinkman [12] and Takekuma [36] obtained this condition
as a necessary and sufficient condition for optimality for the nonsmooth case and
Becker and Boyd [10] did so for the smooth case. For the derivation of the vari-
ant of this condition as a necessary condition in nonconvex smooth problems of
Lagrange in calculus of variations with unbounded integrands, see Kamihigashi
[25].

A Properties of the Value Function and the Hamil-
tonian

We have assumed in Hypothesis 3.1(v) that $V(t, \cdot)$ is Lipschitz of rank $K$ on
$x_{0}(t)+\epsilon B$ for every $t\in[0, \infty)$ . In Appendix A. 1, we demonstrate the continuity
of $V$ on the $\epsilon$-tube about $x_{0}(\cdot)$ and the Lipschitz continuity of $V(t, \cdot)$ under the
existence of a minimizing process for any initial condition. For the finite horizon
case, the result is well-known (see, for instance, Vinter [38, Proposition 12.3.5]),
but some intricate arguments are involved for the infinite horizon case concern-
ing the integrability of the integrand and the interiority of the minimizing arcs.

The convexity of the value function is proven in Appendix A.2 under some
additional assumptions. The concavity of the Hamiltonian is demonstrated in
Appendix A.3.

A.l Lipschitz Continuity of the Value Function
Theorem A.1. Suppose that Hypothesis 3.1 is satisfied. Then, $V$ is continuous
on the $\epsilon$ -tube about $x_{0}(\cdot)$ .

We extend the notion of an $\epsilon$-tube. Let $\theta_{e}$ : $[0,$ $\infty)arrow \mathbb{R}$ be a positive
measurable function given by $\theta_{\epsilon}(s)=\epsilon\exp(\int_{0}^{s}k_{f}(\tau)d\tau)$ for $s\in[0, \infty)$ with
$\epsilon>0$ . An extended $\epsilon$ -tube about continuous function $x$ : $[t, \infty)arrow \mathbb{R}^{n}$ is of the
form:

$T(x(\cdot);\theta_{e})$ $:=\{(s, x)\in[t, \infty)x\mathbb{R}^{n}|x\in x(s)+\theta_{\epsilon}(s)B\}$ .
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Hypothesis A.l. There exists some $\epsilon>0$ such that, for every $(t,x)\in\Omega$ ,
there exists a minimizing process $(x(\cdot|t, x), u(\cdot|t, x))$ on $[t, \infty)$ with the
initial condition $x(t|t, x)=x$ such that the extended $\epsilon$-tube about $x(\cdot|t, x)$ is
contained in $\Omega$ .

Without loss of generality, we may assume that $x_{0}($ . $)=x(\cdot|0, x_{0})$ .

Theorem A.2. Suppose that the conditions (i) to (iv) of Hypothesis 3.1, and
Hypothesis A.l, are satisfied. Then, $V(t, \cdot)$ is Lipschitz of rank $K$ on $x_{0}(t)+ \frac{e}{2}B$

for every $t\in[0, \infty)$ .

A.2 Convexity of the Value ]iUnction

Define the set-valued mapping $\Gamma:\Omega\Rightarrow \mathbb{R}\cross \mathbb{R}^{n}$ by:

$\Gamma(t, x)=\{(v, w)\in \mathbb{R}^{n}\cross \mathbb{R}|\exists u\in U(t) : w\geq L(t, x, u), v=f(t,x, u)\}$,

and the set $M$ by:

$M=\{(t, x, u)\in[0, \infty)\cross \mathbb{R}^{n}\cross \mathbb{R}^{m}|(x,u)\in\Omega(t)\cross U(t)\}$ .

Hypothesis A.2. (i) $L$ and $f$ are continuous on $M$ .

(ii) $-$oo $<V(t, x)$ for every $(t, x)\in\Omega$ .
(iii) $\Omega$ and graph $(U)$ are closed.

(iv) $\Omega(t)$ is convex for every $t\in[0, \infty)$ .
(v) $\Gamma(t, \cdot)$ : $\Omega(t)=\mathbb{R}^{n}x\mathbb{R}$ has the convex graph for every $t\in[0, \infty)$ .

The condition (ii) of the hypothesis is automatically satisfied if Hypothesis
A.1 is imposed. The conditions (iv) and (v) of the hypothesis are somewhat
stronger than the standard convexity hypothesis guaranteeing the existence of
a minimizing process that $\Gamma(t, \cdot)$ is convex-valued for every $t\in[0, \infty)$ . (See
Balder [6], Bates [8], Baum [9], Bell et al. [11], Feinstein and Luenberger [21]. $)$

Theorem A.3. Suppose that Hypothesis A.2 is satisfied. Then, $V(t, \cdot)$ is convex
on $\Omega(t)$ for every $t\in[0, \infty)$ .

A.3 Concavity of the Hamiltonian
The concavity of the Hamiltonian is subtler than the convexity of the value
function. Specifically, Hypothesis A.2, guaranteeing the convexity of the value
function $V(t,x)$ in $x$ , is insufficient to establish the concavity of the Hamiltonian
$H(t, x,p)$ in $x$ .

Note that, by (4.5), for every $(t,x,p)\in[0, \infty)\cross \mathbb{R}^{n}\cross \mathbb{R}^{n}$ :

$H(t,x,p)= \sup_{v\in R^{n}}\{\langle p,v\rangle-F(t,x,v)\}$ .

Thus, $H(t,x,p)$ is concave in $x$ if $F(t, x, v)$ is convex in $(x, v)$ . As shown by
Feinstein and Luenberger [21], the following hypothesis is sufficient for $F(t, \cdot, \cdot)$

to be a convex function on $\Omega(t)x\mathbb{R}^{n}$ for every $t\in[0, \infty)$ , from which the
concavity of the Hamiltonian follows.
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Hypothesis A.3. (i) $\Omega(t)\cross U(t)$ is convex for every $t\in[0, \infty)$ .

(ii) $L(t, \cdot, \cdot)$ is convex on $\Omega(t)\cross U(t)$ for every $t\in[0, \infty)$ and $L(t, x, \cdot)$ is
nondecreasing on $U(t)$ for every $(t, x)\in\Omega$ .

(iii) $f(t, \cdot, \cdot)$ : $\Omega(t)\cross U(t)arrow \mathbb{R}^{n}$ is concave for every $t\in[0, \infty)$ .

(iv) $f(t, \cdot, U(t))$ : $\Omega(t)\supset \mathbb{R}^{n}$ has the convex graph for every $t\in[0, \infty)$ .
(v) For every $v\in f(t,x, U(t))$ and $u\in U(t)$ with $v\leq f(t, x, u)$ and $x\in\Omega(t)$ ,

there exists some $u’\in U(t)$ such that $u’\leq u$ and $v=f(t, x, u’)$ .

Theorem A.4. $H(t, \cdot,p)$ is concave on $\mathbb{R}^{n}$ for every $(t,p)\in[0, \infty)\cross \mathbb{R}^{n}$ if
Hypothesis A.3 is satisfied.

Note also that the conditions (i) to (iii) and (v) of the hypothesis imply
Hypothesis A.2 and, thus, the convexity of the value function.
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