FINITELY GENERATED SEMIGROUPS WITH SUCH A PRESENTATION THAT ALL THE CONGRUENCE CLASSES ARE CONTEXT-FREE LANGUAGES*

KUNITAKA SHOJI DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY MATSUE, SHIMANE, 690-8504 JAPAN

Abstract In this paper, we investigate finitely generated semigroups with such a presentation that all the congruence classes are context-free languages.

A monoid M is called *finitely generated* if there exists a finite set of X and there exists a surjective homomorphism of X^* to M which maps an empty word onto the identity element of M.

1. Presentations of monoids

Definition 1. (1) Let X be finite alphabets and R a subset of $X^* \times X^*$. Then R is string-rewriting system.

(2) For $u, v \in X^*$, $(w_1, w_2) \in R$, $uw_1v \Rightarrow_R uw_2v$.

The congruence μ_R on X^* generated by \Rightarrow_R is the Thue congruence defined by R.

(3) A monoid M is (finitely) presented if there exists a (finite) set of X, there exists a surjective homomorphism ϕ of X^{*} to S and there exists a (finie) string-rewriting system R consisting of pairs of words over X such that the Thue congruence μ_R is the congruence $\{(w_1, w_2) \in X^* \times X^* \mid \phi(w_1) = \phi(w_2)\}.$

Definition 2. A monoid M has a presentation with [finite, regular, contex-free] congruence classes if there exists a finite set X and there exists a surjective homomorphism ϕ of X^+ to M such that for each words $w \in X^+$, $\phi^{-1}(\phi(w))$ is a [finite, regular, contex-free] language.

^{*}This is an absrtact and the paper will appear elsewhere.

2. Syntactic monoids of languages and finitely generated presented monoids

Definition 3. Let A be finite alphabets and A^* the set of words over A. A subset L of A^* is called a language. The syntactic congruence σ_L on A^* is defined by $w\sigma_Lw'$ $(w, w' \in A^*)$ if and only if $\{(x, y) \in A^* \times A^* \mid xwy \in L\} = \{(x, y) \in A^* \times A^* \mid xw'y \in L\}$. Then a factor monoid A^*/σ_L is called the syntactic monoid of L.

Example 1. $A = \{a_1, \dots, a_n\}$. For any $w = b_1 b_2 \cdots b_r$, let $w^R = b_r \cdots b_2 b_1$. Let $L = \{ww^R | w \in A^*\}$. Then

(1) L is a context-free language which is not accepted by any deterministic pushdown automata.

(2) Syn(L) is the free monoid A^* on A.

That is, $\phi: A^* \to Syn(L)(w \mapsto \sigma_L w)$ is an isomorphism.

Definition 4. Let M be a monoid and m an element of M. The syntactic congruence σ_m on M is defined by $s\sigma_m t$ $(s, t \in M)$ if and only if $\{(x, y) \in M \times M \mid xsy = m\} = \{(x, y) \in M \times M \mid xty = m\}.$

The factor monoid M/σ_m is called the syntactic monoid of M at m.

Lemma 1. Let L be a language of X^* . Then L is a union of σ_L -classes in X^* .

Proposition 1. Let L be a language of A^* and L^c the complement of the set L in A^* . Then $Syn(L) = Syn(L^c)$.

Theorem 1 . Let L be a language of X^* . Then the following are equivalent :

(1) L is a σ_L -class in X^* .

(2) $xLy \cap L \neq \emptyset$ $((x, y \in X^*) \Rightarrow xLy \subseteq L.$

(3) L is an inverse image $\phi^{-1}(m)$ of a homomorphism ϕ of X^{*} to a monoid M.

Theorem 2. (Shoji [S]) Let M be a finitely generated monoid and ϕ a surjective homomorphism of A^* to M. For m an element of M, let $L = \phi^{-1}(m)$.

Then the syntactic monoid $Syn(L) = A^*/\sigma_L$ of L is isomorphic to the syntactic monoid M/σ_m of M at m.

3. Finitely generated semigroups with such a presentation that all the congruence classes are context-free languages

Theorem 3. (Shoji [S]) A finitely generated semigroup S has a presentation with regular congruence classes if and only if for any $s \in S$, S/σ_s is a finite semigroup.

Theorem 4 . (Shoji [S]) Let S be a finitely generated semigroup. Then S has a presentation with finite congruence classes if and only if the following are satisfied :

- (1) S has no idempotent.
- (2) For any $s \in S$, S/σ_s is a finite nilpotent semigroup with a zero element 0.

Example 2. Let $A = \{a, b\}$ and a context-free language $L = \{a^n b^n, b^n a^n | n \in \mathbb{N}\}$. Then all of σ_L -classes are $\{1\}$, $\{ab\}$, $\{a^n\}$, $\{b^n\}$, $c_n = \{a^{p+n}b^p | p \in \mathbb{N}\}$, $d_n = \{a^q b^{q+n} | q \in \mathbb{N}\}$, $\{ba\}$, $e_n = \{b^p a^{p+n} | p \in \mathbb{N}\}$, $f_n = \{b^{q+n}a^q | q \in \mathbb{N}\}$. Hence Syn(L) has a regular crosssection. Also, $Syn(L) - \{1\}$ is a \mathcal{D} -class. Syn(L) has a representation with context-free congruence classes.

Example 3. Let $A = \{a, b\}$ and $G : S \to SSS|aSb|\epsilon$. Then G is a context-free grammar and its accepted language L(G) equals to $\{a^n b^n | n \ge 0\}$.

The syntactic monoid Syn(L(G)) has the presentation $A^*/\{ab = 1\}$. It is easily seen that Syn(L(G)) has a representation with context-free congruence classes.

Example 4. Let $A = \{a_1, \dots, a_r\} \cup \{b_1, \dots, b_r\}$ and F(A) the free inverse semigroup over A. Then there exists the canonical map $\phi : A^* \to F(A)$ $(b_i \mapsto a_i^{-1})$ such that for each $w \in F(A)$, $\phi^{-1}(w)$ is not a context-free language. Thus, Free inverse semigroups do not have a representation with context-free congruence classes.

Remark. Even a monogenic free inverse smigroup do not have any representation with context-free congruence classes.

Result 1. For every finitely generated group G, there exists a language L of A^* such that G is isomorphic to Syn(L).

Result 2. (Muller and Schupp [MS]) (1) Every finitely generated vertually free group G has a (monoid)-representation with context-free congruence classes.

(2) Conversely, if a finitely generated group G has a (monoid)- representation with contextfree congruence classes then G is a vertually free group. **Theorem 5**. Let S be a semigroup having a representation with context-free congruence classes. If S is a completely (0-) simple semigroup, then both the \mathcal{L} -classes and the \mathcal{R} -classes of S is finite and the maximal subgroup is vertually free.

Theorem 6. Let S be a finitely generated submonoids of a vertually free group G. Then S is a cancellative monoid having a representation with context-free congruence classes.

Example 5. Let A be finite alphabets containing $\{a, b, c\}$. Let $R = \{(acb, c)\}$ be a string-rewriting system on A^* . The monoid $M = A^*/\mu_R$ has a representation with context-free congruence classes. Moreover, M is a cancellative monoid which is embedded in a group $G = \langle a, b, c | c^{-1}ac = b^{-1} \rangle$ which is not vertually context-free.

Theorem 7. Let M_1 , M_2 be a finitely generated monoids having a presentation with context-free congruence classes. Then the free product $M_1 * M_2$ of M_1 , M_2 has a presentation with context-free congruence classes.

References

- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 26(1985), 449-457.
- [2] J. E. Hopcroft and J. D. Ullman, Introduction to Automata theory, Languages, and Computation, Addison-Wesley Publishing, 1979.
- [3] Muller and Schupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci. 26(1983), 295-310.
- [4] K. Shoji, Finitely generated semigroups having presentation with regular congruence classes, Math. Japonicae (2008), -.