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1. INTRODUCTION
Let $S$ be a polynomial ring over a field $K$ . Let $I\subset S$ be a monomial

ideal unless otherwise specified, and $G(I)=\{m_{1}, \ldots, m_{\mu}\}$ the minimal set of
monomial generators of $I$ . Set $\mu(I)=\mu$ .

For a monomial ideal $I\subset S$ , Taylor [15] constructed an explicit graded free
resolution of $S/I$ :

$T$. $:0arrow T_{\mu}arrow^{d_{\mu}}T_{\mu-1^{arrow}}^{d_{\mu-1}}\cdotsarrow^{d_{1}}T_{0}arrow S/Iarrow 0$ ,
where free basis of $T_{s}$ are

$e_{i_{1}\cdots i_{\iota}}$ , $1\leq i_{1}<.$ . . $<i_{s}\leq/\iota$

with the degree
$\deg e_{i_{1}\cdots i_{s}}=$ deg lcm$(m_{i_{1}}, \ldots, m_{i_{\epsilon}})$ ,

and the differential $d_{s}$ is given by

$d_{s}(e_{i_{1}\cdots i_{\delta}})= \sum_{j=1}^{s}(-1)^{jarrow 1}\frac{1cm(m_{i_{1}}.’\ldots,m_{i_{s}}.)}{1cm(m_{i_{1}},..,\overline{m_{i_{j};}}..,m_{i_{s}})}e_{i_{1}\cdots\hat{i_{j}}\cdots i_{s}}$.

This resolution is called the Taylor resolution of $I$ . Although the Taylor reso-
lution is explicit, it is far from a minimal graded free resolution of $I$ in general.

Later, Lyubeznik [10] found a graded free resolution of $S/I$ as a subcomplex
of the Taylor resolution of $I$ , which is called a Lyubeznik resolution of $I$ . It
is generated by all L-admissible symbols $e_{i_{1}\cdots i_{s}}$ , where we say a symbol $e_{i_{1}\cdots i_{s}}$

is L-admissible if $m_{q}$ does not divide lcm $(m_{i_{t}}, 7\gamma\iota_{i_{t+1}}, \ldots, m_{i_{\epsilon}})$ for all $t<s$ and
for all $q<i_{t}$ . Note that a Lyubeznik resolution of $I$ depends on the order of
monomial generators of $I$ , although the Taylor resolution of $I$ is determined
by $I$ uniquely. The length of a Lyubeznik resolution of $I$ also depends on the
order of monomial generators of $I$ . We define the L-length of $I$ as the minimum
length of Lyubeznik resolutions of $I$ .

On the other hand, the arithmetical rank of $I$ is defined by

ara $I$ $:= \min\{r$ : there exist $a_{1},$ $\ldots,$
$a_{r}\in S$ such that $\sqrt{(a_{1}}$, $a_{r}$ ) $=\sqrt{I}\}$ .

By the definition, we have ara $I\leq\mu(I)$ . Note that $\mu(I)$ is equal to the length of
the Taylor resolution of $I$ . On the other hand, we have the following theorem,
which is the main theorem in this report:
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Theorem 1.1. Let $I\subset S$ be a monomial ideal. Let $\lambda$ be the L-length of $I$ .
Then

ara $I\leq\lambda$ .

Moreover, we assume that $I$ is squarefree. Then by the result of Lyubeznik
[9], we have that the arithmetical rank of $I$ is bounded from below by the
projective dimension of $S/I$ , denoted by $pd_{s}S/I$ . That is,
(1.1) height $I\leq$ pd$s^{S}/I\leq$ ara $I\leq\mu(I)$ .

Then it is natural to ask when ara $I=$ pd$s^{S}/I$ holds. If $I$ is complete in-
tersection ($i.e.,$ $\mu(I)=$ height $I$ holds) or $\mu(I)=pd_{S}S/I$ holds, then we
have ara $I=pd_{S}S/I$ immediately by (1.1). Schmitt-Vogel [14] (see also
Schenzel-Vogel [13] $)$ proved the equality when arithdeg $I=$ indeg $I$ holds (in
this case, the Alexander dual ideal of $I$ is complete intersection). Barile-Terai
[5], Morales [11] proved the equality when $I$ has a 2-linear resolution. The
author proved the equality when $\mu(I)-$ height $I\leq 2$ together with Terai and
Yoshida; see [7], [8]. On the other hand, we have the following corollary:
Corollary 1.2. Let $I\subset S$ be a squarefree monomial ideal and $\lambda$ the L-length
of I. Suppose $\lambda=pd_{S}S/I$ . Then ara $I=pd_{s}S/I$ holds.

In particular, the Lyubeznik resolution of I with respect to some order of
monomial generators of I is minimal; then the same assertion holds true.

Barile [1], [2], [4] and Novik [12] found some classes of squarefree monomial
ideals one of whose Lyubeznik resolutions is minimal.

In Section 2, we show the key points of the proof of Theorem 1.1. But we
do not state the detailed proof, which can be seen in [6]. In Section 3, we give
some examples to explain the limit and the usability of Theorem 1.1.

2. OUTLINE OF THE PROOF OF THEOREM 1. 1

Let $I=(m_{1}, \ldots, m_{\mu})\subset S$ be a monomial ideal. We may assume that the
L-length of $I$ , denoted by $\lambda$ , is equal to the length of the Lyubeznik resolu-
tion of $I$ with respect to this order. We shall find $a_{1},$ $\ldots,$

$a_{\lambda}\in I$ such that
$\sqrt{(a_{1}}$, $a_{\lambda})=\sqrt{I}$. In fact, the following $\lambda$ elements satisfy this condition:

$\{\begin{array}{l}a_{1}=m_{1},a_{2}=m_{2}+.\sum_{11*1,i_{2},\ldots.i_{\lambda- 1}\in L_{\lambda- 1} ,i_{1}\geq3}m_{i_{1}}m_{i_{2}}\cdots m_{i_{\lambda-1}},:a_{\ell}=m_{\ell}+1_{1^{t_{2},\ldots,i_{\lambda-\ell+1}|\in L_{\lambda-}p+1}},\sum_{:_{1}\underline{>}p_{+1}}m_{i_{1}}m_{i_{2}}\cdots m_{i_{\lambdaarrow\ell+1}},:.a_{\lambda}=m_{\lambda}+.\sum_{1\backslash \geq\lambda+1}m_{i_{1}}=m_{\lambda}+7n_{\lambda+1}+\cdots+n\iota_{\mu}|i_{1})\in L_{1}"\end{array}$
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where

$L_{s}:=\{[i_{1}, i_{2}, \ldots, i_{s}]\in \mathbb{N}^{s}:e_{i_{1}i_{2}\cdots i_{s}}isL- admissib1e1\leq i_{1}<i_{2}<\cdots<i_{s}\leq\mu(I)\}$ .

The L-admissibility plays an important role on this taking. First, we give an
example to see properties of the L-admissibility.

Example 2.1. Let $I$ be the squarefree monomial ideal generated by the fol-
lowing 5 elements:

$m_{1}=x_{1}x_{2}x_{4},$ $m_{2}=x_{1}x_{2}x_{3},$ $m_{3}=x_{1}x_{5},$ $m_{4}=x_{2}x_{3}x_{6},$ $m_{5}=x_{4}x_{6}$ .
Then, is $e_{34}$ L-admissible? This is false because lcm $(m_{3}, m_{4})=x_{1}x_{2}x_{3}x_{5}x_{6}$ is
divisible by $m_{2}$ . Now, is $e_{124}$ L-admissible? This is true. To see this, we have
to check 3 conditions: about lcm$(m_{4})$ ; lcm$(m_{2}, m_{4})$ ; lcm$(m_{1}, m_{2}, m_{4})$ . First,
lcm$(m_{4})$ is not divisible by $m_{1},$ $m_{2},$ $m_{3}$ because these are a part of the minimal
system of monomial generators of $I$ . Second, lcm$(m_{2}, m_{4})=x_{1}x_{2}x_{3}x_{6}$ and it
is not divisible by $m_{1}=x_{1}x_{2}x_{4}$ . Lastly, we have to check the condition about
lcm$(m_{1}, m_{2}, m_{4})$ , but there are nothing to do because there are no generators
before $m_{1}$ .

The observation in Example 2.1 yields the following lemma:

Lemma 2.2. Suppose $[i_{1}, \ldots, i_{s}]\in L_{s}$ .
(1) $[i_{j_{1}}, \ldots, i_{j_{t}}]\in L_{t}$ for all $t<s$ and for all $1\leq j_{1}<\cdots<j_{t}\leq s$ .
(2) If $i_{1}>1$ , then $[1, i_{1}, \ldots, i_{s}]\in L_{s+1}$ . In particular, if $[i_{1}, \ldots, i_{\lambda}]\in L_{\lambda}$ ,

then $i_{1}=1$ .
(3) Suppose $p<i_{1}$ . If $[\ell, i_{1}, \ldots, i_{s}]\not\in L_{s+1}$ , then there enists some integer

$q<\ell$ such that $m_{q}$ divides $m_{\ell}m_{i_{1}}\cdots m_{i_{s}}$ .

Proof. (1) The conditions for $e_{i_{j_{1}}\cdots i_{j_{t}}}$ to be L-admissible is weaker than those
for $e_{i_{1}\cdots i_{s}}$ to be L-admissible.

(2) This assertion follows from the note at the end of Example 2.1.
(3) The assumptions $[i_{1}, \ldots, i_{s}]\in L_{s}$ and $[\ell, i_{1}, \ldots, i_{s}]\not\in L_{8+1}$ imply that the

condition about lcm $(m_{\ell}, m_{i_{1}}, \ldots, m_{i_{s}})$ is not satisfied. $\square$

As this, Lemma 2.2 follows immediately by the definition of the L-admissibility,
but it plays a key role in the proof of Theorem 1.1.

Next, we give an example to explain how to take $\lambda$ elements.

Example 2.3. Let $I$ be the same ideal as in Example 2.1 with the same order
of monomial generators of $I$ . For this ideal, $\lambda=pd_{S}S/I=3$ . Sets $L_{1},$ $L_{2},$ $L_{3}$

are given by the following:
$L_{1}=\{[1], [2], [3], [4], [5]\}$ ,

$L_{2}=\{[1,2], [1,3], [1,4], [1,5], [2,3], [2,4], [3,5], [4,5]\}$ ,
$L_{3}=\{[1,2,3], [1,2,4], [1,3,5], [1,4,5]\}$ .

All elements in $L_{3}$ contain 1, which is based on Lemma 2.2 (2). Thus we
take $m_{1}$ . Next, we focus on $L_{2}$ , and ignore elements which contain 1. Then
the rests are elements containing 2 and [3, 5], [4, 5]. Therefore we take $m_{2}+$
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$m_{3}m_{5}+m_{4}m_{5}$ . Finallv in $L_{1}$ . we ignore [1], [2]. and from the rests. we take
$m_{3}+m_{4}+m_{5}$ . Then we have

$\sqrt{I}=\sqrt{(m_{1}m_{2}+m_{3}nlDr+m_{4}m_{5}m_{3}+m_{4}+\gamma\gamma\iota_{o})}$.

The key is this arrangement of monomial generators $m_{1}.m_{2},$ $\ldots,$ $m_{5}$ . It is
also true for general monomial ideals. Then we can use the L-admissibility
effective.

3. EXAMPLES
First, we give an example of squarefree monomial ideals which satisfy the

assumption of Corollary 1.2.

Example 3.1. Let $I\subset S$ be a squarefree monomial ideal. If $\mu(I)-$ pd$s^{S}/I\leq$

$1$ , then the L-length of $I$ is equal to the projective dimension of $S/I$ . Moreover,
if $/\iota(I)-$ height $I\leq 1$ , then the Lyubeznik resolution of $I$ with respect to some
order of monomial generators of $I$ is minimal.

For example,
$I_{1}=(x_{1}x_{2}x_{3}, x_{4}x_{5}x_{6}, x_{1}x_{4}, x_{2}x_{5}, x_{3}x_{6})$

satisfies $/l(I_{1})-$ pd$s^{S}/I_{1}=1$ and the length of the Lyubeznik resolution of
$I_{1}$ with respect to this order of monomial generators is equal to pd$s^{S}/I_{1}=4$ .
Also,

$I_{2}=(x_{1}x_{2}x_{3}, x_{1}x_{4}, x_{2}x_{5}, x_{3}x_{6})$

satisfies $\mu(I_{2})$ –height $I_{2}=1$ and the Lyubeznik resolution of $I_{2}$ with respect
to this order of monomial generators is minimal. For more details about these
ideals, see [7, Section 2].

The next example implies the limit of Theorem 1.1.

Example 3.2. Let $I=(m_{1}, m_{2}.m_{3}.m_{4})\subset S$ be a squarefree monomial ideal.
Then $\mu(I)=4$ . Suppose that height $I=2$ and $S/I$ is Cohen-Macaulay. Then
pd$s^{S}/I=$ height $I=2$ and $\mu(I)$ –height $I=2$ . Thus we have ara $I=$
$pd_{S}S/I=2$ by [8, Theorem 4.1, Proposition 4.4].

If there exists a generator. say $m_{1}$ , such that $m_{1}$ divides $m_{2}m_{3},$ $m_{2}m_{4},$ $m_{3}m_{4}$ ,
then the Lyubeznik resolution of $I$ with respect to this order is minimal. Oth-
erwise, the L-length of $I$ is equal to 3 and it is bigger than pd$s^{S}/I=$ ara $I=2$ .

For example,
$I_{1}=(x_{1}x_{2}x_{3}.x_{1}x_{2}x_{4}.x_{1}x_{3}x_{4}, x_{2}x_{3}x_{5})$

satisfies the former condition and
$I_{2}=(x_{1}x_{2}x_{3}, x_{1}x_{2}x_{4}, x_{1}x_{3}x_{5}, x_{2}x_{4}x_{5})$

satisfies the latter condition.

Lastly. we give an example which shows the usability of Theorem 1.1.

Example 3.3. Let $I\subset S$ be the Stanley Reisner ideal of the following trian-
gulation of the projective plane with 6 vertices:
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That is, $I$ is generated by the following 10 elements:

$x_{1}x_{2}x_{3},$ $x_{1}x_{2}x_{5_{7}}x_{1}x_{3}x_{6},$ $x_{1}x_{4}x_{5},$ $x_{1}x_{4}x_{6},$ $x_{2}x_{3}x_{4},$ $x_{2}x_{4}x_{6},$ $x_{2}x_{5}x_{6},$ $x_{3}x_{4}x_{5},$ $x_{3}x_{5}x_{6}$ .

Then $\mu(I)=10$ , height $I=3$ , and

$pd_{S}S/I=\{\begin{array}{l}3 when char K\neq 2,4 when char K=2.\end{array}$

Yan [16] proved that ara $I=4$ .
The length of the Taylor resolution of $I$ is equal to $\mu(I)=10$ , which is

rather bigger than ara $I=4$ . On the other hand, the L-length of $I$ is equal to
4, which is equal to ara $I$ , although pd$s^{S}/I=3<4$ when char $K\neq 2$ .
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