
ON THE COHOMOLOGY OF CONGRUENCE SUBGROUPS OF $SL_{4}(\mathbb{Z})$

PAUL E. GUNNELLS

ABSTRACT. We survey our joint work with Avner Ash and Mark McConnell that compu-
tationally investigates the cohomology of conguence subgroups of $SL_{4}(\mathbb{Z})$ .

1. INTRODUCTION

Let $G$ be a semisimple algebraic group defined over $\mathbb{Q}$ and let $\Gamma\subset G(\mathbb{Q})$ be an arithmetic
group. The cohomology $H^{*}(\Gamma;\mathbb{C})$ plays an important role in number theory, in that it pro-
vides a concrete realization of certain automorphic forms (\S 2). For instance, if $G=$ SL2
and $\Gamma$ is a congruence subgroup, then by the Eichler-Shimura isomorphism the cohomol-
ogy space $H^{1}(\Gamma;\mathbb{C})$ is built from weight two modular forms of level $N$ (\S 2.4). Not every
automorphic form can appear in the cohomology of an arithmetic group, but those that
do are widely believed to be related to arithmetic geometry, such as Galois representations
and motives (\S 3). The cohomology and its structure as a Hecke module can be computed
very explicitly in many cases. Thus the cohomology of arithmetic groups provides a tool to
formulate and test conjectures about the links between automorphic forms and arithmetic.

In a series of paper $wIth$ Avner Ash and Mark McConnell [8-10], we have investigated
the group cohomology for $G=SL_{4}$ and $\Gamma=\Gamma_{0}(N)$ the congruence subgroup of SL$4(\mathbb{Z})$

with bottom row congruent to $(0,0,0, *)mod N$. Our work has focused on a particular
cohomology space attached to $\Gamma$ , namely $H^{5}(\Gamma;\mathbb{C})$ . (The choice of degree 5 is explained
below.) We have computed the dimension of this cohomology space for prime levels $N\leq$

$211$ , and in many cases have computed the action of the Hecke operators.
The purpose of this note is to give an introduction to [8-10] and to explain how we

perform these computations (\S 4). We also discuss our computational results (\S 5), which
indicate relationships between $H^{5}(\Gamma;\mathbb{C})$ and elliptic modular forms, the cohomology of
subgroups of $SL_{3}(\mathbb{Z})$ , and certain Siegel modular forms, the paramodular forms.
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2. COHOMOLOGY AND AUTOMORPHIC FORMS

In this section we briefly explain what the cohomology of arithmetic groups has to do
with automorphic fcrms. For more information we refer to [13, 14, 22, 30, 36, 38, 42].

2.1. Let $G$ be a semisimple connected algebraic group defined over $\mathbb{Q}$ , and let $\Gamma\subset G(\mathbb{Q})$

be an arithmetic subgroup. Let $E$ be a finite-dimensional rational complex representation
of $G(\mathbb{Q})$ . Then $E$ is naturally a $\mathbb{Z}\Gamma$-module, and we are interested in the group cohomology
$H^{*}(\Gamma;E)$ .

We can compute $H^{*}(\Gamma;E)$ topologically as follows. Let $G=G(\mathbb{R})$ be the group of real
points of $G;G$ is a semisimple Lie group. Let $K\subset G$ be a maximal compact subgroup,
and let $X=G/K$ be the associated global symmetric space. The space $X$ is contractible
with a left $\Gamma$-action. If $\Gamma$ is torsion-ffee, then $\Gamma\backslash X$ is an Eilenberg-Mac Lane space, and
we have

(2.1) $H^{*}(\Gamma;E)=H^{*}(\Gamma\backslash X;d)$ ,

where 8 is the local coefficient system on the manifold $\Gamma\backslash X$ attached to $E$ . In fact, since
we consider only complex representations $E$ , the isomorphism (2.1) holds even if $\Gamma$ has
torsion. In this case the quotient $\Gamma\backslash X$ is an orbifold, but nevertheless one can construct a
local system 8 on the quotient such that (2.1) remains true.

2.2. The first step in getting automorphic forms into the picture is the de Rham theorem.
Let $\Omega^{p}=\Omega^{p}(X, E)$ be the space of E-valued $\Psi$forms on $X$ , and let $\Omega^{p}(X, E)^{\Gamma}$ be the
subspace of $\Gamma$-invariant forms. We have a differential $d:\Omega^{p}arrow\Omega^{p+1}$ and an isomorphism
of cohomology spaces [13, Theorem 2.2.2]

$H^{*}(\Gamma;E)=H^{*}(\Omega^{*}(X, E)^{\Gamma})$ .

Now recall that $X=G/K$. Let $\mathfrak{g}$ (respectively t) be the Lie algebra of $G$ (resp. $K$). We
can identi$\mathfrak{h}r$ the tangent space to $X$ at the basepoint with the quotient $\mathfrak{g}/t$ . Since differential
forms are sections of the exterior powers of the tangent bundle, one can show [42, Prop. 1.5]

$\Omega^{p}(\Gamma\backslash X, \mathbb{C})=Hom_{K}(\wedge^{p}(\mathfrak{g}/t), C^{\infty}(\Gamma\backslash G))$ ,

where on the right we take complex-valued smooth functions on $\Gamma\backslash G$ , and where $K$ acts on
$\wedge^{p}(\mathfrak{g}/e)$ by the adjoint action and on $C^{\infty}(\Gamma\backslash G)$ by right translations. More generally, if we
want cohomology with coefficients, then we take E-valued differential forms, and we have

(2.2) $\Omega^{p}(\Gamma\backslash X, E)=Hom_{K}(\wedge^{p}(\mathfrak{g}/f), C^{\infty}(\Gamma\backslash G)\otimes E)$.
The right hand side of (2.2) inherits a differential from the left. The resulting cohomology
spaces are denoted

$H^{*}(\mathfrak{g}, K;C^{\infty}(\Gamma\backslash G)\otimes E)$ .
This cohomology is called the relative Lie algebra cohomology of $(\mathfrak{g}, K)$ with coefficients in
$E$ , or simply $(\mathfrak{g}, K)$ -cohomology.
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2.3. To summarize, we have identifications

(2.3) $H^{*}(\Gamma;E)=H^{*}(\Gamma\backslash X;^{g})=H^{*}(\mathfrak{g}, K;C^{\infty}(\Gamma\backslash G)\otimes E)$ .
We can use (2.3) to identify important subspaces of the cohomology.

For instance consider the space $L^{2}(\Gamma\backslash G)$ . Let $L_{disc}^{2}(\Gamma\backslash G)\subset L^{2}(\Gamma\backslash G)$ be the discrete
part, and let $L_{cusp}^{2}(\Gamma\backslash G)$ be the subspace of cusp forms [25]. We have inclusions

$L_{cusp}^{2}(\Gamma\backslash G)^{\infty}arrow L_{disc}^{2}(\Gamma\backslash G)^{\infty}arrow C^{\infty}(\Gamma\backslash G)$ ,

where the $\infty$ indicates that we take the subspaces of smooth vectors. These induce a map
$H^{*}(\mathfrak{g}, K;L_{cusp}^{2}(\Gamma\backslash G)^{\infty}\otimes E)arrow H^{*}(\mathfrak{g}, K;C^{\infty}(\Gamma\backslash G)\otimes E)$

that is in fact injective. The image $H_{cusp}^{*}(\Gamma;E)\subset H^{*}(\Gamma;E)$ is called the cuspidal cohomol-
ogy. In a certain sense, this is the most interesting constituent of the cohomology.

Thus $H^{*}(\Gamma;E)$ contains a subspace corresponding to certain cuspidal automorphic forms.
It is natural to ask if the rest of the cohomology can be built from automorphic forms as
well. More precisely, let

$A(\Gamma, G)\subset C^{\infty}(\Gamma\backslash G)$

be the subspace of automorphic forms [25], that is, $A(\Gamma, G)$ is consists of functions of
moderate growth that are right K-finite and left $Z(\mathfrak{g})$-finite, where $Z(\mathfrak{g})$ denotes the center
of the universal enveloping algebra $U(\mathfrak{g})$ . Then we have the following theorem of Franke [17],
which verifies a conjecture of Borel:

Theorem 2.1. [17] The inclusion $A(\Gamma, G)arrow C^{\infty}(\Gamma\backslash G)$ induces an isomorphism
$H^{*}(\mathfrak{g}, K;A(\Gamma, G)\otimes E)arrow H^{*}(\mathfrak{g}, K;C^{\infty}(\Gamma\backslash G)\otimes E)$.

Thus we can think of $H^{*}(\Gamma;E)$ as being a concrete realization of certain automor-
phic forms, namely those whose associated automorphic representations have nonvanish-
ing $(\mathfrak{g}, K)$ -cohomology. The unitary representations with this property were classified by
Vogan-Zuckerman [43]. In general the automorphic forms contributing to the cohomology
are far from typical, in the sense that most automorphic forms cannot appear in the coho-
mology. Nevertheless, those that do are very interesting, and are expected to have direct
connections with arithmetic (cf. \S 3).

2.4. A prototypical example of the connection between cohomology and automorphic forms
is that of $G=$ SL2. In this case we have $G=$ SL$2(\mathbb{R}),$ $K=$ SO(2), and the symmetric
space $X$ is the upper halfplane. Let $\Gamma=\Gamma_{0}(N)\subset$ SL2 $(\mathbb{Z})$ , the subgroup of matrices upper
triangular modulo $N$ . Let $E_{k}$ be the k-dimensional complex representation of $G$ , say on
the vector space of degree $k-1$ homogeneous complex polynomials in two variables. By
work of Eichler and Shimura, we have

$H^{1}(\Gamma;E_{k})\simeq S_{k+1}(\Gamma)\oplus\overline{S}_{k+1}(\Gamma)\oplus Eis_{k+1}(\Gamma)$ ,

where $S_{k+1}$ is the space of holomorphic weight $k+1$ modular forms, $Eis_{k+1}$ is the space of
weight $k+1$ Eisenstein series, and the bar denotes complex conjugation. Thus holomor-
phic modular forms of weights $\geq 2$ appear in the cohomology; Maass forms and weight 1
holomorphic forms do not.
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2.5. In general the quotient $\Gamma\backslash X$ has cohomology in many degrees. Which cohomology
groups are the most interesting?

Clearly $H^{i}(\Gamma\backslash X;8)=0$ if $i>\dim\Gamma\backslash X=\dim X$ . But one actually knows that some-
times the cohomology vanishes in degrees less than this. More precisely, let $q=q(G)$ be
the (Jrank of $G$ , which by definition is the dimension of a maximal torus split over $\mathbb{Q}$ .
Then we have the following theorem of Borel-Serre:

Theorem 2.2. [12] For all $\Gamma$ and $E$ as above, we have $H^{i}(\Gamma;E)=0$ if $i>\dim X-q$ .
The number $\nu=\dim X-q$ is called the virtual cohomological dimension.
One also knows that the cuspidal cohomology does not necessarily appear in every co-

homological degree. In fact, for $SL_{n}$ one can show that $H_{cusp}^{i}(\Gamma;E)=0$ unless the degree
$i$ lies in a small interval about $(\dim X)/2[30]$ . As we shall see, this makes computations
much more difficult to perform for large $n$ . Table 1 shows the cuspidal range for subgroups
of $SL_{n}(\mathbb{Z})$ for $n\leq 9[35]$ .

TABLE 1. The virtual cohomological dimension and the cuspidal range for
subgroups of $SL_{n}(\mathbb{Z})$ .

3. CONNECTIONS WITH ARITHMETIC GEOMETRY

The groups $H^{*}(\Gamma;E)$ have an action of the Hecke operators, which are endomorphisms
of the cohomology associated to certain finite index subgrOups of $\Gamma$ . The eigenclasses of
these operators reveal the arithmetic information in the cohomology. We review this now.
3.1. We begin with Galois representations. Let $G=SL_{n}/\mathbb{Q}$ and let $\Gamma=\Gamma_{0}(N)$ be as in
the introduction. Let Gal(Q/Q) be the absolute Galois group of $\mathbb{Q}$ . Let $\rho$ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q})arrow$

$GL_{n}(\mathbb{Q}_{p})$ be a continuous semisimple Galois representation unramified outside $pN$ . For any
prime $l$ not dividing $pN$ let $Frob_{l}$ be the Frobenius conjugacy class over $l$ . Then we can
consider the characteristic polynomial

$\det(1-\rho(Frob_{l})T)\in \mathbb{Q}_{p}[T]$ .
3.2. On the cohomology side, for each prime $l$ not dividing $N$ we have Hecke operators
$T(l, k),$ $k=1,$ $\ldots,$ $n-1$ . These operators generalize the classical operator $T_{l}$ on modular
forms; for an exposition of these operators and the structure of the algebra they generate,
see [37, Ch. 3]. If $\xi$ is a simultaneous eigenclass for these operators, define the Hecke
polynomial

$H( \xi)=\sum_{k}(-1)^{k}l^{k(k-1)/2}a(l, k)T^{k}\in \mathbb{C}[T]$ .
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where $a(l, k)$ is the eigenvalue of $T(l, k)^{1}$

3.3. Now fix an isomorphism $\varphi:\mathbb{C}arrow\overline{\mathbb{Q}}_{p}$ . Here is one way to express the conjectural
connection between cohomology and arithmetic:

Conjecture 3.1. For any Hecke eigenclass $\xi$ of level $N$ , there is a Galois representation
$\rho$ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q})arrow$ GL$n(\mathbb{Q}_{p})$ unramified outside $pN$ such that for every prime $l$ not dividing
$pN$ , we have

$\varphi(H(\xi))=\det(1-\rho($Frob$\downarrow)T)$ .
This conjecture is a translation to the setting of the cohomology of arithmetic groups of a

more general conjecture of Clozel [15, Conjecture 4.5], which precisely predicts the cuspidal
automorphic representations that should be attached to motives. This is the conjecture
that we are ultimately testing.

We are primarily interested in Conjecture 3.1 in the case of eigenclasses that are not
essentially selfdual. (By definition, a Hecke eigenclass is essentially selfdual if the associated
automorphic representation $\pi$ satisfies $\pi\simeq\tilde{\pi}\otimes\chi$ , where the tilde denotes contragredient
and $\chi$ is a l-dimensional automorphic representation.) This is because in many cases one
knows how to attach motives to essentially selfdual eigenclasses by realizing the motive in
the \’etale cohomology of a Shimura variety (see for instance [16], which treats certain selfdual
classes). For eigenclasses that are not essentially selfdual it is unknown In general how to
do this. In our case, for $n\geq 3$ the symmetric space $\Gamma\backslash X$ is not an algebraic variety, and it
is completely unclear how to directly connect the Galois group with Hecke eigenclasses.

4. TECHNIQUES

In this section, we describe the topological techniques we use to compute the cohomology
and the action of the Hecke operators.

4.1. For modular forms, i.e. the cohomology of subgroups of SL$2(\mathbb{Z})$ , we can use modular
symbols to perform computations. Recall that the symmetric space $X$ in this case is the
upper halfplane. Let $X^{*}=X\cup \mathbb{Q}\cup\{i\infty\}$ , the standard partial compactification of $X$

obtained by adjoining cusps; equip $X^{*}$ with the Satake topology. Given two cusps $q_{1},$ $q_{2}\in$

$X^{*}\backslash X$ , we can form the ideal geodesic in $X$ from $q_{1}$ to $q_{2}$ and can look at its image in
$\Gamma\backslash X^{*}$ . This gives a relative homology class

(4.1) $[q_{1}, q_{2}]\in H_{1}$ ( $\Gamma\backslash X^{*}$ , cusps; $\mathbb{C}$ ) $\simeq H^{1}(\Gamma\backslash X;\mathbb{C})$ .
Let $V$ be the complex vector space generated by the symbols $[q_{1}, q_{2}]$ . Let $S$ be $V$ modulo

the subspace spanned by all elements of form $[q_{1}, q_{2}]+[q_{2}, q_{1}]$ . The group $\Gamma$ acts on $V$ by

$\gamma\cdot[q_{1}, q_{2}]=[\gamma q_{1}, \gamma q_{2}]$ .

lNote that the Hecke polynomial $H(\xi)$ is normalized such that if $H(\xi)$ were used as a local factor for
the L-function of the automorphic representation $\pi\epsilon$ attached to $\xi$ , via the substitution $T=l^{-s}$ , then the
functional equation of the L-function would have the form $L(s, \pi_{\xi})=L(n-s,\tilde{\pi}_{\xi})$ , where the tilde denotes
contragredient. This should be kept in mind when studying the examples in \S 5.
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This action descends to $S$ , and we let $S_{\Gamma}$ be the quotient of coinvariants. The space $S_{\Gamma}$ is
called the space of modular symbols. We obtain a map
(4.2) $S_{\Gamma}arrow H^{1}(\Gamma;\mathbb{C})$

induced by (4.1) whose kernel is easily determined: it is spanned by sums of the form
(4.3) $[q_{1}, q_{2}]+[q_{2}, q_{3}]+[q_{3}, q_{1}]$ .
Let $M_{\Gamma}$ be the quotient of $S_{\Gamma}$ by the subspace generated by (4.3); this space is isomorphic
to $H^{1}(\Gamma;\mathbb{C})$ .

Thus modular symbols provide a combinatorial model for $H^{1}(\Gamma;\mathbb{C})$ . One can also enrich
modular symbols by adding extra data to account for the representation $E_{k}$ from \S 2.4 to
compute with modular forms of higher weights; see [38] for more details.

4.2. The Hecke action on the cohomology can be encoded in an action on the modular
symbols. Suppose we are given a Hecke operator $T_{l}$ . The construction of the Hecke algebra
guarantees that we can find finitely many matrices $\{\gamma_{i}\}\subset$ GL$2(\mathbb{Q})\cap M_{2}(\mathbb{Z})$ such that, if
$\xi=[q_{1}, q_{2}]\in S_{\Gamma}$ , then

(4.4)
$T_{l} \xi=\sum_{i}[\gamma_{i}q_{1}, \gamma_{i}q_{2}]$ .

It is easy to verify that this is an action of the Hecke operators on $S_{\Gamma}$ that is compatible
with the isomorphism (4.2).

4.3. Hence we have a concrete model for the cohomology space $H^{1}(\Gamma;\mathbb{C})$ , as well as a Hecke
action on our model. But unfortunately this is not good enough for practical computation
of Hecke eigenvalues.

The first problem is that the space $S_{\Gamma}$ is infinite-dimensional. Since $H^{1}(\Gamma;\mathbb{C})$ is finite-
dimensional, one might expect to be able to identify a finite-dimensional subspace of $S_{\Gamma}$

that maps onto $M_{\Gamma}$ . A very convenient subspace with this property is provided by the
unimodular symbols. These are the images in $S_{\Gamma}$ of the SL$2(\mathbb{Z})$-translates of $[0, i\infty]$ . It
is easy to see that these images generate a $finitearrow dimensional$ subspace that is still large
enough to surject onto the cohomology. For instance, if $\Gamma=\Gamma(N)$ , the principal congruence
subgroup of matrices congruent to the identity $mod N$ , then on $X(N)=\Gamma(N)\backslash X^{*}$ the
ideal geodesics giving the unimodular symbols become the edges of a highly-symmetric
triangulation. The unimodular subspace of $S_{\Gamma}$ is just the first chain group attached to this
triangulation, and the relations (4.3) correspond to the boundaries of triangles.
4.4. But now one encounters another problem. The Hecke operators act on modular sym-
bols, and the unimodular symbols span the cohomology, but the Hecke operators do not
preserve the subspace of unimodular symbols. In fact, no finite set of modular symbols
modulo $\Gamma$ admits a Hecke action.

This is easy to see; one can attach a integer “determinant” $n(\xi)$ to a modular symbol
$\xi=[q_{1}, q_{2}]$ as follows. First write $q_{i}=a_{i}/b_{i},$ $i=1,2$ , where the rational numbers are in
reduced terms. Then define $n(\xi)=|a_{1}b_{2}-a_{2}b_{1}|$ . The integer $n(\xi)$ is well-defined modulo
the defining relations for $S_{\Gamma}$ . We have $n(\xi)=1$ if and only if $\xi$ is unimodular.2 Now if

$2_{This}$ is of course why they are called unimodular.
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one applies $T_{l}$ to a modular symbol $\xi$ with $n(\xi)=d$ , then in general the modular symbols
on the right of (4.4) will have determinant $ld$ . Since we can take $l$ to arbitrarily large, no
finite spanning set can be preserved by all the $T_{l}$ .

Nevertheless one can circumvent this difficulty. There is an algorithm–due to Manin
[31]–that enables one to write any modular symbol as a linear combination of unimodular
symbols. Essentially Manin’s algorithm is nothing more than the continued fraction algo-
rithm. Conjugating by SL$2(\mathbb{Q})$ we may assume the nonunimodular symbol $\xi$ has the form
$[0, q]$ . Then $\xi$ is taken to a linear combination of the symbols $\xi_{i}=[a_{i}/b_{i}, a_{i+1}/b_{i+1}]$ , where
the $a_{i}/b_{i}$ are the convergents in the continued fraction expansion of $q$ . Standard facts from
elementary number theory imply that the $\xi_{i}$ are unimodular. This enables us to compute
the effect of a Hecke operator on a basis of unimodular symbols, which allows us compute
the Hecke eigenvalues and eigenclasses.

4.5. Now we consider $n>2$ . First of all, there is an analogue of the modular and uni-
modular symbols, and they provide a model for $H^{\nu}(\Gamma;\mathbb{C})$ . The space of modular symbols
is generated by n-tuples of cusps $[q_{1}, \ldots, q_{n}]$ modulo relations, where now cusp means a
minimal boundary component in a certain Satake compactification $X^{*}$ of $X[34]$ . There is
an analogue of Manin’s algorithm, due to Ash-Rudolph [11], that enables us to compute
the Hecke action on $H^{\nu}(\Gamma;\mathbb{C})$ .

The problem now is that usually $H_{cusp}^{\nu}=0$ . In fact, looking at Table 1, we see that $\nu$ lies
in the cuspidal range only for SL2, SL3. Thus in these cases we can use modular symbols,
together with the Ash-Rudolph algorithm, to compute Hecke eigenclasses. For $SL_{3}$ this
was done originally by $Ash-Grayson-Green[7]$ , and later by van Geemen-Top [40,41], as
well as some other groups. As a result of these investigations, we have lots of convincing
evidence that cuspidal cohomology is related to arithmetic geometry [1, 3, 40].

4.6. Our case of interest is $n=4$. Here there are several tools that allow us to overcome
the problems above. Most of these tools work for all $n$ : in principle we can compute the
cohomology for all $n$ , even though this computation quickly gets impractical as $n$ increases.
On the other hand, we do not know if the Hecke operator algorithm will generalize to allow
computation of the Hecke eigenvalues in the cuspidal range for $n>4$ .

We can construct an explicit homological complex $S_{k},$ $k\geq 0$ , the sharbly complex, that
computes $H^{*}(\Gamma;\mathbb{C})$ . This complex, defined by Ash [6], generalizes the modular symbols, but
now we have chain groups in all nonnegative degrees. The sharbly complex has a $\Gamma$-action,
and by the Borel-Serre duality theorem [12] the homology of the complex of coinvariants
$(S_{*})_{\Gamma}$ gives the cohomology of $\Gamma$ . For example, in the case of SL2, the space $S_{0}$ coincides
with the space $S$ from \S 4.1, and the image of the boundary $S_{1}arrow S_{0}$ consists of sums of
the form (4.3). Passing to the coinvariants we obtain our presentation of $H^{1}(\Gamma;\mathbb{C})$

The sharbly complex admits a Hecke action, and as before there are infinitely many
sharblies modulo $\Gamma$ . The analogue of the unimodular symbols is a certain subcomplex of
reduced sharblies that is finite $mod \Gamma$ . This subcomplex can be constructed using the well-
rounded retract of Ash [5], or equivalently Voronoi’s work on perfect quadratic forms [44].

To compute the Hecke operators, we need an analogue of the Manin trick to compute
with $H^{\nu-1}(\Gamma;\mathbb{C})$ . This is actually much more subtle since we work below the cohomological
dimension. The technique we have developed to do this has been described in several places
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[19, 21, 38], so we only give the idea. The main point is that to compute the cohomology
$H^{\nu-1}(\Gamma;\mathbb{C})$ one works with sharbly cycles consisting of n-simplices glued together along
“submodular symbols.” (In the case of SL$2(\mathbb{Z})$ , such cycles are built of geodesic triangles
with usual modular symbols as faces.) To compute the Hecke action, one must move a
general sharbly cycle to a sum of reduced cycles by simultaneously applying the Ash-
Rudolph algorithm to each of its submodular symbols. For more details we refer to the
above references.

Remark 4.1. The technique described in [19] to compute the Hecke operators on the
cohomology of subgroups of $SL_{4}(\mathbb{Z})$ is also useful in other contexts. One needs a linear
group where the cuspidal range goes up to one below the cohomological dimension. We
have explored this in some cases:

$\bullet$ $G=R_{F/\mathbb{Q}}$ (GL2), where $F$ is real quadratic [21]. This is the Hilbert modular case;
the cohomology classes are related to weight (2, 2) Hilbert modular forms over $F$ .
Note that we use $GL_{2}$ instead of $SL_{2}$ . We do this because the $GL_{2}$-symmetric space
$X_{GL_{2}}$ can be represented as a certain cone of positive-definite binary quadratic
forms modulo homotheties. One can then apply the generalization of $_{oronoi’ s}^{\vee}$

theory of perfect forms, see for example [2, 4, 28, 29] to get a cellular decomposition
of $X_{GL_{2}}$ . However this does not affect the results of the computation in a serious
way, because the associated locally symmetric space $\Gamma\backslash X_{GL_{2}}$ is a circle bundle over
a Hilbert modular surface.

$\bullet$ $G=R_{F/Q}$ (GL2), where $F$ is complex quartic [20]. Again we work with the GL$2^{-}$

symmetric space.

5. RESULTS

We have computed $H^{5}(\Gamma_{0}(N);\mathbb{C})$ for $N$ prime and $\leq 211$ , and for composite $N$ up to 52.
Our biggest computation involved computing the Smith normal form of a matrix of size
$845712\cross 3277686(N=211)$ . Such computations cannot be done by merely using existing
numerical linear algebra software, because of the special needs of our computation. For
instance, instead of working over $\mathbb{C}$ we actually work over a large finite field. We also need
to compute change of basis matrices to be able to compute Hecke operators. The specific
numerical techniques we developed are described in detail in [10, \S 2].

Our computation results can be summarized as follows:
$\bullet$ In the range of our computations, we found no nonselfdual cuspidal classes. We

know of no reason why they should not exist for larger $N$ , but no one has proven
their existence.3

$\bullet$ We found Eisenstein classes (\S 5.1) attached to weight 2 and weight 4 modular forms
(\S 5.2).

$\bullet$ We found Eisenstein classes attached to $SL_{3}$ cuspidal cohomology (\S 5.3).
1 We found selfdual cuspidal classes that are apparently functorial lifts of Siegel mod-

ular forms (\S 5.4).

3At the conference, Neil Dummigan explained how some of his recent work suggests that there should
exist nonselfdual classes on $SL_{4}$ at level 1 and high weight.

8



ON THE COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL4(Z)

For $N$ prime we believe that our description of the Eisenstein cohomology is complete.
However, if $N$ is not prime then there are other Eisenstein classes, as mentioned already
in [8].

5.1. Eisenstein cohomology. We retum for the moment to a general setting. Our goal
is to explain the notion of Eisenstein cohomology, due to Harder [24]. We use the notation
of \S 2.1, so that $X$ is a global symmetric space and $\Gamma$ is an arithmetic group.

Let $\overline{X}$ be the partial compactification of $X$ due to Borel-Serre [12]. This is an enlargment
of $X$ that adds additional spaces at infinity. The quotient $\Gamma\backslash \overline{X}$ is called the $Borel-Serre$
compactification of $\Gamma\backslash X$ . If $\Gamma$ is torsion-free, then $\Gamma\backslash \overline{X}$ has the structure of a manifold
with corners. Otherwise, $\Gamma\backslash \overline{X}$ is an orbifold with corners. Let $\partial(\Gamma\backslash \overline{X})=\Gamma\backslash \overline{X}\backslash \Gamma\backslash X$ be
the boundary.

The homotopy equivalence $\Gamma\backslash \overline{X}arrow\Gamma\backslash X$ induces an isomorphism

$H^{*}(\Gamma\backslash \overline{X};\mathbb{C})\simeq H^{*}(\Gamma\backslash X;\mathbb{C})$ ,

and the inclusion $\partial(\Gamma\backslash \overline{X})\Gamma\backslash \overline{X}$ induces a restriction map

$H^{*}(\Gamma\backslash \overline{X};\mathbb{C})arrow H^{*}(\partial(\Gamma\backslash \overline{X});\mathbb{C})$ .

The Eisenstein classes are certain classes that form a basis of the image of a splitting of
this restriction map.

5.2. Weights 2 and 4. Now let $\Gamma=\Gamma_{0}(N)\subset SL_{4}(\mathbb{Z})$ , where $N$ is prime. In $H^{5}(\Gamma;\mathbb{C})$

we found Eisenstein classes corresponding to weight 2 and weight 4 holomorphic modular
forms of level $N$ .

Let $f$ be a weight 2 newform of level $N$ . Then $f$ contributes to $H^{5}(\Gamma;\mathbb{C})$ in two different
ways, with the Hecke polynomials

$(1-l^{2}T)(1-l^{3}T)(1arrow\alpha T+lT^{2})$

and
$(1-T)(1-lT)(1-l^{2}\alpha T+l^{5}T^{2})$ ,

where $T_{l}f=\alpha f$ .
Now let $g$ be a weight 4 newform. Then whether or not $g$ contributes an Eisenstein class

depends on the central special value of the L-function of $g$ . Namely, if this special value
vanishes, then $g$ corresponds to an eigenclass with Hecke polynomial

$(1-lT)(1-l^{2}T)(1-\beta T+l^{3}T^{2})$ ,

where $T_{l}g=\beta g$ . This dependence on special values is typical for Eisenstein cohomology.
We remark also that this particular Eisenstein class is apparently a $i$‘ghost class” in the
sense of [23]. That is, this class in $H^{5}(\Gamma;\mathbb{C})$ restricts nontrivially to the boundary of the
Borel-Serre compactification, but it restricts trivially on each face of the boundary.
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5.3. SL3 cuspidal classes. We also found cohomology classes corresponding to cuspidal
cohomology classes on subgroups of SL$3(\mathbb{Z})$ . These cohomology classes were originally
computed by $Ash-Grayson-Green[7]$ .

Let $\eta\in H_{cusp}^{3}(\Gamma_{0}^{*}(N);\mathbb{C})$ be a cuspidal cohomology class on $\Gamma_{0}^{*}(N)\subset$ SL$3(\mathbb{Z})$ . Let $\gamma,$
$\gamma’$

be the Hecke eigenvalues of this class with respect to the Hecke operators $T(l, 1),$ $T(l, 2)$

(computed of course when $n=3.$ ). Then $\eta$ contributes in two different ways, with the
Hecke polynomials

$(1-l^{3}T)(1-\gamma T+l\gamma’T^{2}-l^{3}T^{3})$

and
$(1-T)(1-l\gamma T+l^{3}\gamma’T^{2}-l^{6}T^{3})$ ,

5.4. Siegel modular forms. Finally, we describe the contributions to the cohomology
coming from Siegel modular forms. For more background on Siegel modular forms we refer
to [26, 39].

Let $K(p)$ be the paramodular group of prime level, which by defintion is the subgroup

$K(p)=(\begin{array}{llll}\mathbb{Z} p\mathbb{Z} \mathbb{Z} \mathbb{Z}\mathbb{Z} \mathbb{Z} \mathbb{Z} p^{-l}\mathbb{Z}\mathbb{Z} p\mathbb{Z} \mathbb{Z} \mathbb{Z}p\mathbb{Z} p\mathbb{Z} p\mathbb{Z} \mathbb{Z}\end{array})\subset Sp_{4}(\mathbb{Q})$ .

Let $S^{3}(p)$ be the space of weight three paramodular forms. Note that all such forms
are cuspforms; there are no Eisenstein series. This space contains the subspace $S_{G}^{3}(p)$ of
Gritsenko lifts, which are lifts from certain weight 3 Jacobi forms to $S^{3}(p)[18]$ . Let $S_{nG}^{3}(p)$

be the Hecke complement to $S_{G}^{3}(p)$ in $S^{3}(p)$ . The forms in $S_{nG}^{3}(p)$ will be those that appear
in the cohomology.

The space of cuspidal paramodular forms at prime level is known pretty explicitly. First
we have a dimension formula due to Ibukiyama [26, 27].

Let $\kappa(a)$ be the Kronecker symbol $( \frac{a}{p})$ . Define functions $f,$ $g:\mathbb{Z}arrow \mathbb{Q}$ by

$f(p)=\{\begin{array}{ll}2/5 if p\equiv 2,3mod 5,1/5 if p=5,0 otherwise,\end{array}$

and

$g(p)=\{\begin{array}{ll}1/6 if p\equiv 5mod 12,0 otherwise.\end{array}$

Theorem 5.1 (Ibukiyama). For $p$ prime we have $\dim S^{3}(2)=\dim S^{3}(3)=0$ . For $p\geq 5$ ,
we have

$\dim S^{3}(p)=(p^{2}-1)/2880$

$+(p+1)(1-\kappa(-1))/64+5(p-1)(1+\kappa(-1))/192$

$+(p+1)(1-\kappa(-3))/72+(p-1)(1+\kappa(-3))/36$

$+(1-\kappa(2))/8+f(p)+g(p)-1$ .
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Using this one can easily compute the dimension of $S_{nG}^{3}(p)$ .
Next, Poor and Yuen [32, 33] have developed a technique to compute Hecke eigenvalues

for weight three paramodular forms, and in particular for the forms in $S_{nG}^{3}(p)$ . Using
Ibukiyama’s formula and data supplied to us by Poor and Yuen, we find the following:

$\bullet$ For all prime levels $N$ , the dimension of the subspace of $H^{5}(\Gamma_{0}(N);\mathbb{C})$ not accounted
for by the Eisenstein classes above matches 2 $\dim S_{nG}^{3}(N)$ .

$\bullet$ In cases where we have computed the Hecke action on this subspace, we find full
agreement with the data produced by Po$or-Yuen$ . That is, the Hecke polynomials of
the paramodular forms exactly match the polynomials we compute for an eigenbasis
of the complement to the Eisenstein classes.

5.5. Future problems. We conclude by indicating some open questions and prospects
for future work.

$\bullet$ Can one prove that the Eisenstein classes we found actually occur in the cohomol-
ogy? In principle, one should be able to apply standard techniques from Eisenstein
cohomology to answer this question, although it appears at the moment that current
knowledge is insufficient to provide a proof.

$\bullet$ Can one prove the lift from paramodular forms to the cohomology? We have not
tried to investigate this question at all. Perhaps it is not difficult to solve using
known cases of functoriality in the literature.

$\bullet$ Study the Hecke action on torsion classes in the cohomology. This is currently
under investigation in joint work with Ash and McConnell.
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