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ABSTRACT. This is a summary of our results on the Hankel inversion
formula and the smooth space of the discrete series representations of
$SL(2, \mathbb{R})$ . We give a complete description of the smooth space of the
Kirillov model for these representations.

1. INTRODUCTION

The Kirillov model of irreducible unitary representations of $GL(2, \mathbb{R})$ has
played a significant role in the theory of automorphic forms. It has been
noticed by [2] (See also [4],[6],[5], [1]) that the action of the Weyl element
in the Kirillov model of an irreducible unitary representation of $GL(2, \mathbb{R})$

is given by a certain integral transform and that in the case of the discrete
series this is a classical Hankel transform of integer order. In particular, this
implies in theory that the Hankel transform is of order two when the Weyl
element has an action of order two. We use this fact to give a new proof
of the famous Hankel inversion formula which holds for a certain Schwartz
space of functions. Using this we show that this Schwartz space is exactly the
smooth space of the Kirillov model. We will work with the group $SL(2, \mathbb{R})$

but similar results hold for the group $GL(2, \mathbb{R})$ .

2. THE HANKEL INVERSION FORMULA

Let $J_{\nu}(x)$ be the classical J-Bessel function defined by

$J_{\nu}(x)= \sum_{k=0}^{\infty}\frac{(-1)^{k}(x/2)^{\nu+2k}}{\Gamma(k+1)\Gamma(k+\nu+1)}$ .

The Hankel inversion formula is classically stated as follows ([7] p.453). Let
$\phi$ be a complex valued function defined on the positive real line. Then under
certain assumptions on $\phi$ and $\nu$ (See [7]) we have

$\phi(z)=\int_{0}^{\infty}\int_{0}^{\infty}\phi(x)J_{\nu}(xy)J_{\nu}(yz)xydxdy$
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In more modern notation we define the Hankel transform of order $\nu$ of $\phi$ to
be

$h_{\nu}( \phi)(y)=\int_{0}^{\infty}\phi(x)J_{\nu}(xy)xdx$

Then under certain assumptions on $\phi$ and $\nu$ the Hankel transform is self
reciprocal, that is, $h_{\nu}^{2}=Id$ . Under a change of variables $xarrow x^{2}$ and
$f(x)=\sqrt{x}\phi(\sqrt{x})/2$ , the Hankel inversion formula is equivalent to $\mathcal{H}_{\nu}^{2}=Id$

where
$\mathcal{H}_{\nu}(f)(y)=\int_{0}^{\infty}f(x)\sqrt{xy}J_{\nu}(2\sqrt{xy})\frac{dx}{x}$ .

2.1. The Schwartz space. Let $S([0, \infty))$ be the Schwartz space of func-
tions on $[0, \infty)$ . That is, $f$ : $[0, \infty)arrow \mathbb{C}$ is in $S([0, \infty))$ if $f$ is smooth on
$[0, \infty)$ and $f$ and all its derivatives are rapidly decreasing at $\infty$ . Let

$S_{\nu}([0, \infty))=\{f:[0,$ $\infty)arrow \mathbb{C}|f(x)=x^{1/2+\nu/2}f_{1}(x)$ and $f_{1}\in S([0,$ $\infty))\}$

Our first theorem is the following:
Theorem 2.1. Assume that $Re(\nu)>-1$ . Then $\mathcal{H}_{\nu}$ is an isomorphism
of order two of $S_{\nu}([0, \infty))$ . Moreover, when $\nu$ is real $\nu>-1,$ $\mathcal{H}_{\nu}$ is an
$L^{2}((0, \infty), dx/x)$ isometry.
Remark 2.2. This theorem was proved in [8] when $\nu$ is real, $\nu>-1/2$ and
in [3] when $\nu$ is real, $\nu>-1$ . Our proof is different and is based on the
following integral identity:

Assume ${\rm Re}(\nu)>-1$ . For $f\in S_{\nu}([0, \infty))$ we define $T_{\nu}(f)=(x^{-1/2+\nu/2}f)^{\vee}$ .
That is,

$T_{\nu}(f)(z)=(2 \pi)^{-1/2}\int_{0}^{\infty}x^{-1/2+\nu/2}f(x)e^{ixz}dx$ .

for a function $\phi$ : $\mathbb{R}^{*}arrow \mathbb{C}$ we define
$\mathcal{W}_{\nu}(\phi)(x)=|x|^{-\nu-1}e^{sgn(x)\pi i(\nu+1)/2}\phi(-1/x)$ .

Theorem 2.3. Let $f\in S_{\nu}([0, \infty))$ then $T_{\nu}o\mathcal{H}_{\nu}(f)=\mathcal{W}_{\nu}\circ T_{\nu}(f)$ .
The above theorem is proved by changing the order of integration after

introducing a convergence factor. We now show that it implies Theorem 2.1
Theorem 2.4. Assume $Re(\nu)>-1$ and $f\in S_{\nu}([0, \infty))$ . Then

$\mathcal{H}_{\nu}\circ \mathcal{H}_{\nu}(f)=f$

Proof. This follows immediately from Theorem 2.3 and the fact that $\mathcal{W}_{\nu}0\mathcal{W}_{\nu}=Id$

which is easy to check. The argument is as follows. Let $f\in S_{\nu}([0, \infty))$ . Then
$T_{\nu}\circ \mathcal{H}_{\nu}\circ \mathcal{H}_{\nu}(f)=\mathcal{W}_{\nu}\circ T_{\nu}\circ \mathcal{H}_{\nu}(f)=\mathcal{W}_{\nu}\circ \mathcal{W}_{\nu}\circ T_{\nu}(f)=T_{\nu}(f)$.

Since $T_{\nu}$ is one to one, it follows that $\mathcal{H}_{\nu^{\circ}}\mathcal{H}_{\nu}(f)=f$ . $\square$

We let $I_{\nu}$ be a space of functions defined by
$I_{\nu}=$ { $\phi:\mathbb{R}arrow \mathbb{C}|\phi$ is smooth on $\mathbb{R}$ and $\mathcal{W}_{\nu}(\phi)$ is smooth on $\mathbb{R}$ }.

Proposition 2.5. $T_{\nu}$ maps $S_{\nu}([0,$ $\infty))$ into $I_{\nu}$ .
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3. A DISCRETE SERIES REPRESENTATION INSIDE AN INDUCED SPACE

We now consider the discrete series representations of $SL(2, \mathbb{R})$ with triv-
ial central character. Similar results hold for the case of nontrivial central
character. Let $G=SL(2, \mathbb{R})$ . Let $N$ and $A$ be subgroups of $G$ defined by

$N=\{n(x)=(\begin{array}{ll}1 x0 1\end{array}):x\in \mathbb{R}\}$

$A=\{s(z)=(\begin{array}{ll}z 00 z^{-l}\end{array}):z\in \mathbb{R}^{*}\}$ .

and

$w=(\begin{array}{l}0-110\end{array})$

We let $\nu=2k-1$ where $k$ is a positive integer The space $I_{2k-1}$ is the
space of smooth functions $\phi$ on $\mathbb{R}$ such that

$\mathcal{W}_{2k-1}(\phi)(x)=(-1)^{k}|x|^{-2k}\phi(-1/x)=(-1)^{k}x^{-2k}\phi(-1/x)$

is smooth. This is also the space of smooth functions $\phi$ such that $w(\phi)(x)=$

$x^{-2k}\phi(-1/x)$ is smooth. We now define a representation $\pi_{2k-1}$ of $G$ on $I_{2k-1}$

in the following way: Let $\phi\in I_{2k-1}$ .

$(w\phi)(x)=x^{-2k}\phi(-1/x)$

$(n(y)\phi)(x)=\phi(x+y)$

$(s(z)\phi)(x)=z^{-2k}\phi(z^{-2}x)$

More generally we have

(3.1) $( \pi_{2k-1}(\begin{array}{ll}a bc d\end{array}) \phi)(x)=(cx+a)^{-2k}\phi(\frac{dx+b}{cx+a})$

Proposition 3.1. The representation $\pi_{2k-1}$ of $G$ on $I_{2k-1}$ is isomorphic
to the smooth space of a representation of $G$ which is induced from a Borel
subgroup. As such, it inherits the standard Fr\’echet topology.

Theorem 3.2. The space $T_{2k-1}(S_{2k-1}([0, \infty)))$ is a closed invari ant sub-
space of $I_{2k-1}$ which is isomo$\gamma phic$ to a discrete series representation.

Remark 3.3. It follows from Theorem 2.3 that the image of $S_{2k-1}([0, \infty))$

is invariant under the action of $G$ . Thus it is enough to prove that this
space is closed and that the space of K-finite vectors is irreducible as a
$(\mathfrak{g}, K)$ module.

4. THE KIRILLOV MODEL

We are now ready to describe the Kirillov model. The action of $G$ on the
image of $S_{2k-1}([0, \infty))$ under $T_{2k-1}$ induces the following two actions of $G$
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on $S_{2k-1}$ : For each $f\in S_{2k-1}([0, \infty))$ let
$(D_{2k-1}^{+}(n(y))f)(x)=e^{iyx}f(x)$

$(D_{2k-1}^{+}(s(z))f)(x)=f(z^{2}x)$

$(D_{2k-1}^{+}(w)f)(x)=(-1)^{k}\mathcal{H}_{2k-1}(f)(x)$

$(D_{2k-1}^{-}(n(y))f)(x)=e^{-iyx}f(x)$

$(D_{2k-1}^{-}(s(z))f)(x)=f(z^{2}x)$

$(D_{2k-1}^{-}(w)f)(x)=(-1)^{k}\mathcal{H}_{2k-1}(f)(x)$

From Theorem 3.2 we get the following corollary:

Corollary 4.1. $D_{2k-1}^{+}(D_{2k-1}^{-})$ is an irreducible smooth representation of
$SL(2, \mathbb{R})$ . It is isomorphic to (the smooth space of) a discrete series repre-
sentation with the lowest weight (highest weight) vector of weight $2k-1$ .

It is easy to see that the above action of $G$ can be extended to a Hilbert
space representation of $G$ on the space $H_{2k-1}^{\pm}=L^{2}((0, \infty), dx/x)$ . Our main
result is the following:

Theorem 4.2. $D_{2k-1}^{\pm}$ is an irreducible unitary representation on the space
$H_{2k-1}^{\pm}=L^{2}((0, \infty), dx/x)$ . The smooth space of this representation is
$S_{2k-1}([0, \infty))$ .
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