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Singularities of nullsphere Gauss map for spacelike
surface in nullcone 3-space

D.H. Pei and L.L. Kong

1 Introduction

The nullcone in Minkowski 4-space is one kind of Minkowski pseudo-sphere, which is similar with the
sphere in Euclidean 4-space. In [6], Izumiya has studied the details of spacelike hypersurface in the
nulicone by Legendrian dualities. Our aim in this article is to study spacelike surfaces in nullcone 3-space
by the method similar to that in [5].

We shall assume throughout the whole article that all maps and manifolds are C*° unless the contrary
is explicitly stated.

Let R* = {(x1,%2,%3,74)|21, T2, 73,74 € R} be a 4-dimensional vector space. For any two vectors
x= (Z1,%2,%3,%4) and y= (y1,¥2,¥3,¥4) in R*, the pseudo-scalar product of x and y is defined by
(x,y) = —z1351 + 2:—2 ziyi. (R, (,)) is called a Minkowski 4-space and written by R}. A vector x in
R! \ {0} is called spacelike, lightlike or timelike if (x,x) is positive, zero or negative respectively. The
norm of a vector x € R} is defined by [|x|| = \/|(x,x)|. For any x,y € R}, we say x pseudo-perpendicular
toy if (x,y) = 0. For a vector v € R? and a real number c, a hyperplane with pseudo normal v is defined
by HP(v,c) = {x € R} | (x,v) = c}. HP(v,c) is called a timelike hyperplane, a spacelike hyperplane or a
lightlike hyperplane if v is timelike, spacelike or lightlike respectively. Now, hyperbolic 3-space is defined
by H} = {x € R} | (x,x) = —1}, de Sitter $-space is defined by S3 = {x € R? | (x,x) = 1} and the
nullcone 3-space is defined by NC® = {x = (1, %2,23,24) € R} | 21 # 0,(x,x) = 0}. The 3-dimension
nullcone with vertez X in R} is defined by NC3 = {x € R} | (x = A, x—A) = 0}. f x = (@1, 23,23, 24) is &
lightlike vector, then z; # 0. Therefore we have X = (1, L2 2 21) €82 ={xeR!|(x,x) =0,z; =1}.
52 is called the nullcone unit 2-sphere.

For any x1,X2,x3 € R}, we define a vector x; A x3 A X3 by

—e;, €2, €3, €4
1 2 3

I, X1, 2, I,
1 2 3

T3, Tz, T3, T2

1 2 3
z3, r3, T3, I3

X1 AXg A Xz =

where e1,e2,€3,e4 is the canonical basis of R! and x; = (z},2?,2%,2?). It can easily check that
(x,x; A X2 A X3) = det(x,X;,X2,X3), 50 that X; A x3 A X3 is pseudo orthogonal to any x;(¢ = 1,2, 3).
We fix an orientation and timelike orientation of R} (i.e., a 4-volume form dV, and future time-like
vector field, have been chosen). Let X : U = NC? be an embedding, where U is an open subset of R2.
Denote M = X (U) and identify M with U by the embedding X. We say X a spacelike surface if X,,, and
Xy, are spacelike vectors. Therefore, the tangent space T, M of M is a spacelike subspace(i.e., consists of
spacelike vectors) for any point p € M. In this case, the pseudo-normal space N, M is a timelike plane(i.e.,
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Lorentz plane). Denote by N (M) the pseudo-normal bundle over M. Since this is a trivial bundle, we can
arbitrarily choose a future directed unit timelike normal section n7(u) € N,M N H}, where p = X (u).
Therefore we can define a spacelike unit normal section n°(u) by

nT (u) A Xu, (u) A Xy (u)

n®(u) = InT(0) A Xa, (@) A Xa, (@]

€ S3,

and we have (n7,nS) = 0. Although we could also choose —nS(u) as a spacelike unit normal section
with the above properties, we fix the direction n5(u) throughout this article. (nT,n%) is called a future
directed normal frame along M = X (U). Clearly, the vector nT + nS(u) is lightlike. Since {Xy,, Xy, } is
a basis of T, M, the system {Xy,, Xu,,n7,n%} provides a basis for T,R?.

X € N;M, N,M is a Lorentzian plane and X (U) is a regular surface, so X (u) = nT + nS(u) for any
ue U or X(u) =nT —nS(u) for any u € U.

Here, we only consider the case of X (u) = nT — nS(u) for u € U. The case of X(u) = nT + nS(u)
can be discussed similarly. Define two maps of M = X (U) as

NG% :U —» 52, NG (u) =nT £ nS(w),

each one of these maps is called nullsphere Gauss map. Under the identification of M with U through X,
we have the linear mapping d,(n7 £ nS) : T,M - T, R = T,M & N, M. Cons1der the orthogonal pro.]ec—
tions n* : T,M & N,M — T, M and ™ : T,M & N,M — N,M. Define d (nT:tnS)‘ =ntod (nT:i:nS)
and dp(nms ™ =7n"o dp(nms ). The linear transformations S*(nT,n%) = —dp(nms)t and
dp(nms)" are respectively called the (nT, n%)-shape operator and the normal connection with respect
to (nT,nS) of M = X(U) at p = X (u).

The eigenvalues of SE(nT, n5) denoted by {kF(n7,n%)(p)}(i = 1,2) are called the (nT, nS)-nullsphere
principal curvature with respect to (n7,n%) at p. Then the nullsphere Gauss-Kronecker curvature with
respect to (nT,n%) at p = X (u) is defined as

KE(nT,n%)(p) = detSpi(nT, n’).

We say that a point p = X (u) is a (nT,n%)-umbilic point if all the principal curvatures coincide at
p and thus S¥(nT,nS) = x*(nT,n%)I|1,» for some function k*. We say that M = X(U) is totally
(nT,nS)-umbilic if all points on M are (n7,n%)-umbilic.

We deduce now the nullcone Weingarten formula. Since X,, and X,, are spacelike vectors, we
have a Riemannian metric (the first fundamental form) on M defined by ds? = Z?:l gijdu;du;, where
9ij (u) = (Xu,, Xu;) for any u € U. We also have a nullcone second fundamental invariant with respect to

the normal vector field (n”,n5) defined by A% (n7,n5)(u) = (—(nms)u‘_ (u), Xy, (u)) for any u € U.

Proposition 1.1. Under the above notations, we have the following nullcone Weingarten formula with
respect to (nT,n%) :

Pt Fnl+ndynd nTy—(nfxnf),, 2 ;
(@)(nT £ nf),, = 1= O ETRE i (nT £ nS) - izt REMT, n%)X,,;
()7t o (nT £ nS)y, = = T2, hi*(nT,n5)X,,.

Here, hi=(nT,n%) = ki (nT,n%)g, g* = (g4;)~! and n' = (ni,ni,ni, ni)(i =T, S).

As a corollary of the above proposition, we have an explicit expression of the nullsphere Gauss-
Kronecker curvature by Riemannian metric and the nullcone second fundamental invariant.

Corollary 1.2. Under the same notations as in the above proposition, the nullsphere Gauss-Kronecker
curvature is given by

det(hE (nT, nS)(u))

KEnT,nS)(u) = det(gag)
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If KXnT,n%)(uo) = 0, the point py = X(uo) is called a (nT,nS)-nullcone parabolic point of
X : U — NC3. And we say that a point po is a (nT,n5)-nullcone flat point if it is a (n”,n’)-nullcone
umbilical point and KX (nT,n%)(u) = 0.

Theorem 1.3. K7 (nT,n%)(u) # 0.

2 Nullsphere height function

The nullsphere height function family on M = X (U) is defined by
H:U xS% - R, H(u,v) = (X(u),v).
The Hessian matrix of the nullsphere height function h,, = H(u,vo) at uo is denoted by Hess(hy,)(uo).
Proposition 2.1. Let H be a nullsphere height function on M. Then
(1)Ohy, /Oui(uo) = 0(i = 1,2) if and only if vo = nT £ nS(uy).
(2)8hy, /Ou;(uo) = detHess(hy,(uo)) = 0@ = 1,2) if and only if vo = nT £nS(u) and
KF(nT,n%)(u) = 0.
(3) po is a nullcone flat point if and only if rankHess(hy, )(uo) = 0.
Corollary 2.2. For a point pg = X (ug) € M, the following conditions are equivalent:
(1) The point po € M is a (nT,nS)-nullcone parabolic point.
(2) The point po € M is a singular point of the nullsphere Gauss map N G’ﬁ}.
(3) KE(nT,n%)(uo) =0
(4) detHess(hy,)(uo) = 0 for vo = nT £ n°(u).
Corollary 2.3. NG, is a regular nullsphere Gauss map.
Consider now the particular case of a surface M C NC®. Given a vector v € S3 (resp. S%, H})

and a number ¢, denoted by S(v,c) the null hyperhorosphere(resp. null equidistant hyperplane, null
hypersphere) determined by the intersection of the hyperplane HP(v,c) with NC3.

Proposition 2.4. Let M be a spacelike surface in NC3. If N Gy is constant, then M degenerate to a
straight line.

We now define a family of functions
H:UxNC® >R, H(u,v) = (X(u),¥) -

where v = (vy,v2,vs,vs). H is called the extended nullsphere height function of M = X (U ). The Hessian
matrix of the extended nullsphere height function h,, = H(u,v0) at ug is denoted by Hess(hy, )(uo).
Proposition 2.5. Let M be a spacelike surface in NC3. H is the extended nullsphere height function of
M. For vo € NC3, we have the following:

(1) Py (po) = %ﬁ(po) = 0 if and only if Vo = nT £n nS(ug) and v; = (X (up),nT + ns(uo))

(2) 7;1,0 (po) = Qh—ﬁ(p ) = detHesshy, (o) = O if and only if Vo = nT+nS(up),
v = (X (uo), nT £ nS(ug)) and KE(nT,n%)(po) = 0.

The assertions of proposition 2.5 means that the discrimglgn/t set of the extended nullsphere height
function H is given by Dg = {v|v=(X(u),nT £n5u))(nT = nS)(u)}. Therefore we now define a pair
of singular surfaces in NC® by NP (u) = (X (u),nT £ nS(u))(nT £ nS)(u), each one of NP is called
the nullcone pedal surface of X (U) = M. A singularity of the nullcone pedal surface exactly corresponds
to a singularity of the nullsphere Gauss map.

Corollary 2.6. NP;; is a zero map.

This work is only a preparation for further studying, in the following, we will discuss some geometrical
properties of spacelike curve from singularity theory viewpoint.
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