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Abstract

We are interested in the interaction between singularity and geometry. In this monograph
we recall several results on generic Legendre surfaces with boundaries and their projective
duality. Moreover, as an application, we study the flat extension problem of a surface with
boundary in Euclidean 3-space and clarify its relation to the envelope generated by the
boundary and the singularities of tangent developables. In our treatment, a local geometry
of surface-curve causes a global (or non-local) effect to the singularities of the envelope via
projective (or Legendre) duality. Thus we give examples of results on the interaction between
singularity and geometry and between local and global.

This monograph is the announcement of results obtained in [10]. Refer [10] for their
detailed proofs.

1 Introduction.

The projective duality between the projective 3-space RP? = P(R*) and the dual projective
3-space RP3* = P(R**) is given by the incidence manifold

I={([z],[y]) e RP* x RP%" | z .y =0},

and projections m; : I — RP2 and 7y : I — RP3. The space I is identified with the space
PT*RP3 of contact elements of RP3 and with PT*RP3* as well. It is endowed with the natural
contact structure

D={z-dy=0}={dz-y=0}cTI=T(PT*RP?).

A C® surface S in RP3 lifts uniquely to a Legendre surface L in I which is an integral
submanifold to D:

L= {([z],[y]) € I| [z] € S, [y] determines T};)S as a projective plane}.

Then L projects to RP3* by me. The “front” SV = (L), as a parametrized surface with
singularities, is called the projective dual or Legendre transform of S.
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If we start with a surface S with boundary v in RP3, then the Legendre lift L also has the
boundary I':

I'={([z],[y]) € L | [z] € v} =OL.

Then L is a Legendre surface and I' is an integral curve to the contact distribution D:
TT C TLC D Cc TPT*'RP3.
Now we have a Legendre surface with boundary in I and two Legendre fibrations my, ma:
(L,T) ¢ PT*RP® =~ [° = PT*RP3*
i) I m/ N 2 1]
(8,9 ¢ RP? RP*

Then the basic result follows:

Theorem 1.1 For a generic Legendre surface with boundary (L,I") in the incident manifold
I5 = PT*RP3 = PT*RP3* with respect to C™ topology, we have

(1) The singularities of m1| and wa|r are just cuspidal edges and swallowtails.

(2) The diffeomorphism types of the pair (m1|r, m1|L,) (resp. (m2|L,72|L,)) of germs at points
on I' are given by Ba, B3 and C3.

(3) Both mi|r and ma|r are generically immersed space curves in the sense of Scherbak
( “Scherbak-generic”) [19], in RP3 and RP3* respectively. Singularities of m1|r, and 72|,
are only cuspidal edges and swallowtails. Swallowtails are not on w1(L) (resp. ma(L)).

Remark 1.2 We can show that moreover the singular loci of 71|, and m3|r, and I are in general
position in L. Moreover the swallowtail points of m;|;, and m3|L are not on the intersections of
the above three curves.

We write v = m1([') and 4 = m2(T"), and call 5 the dual-boundary to 4. We use the notions of
the dual curve ¢* and the dual surface ¢" to a space curve ¢ in RP3 or in RP3*. Note that 7 is
different from the dual curve 4* to 7 and it is defined only when ~ is regarded as a surface-curve.

Now again let (S,v) be a surface with boundary in RP3. We consider the one-parameter

family of tangent planes along the boundary +y to the surface S and consider the envelope of the
family. Then we have

Theorem 1.3 If (S,v) is generic, then the envelope of the one-parameter family of tangent
planes to S along v is the dual surface (7)Y of the dual-boundary 4. The envelope is the
tangent developable to the dual curve (vV)* to the dual-boundary vV. Moreover there are only
cuspidal edge singularities and swallowtail singularities on the envelope.

The above basic theorems (Theorems 1.1 and 1.3) provide the strong motivation as well as
the clear framework for the applications stated below. Therefore we give the key idea for the
proofs of Theorems 1.1 and 1.3 in the next section of this paper to assure ourselves.
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Now, motivated by the above results, we find ”landmarks” on the boundary in a generic
surface: Besides with parabolic points, we observe osculating-tangent points and swallowtail-
tangent points. Here a parabolic point is just the intersection of the parabolic locus and the
boundary.

A point on the boundary of a surface is called an osculating-tangent point if the boundary,
regarded as a space curve, has the osculating plane and it coincides with the tangent plane to
the surface.

A point on the boundary of a surface is called a swallowtail-tangent point if the tangent plane
at the point to the surface contacts with the envelope at the swallowtail point of the envelope.
It turns out to be that a point ¢ = ¢; of the parametric boundary ~ is a swallowtail-tangent
point if and only if, at t = t;, the dual curve (¥)* to the dual-boundary ¥ is defined and (¥)*
has a singularity of type (2,3,4). (See the next section.)

We apply the above basic projective-contact results to a problem of Euclidean geometry of
surfaces with boundary in R3; the flat extension problem:

Problem: Let (S,7) be a C*® surface with boundary v in R3. Find a C! eztension Sof S
such that S\ IntS is a C* surface with boundary v with the Gauss curvature

Klg\ms = 0

Remark 1.4 In general, for a hypersurface y = f(z1,...,Z,) in R, the Gauss-Kronecker

curvature is given by
(=1)" det ( 5%%%)

[1+(%)2+_”+(%)2}¥-

Therefore, for a C?-extension §, K must be continuous on S. Thus, if S is not flat in itself,
then we have to impose just C'-condition to the flat extensions S.

K =

The geometric method to find an extension of (9, ) along the boundary ~ is to take tangent
planes to S along v and to take the envelope of the one-parameter family of tangent planes.

A surface with boundary (S,7) has a local flat extension across non-osculating-tangent
points. Moreover a global obstruction occurs by singularities of the envelope, in particular,
by self-intersection loci. Thus a swallowtail point of the envelope provides “a global obstruction
with local origin” for the flat extension problem.

With this motivation, we characterise the osculating tangent points and the swallowtail
tangent points in terms of Euclidean invariant of the surface-boundary v of S.

We will recall three fundamental invariants k1, ko and k3 of the boundary v. Actually «; is
the geodesic curvature, kg is the normal curvature and k3 is the geodesic torsion of ~y, up to sign.

Then our characterisation is given by
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Theorem 1.5 Let (S,~) be a generic C*® surface with boundary in Euclidean three space R3.
Then the osculating-tangent point on v is characterised by the condition ko = 0. Moreover
there exists a characterization the swallowtail-tangent points in terms of k1, k2, K3 and their
derivatives of order < 3.

In fact we have

Theorem 1.6 (Euclidean generic characterisation of swallowtail-tangent) Let (S,7) be a
generic C*® surface with boundary in Euclidean three space R3. A swallowtail-tangent point
of v is characterised by the condition

(I) k2 #0,

(II) k2k3(K3+K3)+ro(K3+K3)K] —3K1K3K, +3K1 Kokaky+2k3(Kh)2 —2Ko KoKy — Kokaki+KIKE =
0,

(III) 2k163 (K2 + k2 + K2) + 2K1K3(2K% + k2)K) + (3K2 — 2k2)K) K + Brokak) Kb + 3Kk1K2(K5)? +
k2(3r1k2 + K% + K3)KY + 3{K1(—K3 — K + Kok3) + 3(k3kh — Kokh) }Kh + Ka(Kke — 2K3)KY # 0.

Remark 1.7 The surface is necessarily hyperbolic at a boundary point with k3 = 0,k3 # 0.

The fundamental construction to observe such characterisaions is as follows:
The unit tangent bundle

TiR® = {(z,v) | z € R® v € TLR3, jv|| = 1} 2 R? x S2,

to the Euclidean three space R? has the contact structure {vdz = 0} C T(T}R3). We have
analogous double Legendre fibrations as in above projective framework:

PT*RP3 P T;R3
m ./ N\ T2

RP3 > R? Rx 5?2 & RP3,

where 7 is the bundle projection and =, is defined by m2(z,v) = (~z - v,v), R x §? being
identified with the space of co-orineted affine planes in R3. Note that T}R3 is mapped to
PT*(RP3) by ® : (z,v) — ([1,z],[— - v, v]) as a double covering on the image, that the
mapping ® : T1R3 — PT*(RP?) is a local contactomorphism, and that R x S§? is mapped to
RP3 by (r,v) = [r,v] as a double covering on the image which is RP?\ {[1,0,0,0]}.

Any co-oriented surface with boundary (S, v) in R3 lifts to a Legendre surface with boundary
(L,T) in T1R3 uniquely. A generic surface in R3 induces a generic Legendre surface. The lifted
Legendre surface (L,T) projects to a front with boundary (boundary-front) in R x $2 by =s.
Actually the “local contact nature” of the double Legendre fibrations is the same, as is noted
above, in projective and in Euclidean framework.

Remark 1.8 There exists no invariant metrics on T1R® and on R x §? under the group G of
Euclidean motions on R?® compatible with the double fibration R® «— T3R3 — R x 52. Note
that G is not compact. In this sense, there is no dual Euclidean geometry: Duality in the level
of Euclidean geometry is not straightforward, compared with projective geometry.
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We are interested in the interaction between singularity and geometry. In our topic of this
paper, local geometry of surface-curve provides a global effect to the singularity of the envelope.
In fact we give the exact formula for the distance between the swallowtail tangent point on the
surface-boundary and the swallowtail point on the boundary-envelope.

Proposition 1.9 The distance d between the swallowtail tangent point on the surface-
boundary and the swallowtail point on the boundary-envelope is given by

d= RQ\/K%-}—K,%

Kq(h:& + Iﬂng) -+ Kg(—ligz + mnz) ’

Remark 1.10 If the denominator of the above formula vanishes, then the formula reads d = oo,
and, in fact, the envelope-swallowtail lies at infinity. If k3 = 0, then the formula reads d = 0,
and, in fact, the non-generic coincidence of an osculating-tangent point and a swallowtail-tangent
point occurs, and the envelope-swallowtail coincides with the swallowtail-tangent point.

In §2, we give the background for the basic results Theorems 1.1 and 1.3. In §3, we explain

on the Euclidean characterizations of osculating-tangent points and swallowtail-tangent points.
For detailed proofs, consult [10].

2 Projective geometry of front-boundaries.

It is known that a generic front with boundary has Bs-singularity. by the theory of boundary
singularities, which tells us the diffeomorphism type of a generic front with boundary [2]. See also
[17][18][22]. However we wish to know more, the projective geometry of boundaries, v = w1 (T")
and 7 = my(T).

A C® space curve v : R — RP? is called of finite type at t = to € R, if for each system of
affine coordinates, the 3 x co matrix

(’Y’(to)’ 'Y”(tO)’ s a’Y(e)(tO)a s )

is of rank 3. Then there exists a unique sequence (a3, ag, as), called the type, of positive integers
with a1 < a2 < a3 such that, for some system of affine coordinates centered at y(to), « is
expressed as

Xi(t) = (t—1t0)* +o((t —to)™),
Xo(t) = (t—1t0)® +o((t—to)*?),
X3(t) = (t—to)*® +o((t —to)*).

A point of v of type (1,2,3) is called an ordinary point. Otherwise, it is called a special point
of v. Special points are isolated on a space curve of finite type.

Theorem 2.1 (O.P. Scherbak): A generic space curve v in RP3 is of type (1,2,3) or (1,2,4)
at each point.
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We call a curve S-generic if it is of finite type of type (1,2, 3) or (1,2,4) at any point.
A Legendre surface with boundary (L,I') € M produces a triple of Legendre surfaces
(L,L1,Ls) in M:

Ly = {([z], [y]) | [z] € m1(T), [y] is a tangent plane to =1 (T) at [z]}

the projective conormal bundle of the space curve m(I").
Ly = {([z], [y]) | [y] € m2(T’), [z] is a tangent plane to 72(I") at [y]}

the projective conormal bundle of the space curve m3(T’).

The dual surface of the curve 71 (T") is defined as 72(L;1). The dual surface of the curve mo(T)
is defined as m1(L2).

m1(L), m1(L2) C RP3 my(L), m2(L1) C RP3.

The osculating planes to a space curve v form a dual curve v* of the curve v in the dual
space.

Theorem 2.2 (Duality Theorem, Arnol’d, Scherbak):

(1) The dual curve v* to a curve-germ vy of finite type (a1, a2,a3) is a curve-germ of finite type
(a3 — a1,a3 — az,a3).

(2) The dual surface to a curve-germ <y of finite type is the tangent developable of the dual curve
Y* of 7.

Theorem 2.3 If v is of type (1,2, 3), then v* is of type (1,2,3), and the dual surface is diffeo-
morphic to the cuspidal edge. If v is of type (1,2,4), then v* is of type (2,3,4), and the dual
surface is diffeomorphic to the swallowtail.

A tangent developable of +y is a surface ruled by tangent lines to .

Lemma 2.4 If v is of type (1,2,3), then v* is of type (1,2,3), and the dual surface is diffeo-
morphic to the cuspidal edge. If v is of type (1,2,4), then ~v* is of type (2,3,4), and the dual
surface is diffeomorphic to the swallowtail.

For the proof, consult the survey paper [9] on the singularities of tangent developables. We
also remark

Lemma 2.5 The dual surface of a space curve-germ <y of finite type is diffeomorphic to the
cuspidal edge (resp. the swallowtail) if and only if the type of v is egual to (1,2,3) (resp.
(1,2,4)).

Note that the type of 3 is (1,2,3) (resp. (2,3,4)) if and only if ¥ is of type (1,2,3) (resp.
(1,2,4)).

3 Euclidean geometry of surface-boundaries.

Let S C R? be a cooriented immersed surface with boundary +.
The 1-st fundamental form I : TS — R is defined by I(v) := gg,(v,v) = ||v||2. The 2-nd
fundamental form I1: T'S — R is defined by II(v) := —gg,(v, Vyn), where n : § — TR3 is the
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unit normal to S. Then we have (I, II) : T'S — R?, which determines the surface with boundary
essentially. In fact, the fundamental theorem of surface theory with boundary claims that the
right equivalence of (I, IT) implies Euclidean right-left-equivalence: If 3 ¢ : (S,v,p) — (5',7',2')
diffeomorphism-germ, such that

(TS, T,S) (I, 10)
N
Px | R?
/
(TS, TyS") (L, 1I)

commutes. Then there exists an Euclidean motion E : (R3,p) — (R3,p’) such that Eo (S,7) =
(8" 7) e .
Set G = Euclid(R3) ¢ GL(4,R), the group of Euclidean motions on R3. We consider

Maurer-Cartan form of G
0 O 0 0

w0 —w? -
W =

w2 w0 —ud

wd oWy w0

For a surface with boundary, we have the adopted moving frame 7 = (v,ej,ez,e3) : R = G
by ey = 4/, the differentiation by arc-length parameter, e, the inner normal to v, and ez =
e; X ez = m. which is different from the Frenet-Serre frame.

The structure equation is given by

d(v(s), e1(s), e2(s), e3(s)) = (v(s), ex1(s), ea(s), e3(s))¥*w.

Thus we have
0 —KR1 —K2

d(e1,ez,e3) = (e1,ez,e3) | kK1 0 —kK3 |ds
K2 K3 0
Namely we have
e, = kiey+ Koe3
e, = —Kiej+ Kses
ey = —kge; — K3eg

See, for instance, [11].
Note that kK1 = e2 - ", k2 = n-+" and that k3 = II(e1, €2).

Remark 3.1 The curvature k and the torsion 7 of v as a space curve is related to K1, K2 and
K3 by

' /

K Ko\’ K K1\’ K1Koy — KK

NZ:‘”%"'N%, T=K3+|— (—) =K3— | — (—“) ='€3+—§_2_,
K1 K K9 K K{ + K3

for the arc-length differential, provided k; # 0 and k2 # 0. Moreover it can be shown that for
any space curve v with curvature x and 7 and given any three functions k1, x2 and k3 on the
curve satisfying the above relations. Then there exists a surface S with boundary v such that
the three invariants coincide with the given x, k2 and k3.
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Outline of Proof of Theorem 1.6. The dual-boundary 7 is given by (—=v-n,n) : (R,0) — S2 xR
which is immersed in RP3*. To see the type of 3 we examine the 4 x 5 matrix

n n/ nll nm ,nm/
( -y-n (""Y . n)’ (—’)’ . n)” (_,), . n)m (—’)’ . n)”” ) )
The dual surface to a space curve 7(t) at t = ¢ is diffeomorphic to the cuspidal edge if and only
if

det(3,3",7") #0,
at t = tp. It is diffeomorphic to the swallowtail at ¢t = t; if and only if

oSS ! =l AII/I) —_ 3
Y%

rank(y,5") =2, rank(¥,7",7") =2, rank(®¥,3",7
at £ = t;. Then using the structure equation, we have the criteria in Theorem 1.6.

Remark 3.2 The criteria is obtained also by using the criterion of swallowtail found in [12].
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