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Abstract

We are interested in the interaction between singularity and geometry. In this monograph
we recall several results on generic Legendre surfaces with boundaries and their projective
duality. Moreover, as an application, we study the flat extension problem of a surface with
boundary in Euclidean 3-space and clarify its relation to the envelope generated by the
boundary and the singularities of tangent developables. In our treatment, a local geometry
of surface-curve causes a global (or non-local) effect to the singularities of the envelope via
projective (or Legendre) duality. Thus we give examples of results on the interaction between
singularity and geometry and between local and global.

This monograph is the announcement of results obtained in [10]. Refer [10] for their
detailed proofs.

1 Introduction.
The projective duality between the projective 3-space $RP^{3}=P(R^{4})$ and the dual projective
3-space $RP^{3*}=P(R^{4*})$ is given by the incidence manifold

$I=\{([x], [y])\in RP^{3}\cross RP^{3*}|x\cdot y=0\}$ ,

and projections $\pi_{1}$ : $Iarrow RP^{3}$ and $\pi_{2}$ : $Iarrow RP^{3*}$ . The space $I$ is identified with the space
$PT$“ $RP^{3}$ of contact elements of $RP^{3}$ and with $PT^{*}RP^{3*}$ as well. It is endowed with the natural
contact structure

$D=\{x\cdot dy=0\}=\{dx\cdot y=0\}\subset TI\cong T(PT^{*}RP^{3})$ .

A $C^{\infty}$ surface $S$ in $RP^{3}$ lifts uniquely to a Legendre surface $L$ in $I$ which is an integral
submanifold to $D$ :

$L=$ { $([x],$ $[y])\in I|[x]\in S,$ $[y]$ determines $T_{[x]}S$ as a projective plane}.

Then $L$ projects to $RP^{3}$“ by $\pi_{2}$ . The “front” $S^{\vee}=\pi_{2}(L)$ , as a parametrized surface with
singularities, is called the projective dual or Legendre transform of $S$ .
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If we start with a surface $S$ with boundary $\gamma$ in $RP^{3}$ , then the Legendre lift $L$ also has the
boundary $\Gamma$ :

$\Gamma=\{([x], [y])\in L|[x]\in\gamma\}=\partial L$ .
Then $L$ is a Legendre surface and $\Gamma$ is an integral curve to the contact distribution $D$ :

$T\Gamma\subset TL\subset D\subset$ TPT’RP3.

Now we have a Legendre surface with boundary in $I$ and two Legendre fibrations $\pi_{1},$ $\pi 2$ :

$(L, \Gamma)$ $\subset$ $PT^{*}RP^{3}$ $\cong$ $I^{5}$ $\cong$ $PT^{*}RP^{3*}$

$\downarrow$ $\downarrow$ $\pi_{1\swarrow’}$ $\backslash \pi_{2}$ $\downarrow$

$(S,\gamma)$ $\subset$ $RP^{3}$ $RP^{3*}$

Then the basic result follows:

Theorem 1.1 For a generic Legendre surface with boundary $(L, \Gamma)$ in the incident manifold
$I^{5}\cong PT^{*}RP^{3}\cong PT^{*}RP^{3*}$ with respect to $C^{\infty}$ topology, we have
(1) The singularities of $\pi_{1}|_{L}$ and $\pi_{2}|_{L}$ are just cuspidal edges and swallowtails.
(2) The diffeomorphism types of the pair $(\pi_{1}|_{L}, \pi_{1}|_{L_{2}})$ $($ resp. $(\pi_{2}|_{L},$ $\pi_{2}|_{L_{1}}))$ of gembs at points
on $\Gamma$ are given by $B_{2},$ $B_{3}$ and $C_{3}$ .
(3) Both $\pi_{1}|_{\Gamma}$ and $\pi_{2}|_{\Gamma}$ are genemcally immersed space $cu7^{v}ves$ in the sense of Scherbak
$({}^{t}Scherbak$-generic”$)$ $[19J$, in $RP^{3}$ and $RP^{3*}$ respectively. Singularities of $\pi_{1}|_{L_{2}}$ and $\pi_{2}|_{L_{1}}$

are only cuspidal edges and swallowtails. Swallowtails are not on $\pi 1(L)$ (resp. $\pi_{2}(L)$ ).

Remark 1.2 We can show that moreover the singular loci of $\pi_{1}|_{L}$ and $\pi_{2}|_{L}$ , and $\Gamma$ are in general
position in $L$ . Moreover the swallowtail points of $\pi_{1}|_{L}$ and $\pi_{2}|_{L}$ are not on the intersections of
the above three curves.

We write $\gamma=\pi_{1}(\Gamma)$ and $\hat{\gamma}=\pi_{2}(\Gamma)$ , and call $\hat{\gamma}$ the dual-boundary to $\gamma$ . We use the notions of
the dual curve $c^{*}$ and the dual surface $c^{\vee}$ to a space curve $c$ in $RP^{3}$ or in $RP^{3*}$ . Note that $\hat{\gamma}$ is
different from the dual curve $\gamma^{*}$ to $\gamma$ and it is defined only when $\gamma$ is regarded as a surface-curve.

Now again let $(S,\gamma)$ be a surface with boundary in $RP^{3}$ . We consider the one-parameter
family of tangent planes along the boundary $\gamma$ to the surface $S$ and consider the envelope of the
family. Then we have

Theorem 1.3 If $(S, \gamma)$ is generic, then the envelope of the one-parameter family of tangent
planes to $S$ along $\gamma$ is the dual surface $(\hat{\gamma})^{\vee}$ of the dual-boundary $\hat{\gamma}$ . The envelope is the
tangent developable to the dual curve $(\gamma^{\vee})^{*}$ to the dual-boundary $\gamma^{\vee}$ . Moreover there are only
cuspidal edge singularities and swallowtail singularities on the envelope.

The above basic theorems (Theorems 1.1 and 1.3) provide the strong motivation as well as
the clear framework for the applications stated below. Therefore we give the key idea for the
proofs of Theorems 1.1 and 1.3 in the next section of this paper to assure ourselves.

118



Now, motivated by the above results, we find “landmarks” on the boundary in a generic
surface: Besides with parabolic points, we observe osculating-tangent points and swallowtail-
tangent points. Here a parabolic point is just the intersection of the parabolic locus and the
boundary.

A point on the boundary of a surface is called an osculating-tangent point if the boundary,
regarded as a space curve, has the osculating plane and it coincides with the tangent plane to
the surface.

A point on the boundary of a surface is called a swallowtail-tangent point if the tangent plane
at the point to the surface contacts with the envelope at the swallowtail point of the envelope.
It turns out to be that a point $t=t_{1}$ of the parametric boundary $\gamma$ is a swallowtail-tangent
point if and only if, at $t=t_{1}$ , the dual curve $(\hat{\gamma})^{*}$ to the dual-boundary $\hat{\gamma}$ is defined and $(\hat{\gamma})^{*}$

has a singularity of type (2, 3, 4). (See the next section.)

We apply the above basic projective-contact results to a problem of Euclidean geometry of
surfaces with boundary in $R^{3}$ ; the flat extension problem:

Problem: Let $(S, \gamma)$ be a $C^{\infty}$ surface with boundary $\gamma$ in $R^{3}$ . Find a $C^{1}$ extension $\tilde{S}$ of $S$

such that $\tilde{S}\backslash$ Int$S$ is a $C^{\infty}$ surface with boundary $\gamma$ with the Gauss curvature

$K|_{\tilde{s}\backslash IntS}\equiv 0$ .

Remark 1.4 In general, for a hypersurface $y=f(x_{1}, \ldots, x_{n})$ in $R^{n+1}$ , the Gauss-Kronecker
curvature is given by

$K= \frac{(-1)^{n}de.t.(\frac{\partial^{2}f}{+(\partial x_{i}\partial x_{j}\partial x})}{[\text{\^{o}} x_{1}nnn2}$
.

Therefore, for a $C^{2}$-extension $\tilde{S}_{)}K$ must be continuous on $\tilde{S}$ . Thus, if $S$ is not flat in itself,
then we have to impose just $C^{1}$ -condition to the flat extensions $\tilde{S}$ .

The geometric method to find an extension of $(S, \gamma)$ along the boundary $\gamma$ is to take tangent
planes to $S$ along $\gamma$ and to take the envelope of the one-parameter family of tangent planes.

A surface with boundary $(S, \gamma)$ has a local flat extension across non-osculating-tangent
points. Moreover a global obstruction occurs by singularities of the envelope, in particular,
by self-intersection loci. Thus a swallowtail point of the envelope provides “a global obstruction
with local origin” for the flat extension problem.

With this motivation, we characterise the osculating tangent points and the swallowtail
tangent points in terms of Euclidean invariant of the surface-boundary $\gamma$ of $S$ .

We will recall three fundamental invariants $\kappa_{1},$ $\kappa_{2}$ and $\kappa_{3}$ of the boundary $\gamma$ . Actually $\kappa_{1}$ is
the geodesic curwature, $\kappa_{2}$ is the normal curvature and $\kappa_{3}$ is the geodesic torsion of $\gamma$ , up to sign.

Then our characterisation is given by
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Theorem 1.5 Let $(S, \gamma)$ be a generic $C^{\infty}$ surface with boundary in Euclidean three space $R^{3}$ .
Then the osculating-tangent point on $\gamma$ is characterised by th $e$ condition $\kappa_{2}=0$ . Moreover
there exists a characterization the swallowtail-tangent points in terms of $\kappa_{1},$ $\kappa_{2},$ $\kappa_{3}$ and their
derivatives of order $\leq 3$ .

In fact we have

Theorem 1.6 (Euclidean generic characterisation of swallowtail-tangent) Let $(S,\gamma)$ be a
generzc $C^{\infty}$ surface with boundary in Euclidean three space $R^{3}.$ A swallowtail-tangent point
of $\gamma$ is characterised by the condition

(I) $\kappa_{2}\neq 0$ ,

(II) $\kappa_{1}^{2}\kappa_{3}(\kappa_{2}^{2}+\kappa_{3}^{2})+\kappa_{2}(\kappa_{2}^{2}+\kappa_{3}^{2})\kappa_{1}’-3\kappa_{1}\kappa_{3}^{2}\kappa_{2}’+3\kappa_{1}\kappa_{2}\kappa_{3}\kappa_{3}’+2\kappa_{3}(\kappa_{2}’)^{2}-2\kappa_{2}\kappa_{2}’\kappa_{3}’-\kappa_{2}\kappa_{3}\kappa_{2}’’+\kappa_{2}^{2}\kappa_{3}’’=$

$0_{f}$

(III) $2\kappa_{1}\kappa_{2}^{3}(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2})+2\kappa_{1}\kappa_{3}(2\kappa_{2}^{2}+\kappa_{3}^{2})\kappa_{1}’+(3\kappa_{2}^{2}-2\kappa_{3}^{2})\kappa_{1}’\kappa_{2}’+5\kappa_{2}\kappa_{3}\kappa_{1}’\kappa_{3}’+3\kappa_{1}\kappa_{2}(\kappa_{3}’)^{2}+$

$\kappa_{2}(3\kappa_{1}\kappa_{2}+\kappa_{2}^{2}+\kappa_{3}^{2})\kappa_{1}’’+3\{\kappa_{1}(-\kappa_{2}^{2}-\kappa_{3}^{2}+\kappa_{2}\kappa_{3})+3(\kappa_{3}\kappa_{2}’-\kappa_{2}\kappa_{3}’)\}\kappa_{3}’’+\kappa_{2}(\kappa_{2}-2\kappa_{3})\kappa_{3}’’’\neq 0$ .

Remark 1.7 The surface is necessarily hyperbolic at a boundary point with $\kappa_{2}=0,$ $K_{3}\neq 0$ .

The fundamental construction to observe such characterisaions is as follows:
The unit tangent bundle

$T_{1}R^{3}=\{(x, v)|x\in R^{3}, v\in T_{x}R^{3}, \Vert v\Vert=1\}\cong R^{3}\cross S^{2}$ ,

to the Euclidean three space $R^{3}$ has the contact structure $\{vdx=0\}\subset T(T_{1}R^{3})$ . We have
analogous double Legendre fibrations as in above projective framework:

$PT^{*}RP^{3}$ $\dashv)$ $T_{1}R^{3}$

$\pi_{1}\nearrow$ $\backslash \pi_{2}$

$RP^{3}$ $\supset$
$R^{3}$ $RXs^{2}$ 舶 $RP^{3}$ ,

where $\pi_{1}$ is the bundle projection and $\pi_{2}$ is defined by $\pi 2(x, v)=(-x\cdot v, v),$ $R\cross S^{2}$ being
identified with the space of co-orineted affine planes in $R^{3}$ . Note that $T_{1}R^{3}$ is mapped to
$PT^{*}(RP^{3})$ by $\Phi$ : $(x, v)\mapsto([1, x], [-x\cdot v, v])$ as a double covering on the image, that the
mapping $\Phi$ : $T_{1}R^{3}arrow PT^{*}(RP^{3})$ is a local contactomorphism, and that $R\cross S^{2}$ is mapped to
$RP^{3}$ by $(r, v)\mapsto[r, v]$ as a double covering on the image which is $RP^{3}\backslash \{[1,0,0,0]\}$ .

Any co-oriented surface with boundary $(S, \gamma)$ in $R^{3}$ lifts to a Legendre surface with boundary
$(L, \Gamma)$ in $T_{1}R^{3}$ uniquely. A generic surface in $R^{3}$ induces a generic Legendre surface. The lifted
Legendre surface $(L, \Gamma)$ projects to a front with boundary (boundary-front) in $R\cross S^{2}$ by $\pi_{2}$ .
Actually the “local contact nature” of the double Legendre fibrations is the same, as is noted
above, in projective and in Euclidean framework.

Remark 1.8 There exists no invariant metrics on $T_{1}R^{3}$ and on $R\cross S^{2}$ under the group $G$ of
Euclidean motions on $R^{3}$ compatible with the double fibration $R^{3}arrow T_{1}R^{3}arrow R\cross S^{2}$ . Note
that $G$ is not compact. In this sense, there is no dual Euclidean geometry: Duality in the level
of Euclidean geometry is not straightforward, compared with projective geometry.
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We are interested in the interaction between singularity and geometry. In our topic of this
paper, local geometry of surface-curve provides a global effect to the singularity of the envelope.
In fact we give the exact formula for the distance between the swallowtail tangent point on the
surface-boundary and the swallowtail point OIl the boundary-envelope.

Proposition 1.9 The distance $d$ between the swallowtail tangent point on the surface-
boundary and the swallowtail point on the boundary-envelope is given by

$d=| \frac{\kappa_{2}\sqrt{\kappa_{2}^{2}+\kappa_{3}^{2}}}{\kappa_{2}(\kappa_{3}’+\kappa_{1}\kappa_{2})+\kappa_{3}(-\kappa_{2}+\kappa_{1}\kappa_{2})}|$ .

Remark 1.10 If the denominator of the above formula vanishes, then the formula reads $d=\infty$ ,
and, in fact, the envelope-swallowtail lies at infinity. If $\kappa_{2}=0$ , then the formula reads $d=0$ ,
and, in fact, the non-generic coincidence of an osculating-tangent point and a swallowtail-tangent
point occurs, and the envelope-swallowtail coincides with the swallowtail-tangent point.

In \S 2, we give the background for the basic results Theorems 1.1 and 1.3. In \S 3, we explain
on the Euclidean characterizations of osculating-tangent points and swallowtail-tangent points.
For detailed proofs, consult [10].

2 Projective geometry of front-boundaries.

It is known that a generic front with boundary has $B_{3}$-singularity. by the theory of boundary
singularities, which tells us the diffeomorphism type of a generic front with boundary [2]. See also
[17] [18] [22]. However we wish to know more, the projective geometry of boundaries, $\gamma=\pi_{1}(\Gamma)$

and $\hat{\gamma}=\pi_{2}(\Gamma)$ .
A $C^{\infty}$ space curve $\gamma$ : $Rarrow RP^{3}$ is called of finite type at $t=t_{0}\in R$ , if for each system of

affine coordinates, the $3\cross\infty$ matrix

$(\gamma’(t_{0}), \gamma’’(t_{0}), \ldots, \gamma^{(l)}(t_{0}), \ldots)$

is of rank 3. Then there exists a unique sequence $(a_{1}, a_{2}, a_{3})$ , called the type, of positive integers
with $a_{1}<a_{2}<a_{3}$ such that, for some system of affine coordinates centered at $\gamma(t_{0}),$ $\gamma$ is
expressed as

$\{\begin{array}{l}X_{1}(t) = (t-t_{0})^{a1}+o((t-t_{0})^{a_{1}}),X_{2}(t) = (t-t_{0})^{a_{2}}+o((t-t_{0})^{\mathfrak{g}_{2}}),X_{3}(t) = (t-t_{0})^{a3}+o((t-t_{0})^{a_{3}}).\end{array}$

A point of $\gamma$ of type (1, 2, 3) is called an ordinary point. Otherwise, it is called a special point
of $\gamma$ . Special points are isolated on a space curve of finite type.

Theorem 2.1 (O.P. Scherbak): A generric space curve $\gamma$ in $RP^{3}$ is of type (1, 2, 3) or (1, 2, 4)
at each point.
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We call a curve S-generic if it is of finite type of type (1, 2, 3) or (1, 2, 4) at any point.
A Legendre surface with boundary $(L, \Gamma)\subset M$ produces a triple of Legendre surfaces

$(L, L_{1}, L_{2})$ in $M$ :

$L_{1}=$ { $([x],$ $[y])|[x]\in\pi_{1}(\Gamma),$ $[y]$ is a tangent plane to $\pi_{1}(\Gamma)$ at $[x]$ }

the projective conormal bundle of the space curve $\pi_{1}(\Gamma)$ .

$L_{2}=$ { $([x],$ $[y])|[y]\in\pi_{2}(\Gamma),$ $[x]$ is a tangent plane to $\pi_{2}(\Gamma)$ at $[y]$ }

the projective conormal bundle of the space curve $\pi_{2}(\Gamma)$ .
The dual surface of the curve $\pi_{1}(\Gamma)$ is defined as $\pi_{2}(L_{1})$ . The dual surface of the curve $\pi_{2}(\Gamma)$

is defined as $\pi_{1}(L_{2})$ .
$\pi_{1}(L),$ $\pi_{1}(L_{2})\subset RP^{3}\pi_{2}(L),$ $\pi_{2}(L_{1})\subset RP^{3*}$ .
The osculating planes to a space curve $\gamma$ form a dual curve $\gamma^{*}$ of the curve $\gamma$ in the dual

space.

Theorem 2.2 (Duality Theorem, Amol’d, Scherbak):
(1) The dual curve $\gamma^{*}$ to a curve-ge$\gamma$ of finite type $(a_{1}, a_{2}, a_{3})$ is a curve-germ of finite type
$(a_{3}-a_{1}, a_{3}-a_{2}, a_{3})$ .
(2) The dual surface to a curve-germ $\gamma$ of finite type is the tangent developable of the dual curve

$\gamma^{*}$ of $\gamma$ .

Theorem 2.3 If $\gamma$ is of type (1, 2, 3), then $\gamma^{*}$ is of type (1, 2, 3), and the dual surface is diffeo-
morphic to the cuspidal edge. If $\gamma$ is of type (1, 2, 4), then $\gamma^{*}$ is of type (2, 3, 4), and the dual
surface is diffeomorphic to the swallowtail.

A tangent developable of $\gamma$ is a surface ruled by tangent lines to $\gamma$ .

Lemma 2.4 If $\gamma$ is of type (1, 2, 3), then $\gamma^{*}$ is of type (1, 2, 3), and the dual surface is diffeo-
morphic to the cuspidal edge. If $\gamma$ is of type (1, 2, 4), then $\gamma^{*}$ is of type (2, 3, 4), and the dual
surface is diffeomorphic to the swallowtail.

For the proof, consult the survey paper [9] on the singularities of tangent developables. We
also remark

Lemma 2.5 The dual surface of a space curve-germ $\gamma$ of finite type is diffeomorphic to the
cuspidal edge (resp. the swallowtail) if and only if the type of $\gamma$ is equal to (1,2,3) (resp.
(1, 2, 4) $)$ .

Note that the type of $\hat{\gamma}$

“ is (1, 2, 3) (resp. (2, 3, 4)) if and only if $\hat{\gamma}$ is of type (1, 2, 3) (resp.
(1, 2, 4) $)$ .

3 Euclidean geometry of surface-boundaries.
Let $S\subset R^{3}$ be a cooriented immersed surface with boundary $\gamma$ .

The l-st fundamental form $I$ : $TSarrow R$ is defined by $I(v)$ $:=g_{Eu}(v, v)=\Vert v\Vert^{2}$ . The $2arrow$nd
fundamental form II: $TSarrow R$ is defined by II(v) $:=-g_{Eu}(v, \nabla_{v}n)$ , where $n:Sarrow TR^{3}$ is the
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unit normal to $S$ . Then we have (I, II) : $TSarrow R^{2}$ , which determines the surface with boundary
essentially. In fact, the fundamental theorem of surface theory with boundary claims that the
right equivalence of (I, II) implies Euclidean right-left-equivalence: If $\exists\varphi:(S, \gamma,p)arrow(S’, \gamma’,p’)$

diffeomorphism-germ, such that

$(TS,$ $T_{p}S)$ (
$I_{\backslash }$

II)

$\varphi_{*}\downarrow$
$R^{2}$

$\nearrow$

$(TS^{l},$ $T_{p’}S’)$ (I, II)

commutes. Then there exists an Euclidean motion $E:(R^{3},p)arrow(R^{3},p’)$ such that $E\circ(S, \gamma)=$

$(S’, \gamma’)\circ\varphi$ .
Set $G=$ Euclid $(R^{3})\subset$ GL(4, R), the group of Euclidean motions on $R^{3}$ . We consider

Maurer-Cartan form of $G$

$\omega=(\begin{array}{llll}0 0 0 0\omega^{1} 0 -\omega_{1}^{2} -\omega_{1}^{3}\omega^{2} \omega_{1}^{2} 0 -\omega_{2}^{3}\omega^{3} \omega_{1}^{3} \omega_{2}^{3} 0\end{array})$

For a surface with boundary, we have the adopted moving frame $\tilde{\gamma}=(\gamma, e_{1}, e_{2}, e_{3})$ : $Rarrow G$

by $e_{1}=\gamma’$ , the differentiation by arc-length parameter, $e_{2}$ , the inner normal to $\gamma$ , and $e_{3}=$

$e_{1}\cross e_{2}=n$ . which is different from the Frenet-Serre frame.
The structure equation is given by

$d(\gamma(s), e_{1}(s), e_{2}(s), e_{3}(s))=(\gamma(s), e_{1}(s), e_{2}(s), e_{3}(s))\overline{\gamma}^{*}\omega$ .
Thus we have

$d(e_{1}, e_{2}, e_{3})=(e_{1}, e_{2}, e_{3})(\begin{array}{lll}0 -\kappa_{1} -\kappa_{2}\kappa_{l} 0 -\kappa_{3}\kappa_{2} \kappa_{3} 0\end{array})ds$

Namely we have

$\{\begin{array}{l}e_{1}’ = \kappa_{1}e_{2}+\kappa_{2}e_{3}e_{2}^{l} = -\kappa_{1}e_{1}+\kappa_{3}e_{3}e_{3}’ = -\kappa_{2}e_{1}-\kappa_{3}e_{2}\end{array}$

See, for instance, [11].
Note that $\kappa_{1}=e_{2}\cdot\gamma’’,$ $\kappa_{2}=n\cdot\gamma’’$ and that $\kappa_{3}=II(e_{1}, e_{2})$ .

Remark 3.1 The curvature $\kappa$ and the torsion $\tau$ of $\gamma$ as a space curve is related to $\kappa_{1},$ $\kappa_{2}$ and
$\kappa_{3}$ by

$\kappa^{2}=\kappa_{1}^{2}+\kappa_{2}^{2}$ , $\tau=\kappa_{3}+(\frac{\kappa}{\kappa_{1}})(\frac{\kappa_{2}}{\kappa})’=\kappa_{3}-(\frac{\kappa}{\kappa_{2}})(\frac{\kappa_{1}}{\kappa})’=\kappa_{3}+\frac{\kappa_{1}\kappa_{2}’-\kappa_{2}\kappa_{1}’}{\kappa_{1}^{2}+\kappa_{2}^{2}}$ ,

for the arc-length differential, provided $\kappa_{1}\neq 0$ and $\kappa_{2}\neq 0$ . Moreover it can be shown that for
any space curve $\gamma$ with curvature $\kappa$ and $\tau$ and given any three functions $\kappa_{1},$ $\kappa_{2}$ and $\kappa_{3}$ on the
curve satisfying the above relations. Then there exists a surface $S$ with boundary $\gamma$ such that
the three invariants coincide with the given $\kappa_{1},$ $\hslash 2$ and $\kappa_{3}$ .
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Outline of Proof of Theorem 1. 6. The dual-boundary $\hat{\gamma}$ is given by $(-\gamma\cdot n, n)$ : $(R, 0)arrow S^{2}\cross R$

which is immersed in $RP^{3*}$ . To see the type of $\hat{\gamma}$ we examine the $4\cross 5$ matrix

$(\begin{array}{lllll}n n’ n’’ n’’’ n^{\prime\prime\prime\prime}-\gamma\cdot n (-\gamma\cdot n)’ (-\gamma\cdot n)’’ (-\gamma\cdot n)’’’ (-\gamma\cdot n)^{\prime\prime\prime\prime}\end{array})$ .

The dual surface to a space curve $\hat{\gamma}(t)$ at $t=t_{0}$ is diffeomorphic to the cuspidal edge if and only
if

$\det(\hat{\gamma}’,\hat{\gamma}’’, \hat{\gamma}’’’)\neq 0$ ,

at $t=t_{0}$ . It is diffeomorphic to the swallowtail at $t=t_{1}$ if and only if

rank $(\hat{\gamma}’,\hat{\gamma}’’)=2$ , rank$(\hat{\gamma}’,\hat{\gamma}’’,\hat{\gamma}’’’)=2$ , rank $(\hat{\gamma}’, \hat{\gamma}’’,\hat{\gamma}^{\prime\prime\prime\prime})=3$ ,

at $t=t_{1}$ . Then using the structure equation, we have the criteria in Theorem 1.6.

Remark 3.2 The criteria is obtained also by using the criterion of swallowtail found in [12].

References
$[$ 1] Vladimir Igorevich Arnol’d, Catastrophe theory, Third edition. Springer-Verlag, Berlin, 1992.
[2] V.I. Arnol’d, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume $I$: The classifi-

cation of cr’itical points, caustics and wave fronts, Monographs in Mathematics 82, Boston-Basel-Stuttgart,
Birkh\"auser (1986).

$[$3 $]$ James William (Bill) Bruce, Envelopes, duality and contact structures, Proc. Symp. Pure Math., $4bl$
(1983), 195-202.

$[$4 $]$ James William (Bill) Bruce, Peter J. Giblin, Projections of surfaces with boundary, Proc. London Math.
Soc., $6\triangleright 2$ (1990), 392-416.

$[$5$]$ John P. Cleave, The form of the tangent-developable at points of zero torsion on space curves, Math. Proc.
Cambridge Philos. Soc. $88-S$ (1980), 403-407.

[6] Goo Ishikawa, Determinacy of the envelope of the osculating hyperplanes to a curve, Bull. London Math.
Soc., 25(1993), pp.603-610.

[7] Goo lshikawa, Developable of a curve and determinacy relative to osculation-type, Quart. J. Math. Oxford,
Vol.46 (1995), 437-451.

[8] Goo Ishikawa, Topological classification of the tangent developables of space curves, Journal of London Math.
Soc., 62-2 (2000), 583-598.

[9] Goo Ishikawa, Singulareties of developable surfaces, London Mathematical Society Lecture Notes Series, 263
(1999), pp. $403-41S$ .

[10] Goo Ishikawa, Geometry of surfaces with boundaries from singulanty viewpoint, Preprint (2009).
$[$ 11 $]$ T.A. Ivey and J.M. Landsberg, Cartan for beginners; differential geometry ma moning frames and exterior

differential systems, American Mathematical Society, 2003.
[12] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic

3-space, Pacific J. of Math. 221 (2005), 303-351.
[13] David Mond, On the tangent developable of a space curve, Math. Proc. Cambridge Philos. Soc. 91-3 (1982),

351-355.
[14] David Mond, Singulareties of the tangent developable surface of a space curve, Quart. J. Math. Oxford Ser.

(2) 40-157 (1989), 79-91.
[15] J.J. Nuno Ballesteros, Osamu Saeki, Singular surfaces in 3-manifolds, the tangent developable of a space

curve and the dual of an immersed surface in 3-space, Real and complex singularities (Sao Carlos, 1994),
Pitman Res. Notes Math. Ser., 333, Longman, Harlow (1995), pp. 49-64.

124



[16] Kentaro Saji, Masaki Umehara and Kotaro Yamada, $A_{k}$ singularities of wave fronts, to appear in Mathe-
matical Proceedings Cambridge Philosophical Society. (Corollary 2.5)

[17] Inna G. Scherbak, Bounda瑠か o撹 $s$ and caus伽$s$ an[況ん$eir$ metamorpん oses, Singularities (Lille, 1991), London
Math. Soc. Lecture Note Series, 201, Cambridge Univ. Press (1994),

$[$ 18$]$ Inna G Scherbak, Boun面塑 $S$ ingula漉$ies$ and focal sets of $s$urfaCeS $w$伽 bounda瑠伽 $R^{3}$ , Singularity theory
(Trieste, 1991), World Sci. Publ., River Edge, NJ, (1995), pp. 635-645.

[19] O.P. Scherbak, Projective dual space curves and Legendre singularities, Tkudy Tbiliss Univ., 232-233 (1982),
280-336.

[20] 0. $P$. Scherbak, Wavefront and reflection groups, Russian Math. Surveys, 43-3 (1988), 149-194.
$[$21 $]$ Ren\’e Thom, Sur la $t$ん\’eo幅 $e$ des enveloppes, Journ de Math, 41-2 $($ 1962$)$ , 177-192
$[$22$]$ Takaharu Tsukada, Retic刎$ar$ Legend吻$n$ Singular伽 $es$ , Asian $J$ Math, 5–1 $($2001 $)$ , 109-127
[23] C.T.C.(Terry) Wall, Geometric properties of generic differentiable manifolds, in Geometry and Topology,

(Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture
Notes in Math., 597, Springer, Berlin (1977).

125


