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ABSTRACT. Recently, we proved that, for any sequence of real numbers $(r_{n})_{n=1}^{\infty}$ and any
sequence of positive numbers $(\delta_{n})_{n=1}^{\infty}$ , there is an increasing sequence of positive integers
$(q_{n})_{n=1}^{\infty}$ and a number $\alpha>1$ such that $||\alpha^{q_{n}}-r_{n}$ Ii $<\delta_{n}$ for each $n\geq 1$ . Now, we prove
that there are continuum of such numbers $\alpha$ in any interval $I=[a,$ $b]$ , where $1<a<b$ ,
and give some corollaries to this statement.

1. INTRODUCTION

Throughout, we shall denote by $\{x\},$ $\lceil x\rceil$ and $||x||$ the fractional part of a real number
$x$ , the least integer which is greater than or equal to $x$ , and the distance from $x$ to the
nearest integer, respectively.

In [1], we showed that, for any sequence of real numbers $(r_{n})_{n=1}^{\infty}$ and any sequence of
positive numbers $(\delta_{n})_{n=1}^{\infty}$ , there exist an increasing sequence of positive integers $(q_{n})_{n=1}^{\infty}$

and a number $\alpha>1$ such that I $\alpha^{q_{n}}-r_{n}||<\delta_{n}$ for each $n\geq 1$ .
Now, we will show that there are continuum of such $\alpha$ , so at least one of them is

transcendental. We also give some corollaries to this “universality property” of powers. In
some sense, if $q_{1}<q_{2}<q_{3}<\ldots$ are positive integers, then the subsequence $(\alpha^{q_{n}})_{n=1}^{\infty}$ of the
sequence of powers $(\alpha^{n})_{n=1}^{\infty}$ represents the sequence $(r_{n})_{n=1}^{\infty}$ modulo 1 with any prescribed
“precision”. In addition, we relax the condition on $q_{n}$ . These numbers need not be integers.
They can be any positive numbers with “large” gaps between them.

Theorem 1. Let $(\delta_{n})_{n=1}^{\infty}$ be a sequence of positive numbers, where $\delta_{n}\leq 1/2$ , and let $(r_{n})_{n=1}^{\infty}$

be a sequence of real numbers. Suppose that $I=[a, b]$ is an interval with $1<a<b$ , and
suppose $M$ is the least positive integer satisfying $a^{M-1}(a-1) \geq\max(10,2a/(b-a))$ . If
$(q_{n})_{n=1}^{\infty}$ is a sequence of real numbers satisfying $q_{1}\geq M$ and

$q_{n+1}-q_{n} \geq M+1+\max(0, \log_{a}(2.22/(\delta_{n}(a-1))))$

for each $n\geq 1$ , then the interval I contains continuum of numbers $\alpha$ such that the inequality

$||\alpha^{q_{n}}-r_{n}||<\delta_{n}$

holds for each positive integer $n$ .

This theorem will be proved in the next section. In Section 3, we give some corollaries.
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2. PROOF OF THEOREM 1

Without loss of generality we may assume that $r_{n}\in[0,1)$ for each $n\geq 1$ . Let $w=$
$(w_{n})_{n=1}^{\infty}$ be an arbitrary sequence consisting of two numbers $0$ and 1/2. Consider the se-
quence $(\theta_{n})_{n=1}^{\infty}$ defined as $\theta_{2n-1}=r_{n}$ and $\theta_{2n}=w_{n}$ for each positive integer $n$ , namely,

$(\theta_{n})_{n=1}^{\infty}=r_{1},$ $w_{1},$ $r_{2},$ $w_{2},$ $r_{3},$ $w_{3},$ $\ldots$ .

Let also $\ell_{2n-1}=q_{n}$ and $\ell_{2n}=q_{n+1}-M$ for each integer $n\geq 1$ . The inequalities $q_{n+1}-q_{n}\geq$

$M+1$ and $q_{1}\geq M$ imply that $M\leq\ell_{1}<P_{2}<\ell_{3}<\ldots$ is a sequence of positive numbers
satisfying $\ell_{n+1}-\ell_{n}\geq 1$ for each $n\geq 1$ .

Put $y_{0}=a$ and
$y_{n}=(\lceil y_{n-1}^{\ell_{n}}\rceil+\theta_{n})^{1/\ell_{n}}$

for $n\geq 1$ . Since $\theta_{n}\geq 0$ and $\lceil y_{n-1}^{\ell_{n}}\rceil\geq y_{n-1}^{\ell_{n}}$ , we have $y_{n}\geq y_{n-1}$ . Thus the sequence $(y_{n})_{n=0}^{\infty}$

is non-decreasing. Furthermore, $y_{n}^{\ell_{n}}-\theta_{n}$ is an integer, so $\{y_{n}^{p_{\mathfrak{n}}}\}=\{\theta_{n}\}=\theta_{n}$ for every
$n\in$ N.

From $\lceil y_{n-1}^{\ell_{\mathfrak{n}}}\rceil<y_{n-1}^{\ell_{n}}+1$ and $\theta_{n}<1$ , we deduce that $y_{n}^{\ell_{\mathfrak{n}}}=\lceil y_{n-1}^{\ell_{\mathfrak{n}}}\rceil+\theta_{n}<y_{n-1}^{\ell_{\mathfrak{n}}}+2$. Hence
$(y_{n}/y_{n-1})^{\ell_{n}}<1+2y_{n-1}^{-\ell_{\mathfrak{n}}}$ . Since $\ell_{n}>1$ for every $n\geq 1$ , we have $y_{n}/y_{n-1}<1+2y_{n-1}^{-\ell_{n}}/P_{n}$ .
This implies that $y_{n}-y_{n-1}<2/(\ell_{n}y_{n-1}^{\ell_{n}-1})$ . Since $y_{n}\geq y_{n-1}\geq\ldots\geq y_{0}$ and $\ell_{n}-\ell_{n-1}\geq 1$

for $n\geq 2$ , by adding $n$ such inequalities $($ for $y_{1}-y_{0},$ $y_{2}-y_{1},$ $\ldots,$
$y_{n}-y_{n-1})$ , we obtain

$y_{n}-a=y_{n}-y_{0}= \sum_{k=1}^{n}(y_{k}-y_{k-1})<\frac{2}{\ell_{1}}\sum_{k=\ell_{1}-1}^{\infty}y_{0}^{-k}=\frac{2}{\ell_{1}y_{0}^{\ell_{1}-2}(y_{0}-1)}=\frac{2}{\ell_{1}a^{\ell_{1}-2}(a-1)}$ .

Using $a^{M-1}(a-1)\geq 2a/(b-a)$ and $\ell_{1}=q_{1}\geq M\geq 1$ , we deduce that

$y_{n}-a< \frac{2}{\ell_{1}a^{\ell_{1}-2}(a-1)}\leq\frac{2}{a^{\ell_{1}-2}(a-1)}\leq\frac{2a}{a^{M-1}(a-1)}\leq\frac{2a}{2a/(b-a)}=b-a$.

Hence $y_{n}<b$ for every $n$ . Thus the limit $\alpha=\lim_{narrow\infty}y_{n}$ exists and belongs to the interval
$[a, b]$ . (Of course, $\alpha=\alpha(w)$ depends on the sequence $w.$ )

Next, we shall estimate the quotient $(y_{k+1}/y_{k})^{\ell_{n}}$ for $k\geq n$ . Since $(y_{k+1}/y_{k})^{\ell_{k+1}}<1+$

$2y_{k}^{-\ell_{k+1}}$ and $\ell_{n}/\ell_{k+1}<1$ , we have $(y_{k+1}/y_{k})^{\ell_{n}}<(1+2y_{k}^{-\ell_{k+1}})^{\ell_{n}/\ell_{k+1}}<1+2y_{k}^{-\ell_{k+1}}$ . It follows
that

$( \alpha/y_{n})^{\ell_{n}}=\prod_{k=n}^{\infty}(y_{k+1}/y_{k})^{\ell_{\mathfrak{n}}}<\prod_{k=n}^{\infty}(1+2y_{k}^{-\ell_{k+1}})$

for every fixed positive integer $n$ .
In order to estimate the product $\prod_{k=n}^{\infty}(1+\tau_{k})$ , where $\tau_{k}=2y_{k}^{-\ell_{k+1}}$ , we shall first bound

this product from above by $\exp(\sum_{k=n}^{\infty}\tau_{k})$ and then use the inequality $\exp(\tau)<1+1.11\tau$ ,
because the sum $\tau=\sum_{k=n}^{\infty}\tau_{k}$ is less than 1/5. Indeed, using the inequalities $y_{k}\geq y_{n}\geq a$

and $\ell_{n}-\ell_{n-1}\geq 1$ , where the inequality is strict for infinitely many $n’ s$ , we derive that

$\tau=\sum_{k=n}^{\infty}2y_{k}^{-\ell_{k+1}}<\frac{2}{y_{n^{\mathfrak{n}+1}}^{\ell-1}(y_{n}-1)}\leq\frac{2}{a^{\ell_{n+}\iota-1}(a-1)}\leq\frac{2}{a^{\ell_{2}-1}(a-1)}$
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is at most 1/5, because $a^{\ell_{2}-1}(a-1)\geq a^{M-1}(a-1)\geq 10$ . Consequently,

$(\alpha/y_{n})^{\ell_{n}}<1+1.11\tau<1+2.22/(y_{n}^{\ell_{n+1}-1}(y_{n}-1))$ .

Multiplying both sides by $y_{n}^{\ell_{n}}$ and subtracting $y_{n}^{\ell_{n}}$ from both sides, we find that

$0\leq\alpha^{p_{n}}-y_{n}^{\ell_{n}}<2.22/(y_{n}^{\ell_{n+1}-\ell_{n}-1}(y_{n}-1))\leq 2.22/(a^{\ell_{n+1}-\ell_{n}-1}(a-1))$ .

From this, using $\{y_{n}^{\ell_{n}}\}=\theta_{n}$ , we deduce that
$||\alpha^{\ell_{n}}-\theta_{n}||<2.22a^{-\ell_{n+1}+\ell_{n}+1}/(a-1)$

for each $n\in N$ .
For $n$ odd, the last inequality $||\alpha^{\ell_{2n-1}}-\theta_{2n-1}||<2.22a^{-\ell_{2n}+\ell_{2n-1}+1}/(a-1)$ becomes

$||\alpha^{q_{n}}-r_{n}||<2.22a^{-q_{n+1}+q_{n}+M+1}/(a-1)$ . The right hand side is less than or equal to $\delta_{n}$ ,
because $q_{n+1}-q_{n}\geq M+1+\log_{a}(2.22/(\delta_{n}(a-1)))$ . Thus $||\alpha^{q_{n}}-r_{n}||<\delta_{n}$ for each $n\in N$ ,
as claimed.

For $n$ even, the inequality on lI $\alpha^{\ell_{n}}-\theta_{n}$ Il becomes $||\alpha^{\ell_{2n}}-\theta_{2n}$ Il $<2.22a^{-\ell_{2n+1}+\ell_{2n}+1}/(a-1)$ .
Using $p_{2n+1}=q_{n+1},$ $P_{2n}=q_{n+1}-M,$ $\theta_{2n}=w_{n}$ and $a^{M-1}(a-1)\geq 10$ , we derive that the
inequality

$||\alpha^{q_{n+1}-M}-w_{n}||<2.22a^{-\ell_{2n+1+p_{2n}+1}}/(a-1)=2.22a^{-M+1}/(a-1)\leq 0.222$

holds for each positive integer $n$ .
We shall use this inequality in order to show that all of the numbers $\alpha=\alpha(w)\in$

$I$ corresponding to distinct sequences $w=(w_{n})_{n=1}^{\infty}$ of $0$ and 1/2 are distinct. Indeed,
suppose that $\alpha(w)=\alpha(w’)$ , although $w_{n}\neq w_{\acute{n}}$ for some positive integer $n$ . Without loss of
generality, we may assume that $w_{n}=0$ and $w_{\acute{n}}=1/2$ . Then the inequality II $\alpha(w)^{q_{n+1}-M}-$

$w_{n}||<0.222$ implies that

$\{\alpha(w)^{q_{n+1}-M}\}\in[0,0.222)\cup(0.788,1)$ ,

whereas the inequality $||\alpha(w’)^{q_{n+1}-M}-w_{n}’||<0.222$ implies that
$\{\alpha(w’)^{q_{n+1}-M}\}\in$ (0.288, 0.722).

Consequently, $\alpha(w)\neq\alpha(w’)$ , as claimed. Since there are continuum of infinite sequences
$w$ of two symbols $0,1/2$ , there is continuum of distinct numbers $\alpha(w)\in I$ such that the
inequality $||\alpha(w)^{n}-r_{n}||<\delta_{n}$ holds for each positive integer $n$ . This completes the proof
of Theorem 1.

3. APPLICATIONS OF THE MAIN THEOREM

It is well known that there exist many numbers $\alpha>1$ such that $\lim_{narrow\infty}||\alpha^{n}||=0$ and,
more generally, $\lim_{narrow\infty}||\xi\alpha^{n}||=0$ for some $\xi\neq 0$ . Such $\alpha$ must be a Pisot-Vijayaraghavan
number, namely, an algebraic integer whose conjugates over $\mathbb{Q}$ (if any) are all of moduli
strictly smaller than 1. (See [3], [4], [5], [6] and also [2].) However, it is knot known whether
there is at least one transcendental number $\alpha>1$ such that $\lim_{narrow\infty}||\alpha^{n}||=0$ (see [7]).
From Theorem 1 we shall derive the following:
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Corollary 2. Let $(q_{n})_{n=1}^{\infty}$ be a sequence of positive numbers satisfying $\lim_{narrow\infty}(q_{n+1}-q_{n})=$

$\infty$ . Then there is a transcendental number $\alpha>1$ such that $\lim_{narrow\infty}||\alpha^{q_{n}}||=0$ .

Proof: Let us take $a=11$ and $b=13.2$ in Theorem 1. Then $M=1$ . Select $\delta_{n}=$

$0.222\cdot 11^{2+q_{n}-q_{n+1}}$ . Clearly, $q_{n+1}-q_{n}=2+\log_{11}(0.222/\delta_{n})$ , so the condition of the theorem
is satisfied. Thus Theorem 1 with $r_{1}=r_{2}=r_{3}=\cdots=0$ implies that there exists a
transcendental number $\alpha\in[11,13.2]$ such that $||\alpha^{q_{n}}||<0.222\cdot 11^{2+q_{n}-q_{n+1}}$ for every positive
integer $n$ such that $q_{n}\geq 1$ . The condition $\lim_{narrow\infty}(q_{n+1}-q_{n})=\infty$ implies that $q_{n}\geq 1$ for
all sufficiently large $n$ , and $\lim_{narrow\infty}0.222\cdot 11^{2+q_{n}-q_{n+1}}=0$ . Hence $\lim_{narrow\infty}||\alpha^{q_{n}}||=0$ , as
claimed.

Corollary 3. Let $(r_{n})_{n=1}^{\infty}$ be a sequence of real numbers, and let $s_{1},$ $s_{2},$ $s_{3},$ $\cdots\in\{1, \ldots, L\}$ ,
where $L$ is a positive integer. Then, for any $\epsilon>0$ , there is $s$ a transcendental number
$\alpha>1$ such that $||s_{n}\alpha^{n}-r_{n}||<\epsilon$ for each positive integer $n$ .

Pro$of$: This time, let us take in the theorem $a=2,$ $b=3,$ $M=5,$ $\delta_{n}=\epsilon/s_{n}$ and $q_{n}=nT$

for each $n\geq 1$ . Here, $T$ is an integer satisfying $T\geq M+1+\log_{2}(1.11\epsilon^{-1}L)$ . The theorem
with each $r_{n}$ replaced by $r_{n}/s_{n}$ implies that there is a transcendental number $\beta\in[2,3]$

such that II $\beta^{Tn}-r_{n}/s_{n}||<\epsilon/s_{n}$ for each positive integer $n$ . Multiplying by the integer $s_{n}$

and setting $\alpha=\beta^{T}$ , we get that 11 $s_{n}\alpha^{n}-r_{n}||<\epsilon$ for each $n\geq 1$ , as claimed.

In particular, by Corollary 3, for any real numbers $a\geq 0$ and $\epsilon>0$ satisfying $0\leq a<$

$a+\epsilon\leq 1$ , there is a transcendental number $\alpha>1$ such that $\{\alpha^{n}\}\in(a, a+\epsilon)$ for each
positive integer $n$ .
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