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§1. Introduction: Review of Classical Theory

In this article we propose generalizations of Bernoulli polynomials and L-functions
associated with root systems. To state our results, first we recall the classical theory
for the Riemann zeta-function and Bernoulli numbers.

The following is a well-known formula for the Riemann zeta-function and Bernoulli

numbers.
FOI‘ k € Zzl s
(2mi)?k
20(2k) = -B ,
£(2k) 2k 20
where

te! otk
-1 ~kZ:OBkE!-'

By using this formula, we obtain for k € Z;,,

ok (2mi)%
- 2%) = —
$Q2k) + (1)L (2k) = —Bax TR
1\ 2k+] — (2mi)*+! _
{REk+ 1)+ (-1)"¢Q2k+1) = BZk*'(2k+ O - 0
Hence we have important relations:
For k € 222,
Qmi)*
)+ (k) = -Bi o
value-relations =  Bernoulli numbers.

This procedure can be applied to Lerch zeta-functions and periodic Bernoulli func-
tions. Let (s, y) be the Lerch zeta-function defined by

o0 .
eZmny

o(s.9)= ) —

n=1
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Then a formula for Lerch zeta-functions implies

Fork € Z,, and y € R,

o(k,y) + (=1 ek, —y)

functional relations

Nk
-B)

periodic Bernoulli functions.

Il

Here

te'V

e -1

= *
=— > Br()+>
; R

and {y} = y — [¥] (i.e. fractional part).
Once we obtain periodic Bernoulli functions, we can calculate special values of
L-functions.

For a primitive character y of conductor f and k € Z,; satisfying ~Dfx(=1) = 1,
we have

B (_1)k+1 (Zﬂi)k
T2 kIt

g()Brxs

where g(y) is the Gauss sum and

f
Biy = f*' ) x(a)Bi(al ).
a=1

Our aim is to find a good class of multiple zeta-functions which generalize the theory
above.

§2. Overview of Our Results

Based on the observation given in the previous section, we will construct multiple
generalizations of Bernoulli polynomials and multiple L-functions associated with
arbitrary root systems. Before introducing the general theory, we give two simple
~ theorems by using the explicit form of the root system of type 4.

For sy, 52, 53 € C and y;, y» € R, we consider the convergent series

o eZm’(myl +ny;)
£2(s1, 52, 53, Y1, ¥2; 42) = Z

mn=1

mS1ns2(m + n)’
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Theorem A. For k|, ky, k3 € Z>3,

Lky, kay ks, y1,v2; A7) + (= DR Gk ks, Ky, =y + 2, v25 42)
+ (=12 lo(ks, ka, ky, y1,y1 = y2; A2) + (=120 5 (ks by, ko, —y1 + y2,—y15 42)

+ (—l)kl+k3{2(k2,k3’k]a —¥V2, )1 _yzaAz) + (_l)kl+k2+k3{2(k29k]$ k3’ —¥2, _ylaAZ)

27ri)kl +ky +k3

= (=1’ P(k1, k2, k3, y1,y2; A2) —r——0,
(1)’ P(k1, k2, k3, y1,¥2; A2) PRTAT

where P(ky, ka, k3, y1,y2; A2) is a multiple periodic Bernoulli function (defined later).
In particular, we have

1 (27Ti)2+2+2 _ 71.6

1
42(2, 29 2, 0, O,Az) - .6(__1)3

3780 212121 T 2835°

(2 )k 1 1 2ri)*  n?
ok, ) + (Dot —y) = =B D7~ {@=5(-Dg =—.
2 6 2! 6
For s, 52,53 € C and primitive Dirichlet characters x, x2, X3, consider the conver-
gent series

m n m+n
Lo(s1, 52,53, X1, X2, X3; A2) = Z X1y (s (m + m)

msin*2(m + n)%3
m, n=1

Theorem B. For k € Z>, and a primitive Dirichlet character x of conductor f such
that (-1)*y(-1) =1,

—13*+3  (2mi)k 3
( 123 ((k!’?r g("-/)) Biikzirx(A2),

where Bi, k, ks 20 (A2) is @ multiple generalized Bernoulli number (defined later).
In particular, for ps : ps(1) = ps(4) = 1,p5(2) = ps(3) = —1, we have
(-1)8+3 ((27ri)2 \/-5-)3 (__ 28 ) 1125 6

6 2152 125 1171875

LZ(k’ k’ ksX’X’X;AZ) =

Ly(2,2,2,ps,ps,p5; A2) =

cf.

(=1 2mik _ eyt @m? 445,
> e 8Bk L(2ps) = 2!52\5’5"125

Theorems A and B are special cases of our main theorems. In the following sec-
tions, we will formulate these facts.

§3. Root Systems

For reader’s convenience, we give the definition and several examples of root sys-
tems. |

Lk, x) =
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§§3.1. Definitions

Let V/ be an r dimensional real vector space equipped with inner product (-, -).

A root system A C V is a set of vectors (roots):
(1) [Al < o0 and 0 ¢ A,
(2) oA =Aforall a € A,
(3) (aV,B) € Zforall a,B € A, SN
(4) a,ca € A= ¢ = =1, /?\

where o, denotes the reflection with respect to the hyperplane H, orthogonal to
and v = 2a/{a, a) (coroot).

Let W be the Weyl group (the group generated by all 0,). Let {aj,...,a,} be
fundamental roots (a basis s.t. @ = cja) + -+ + ¢, € A withall¢; > 0 or ¢; < 0).
Let A+ be po itive. ,ts' (all roots @ = cyay + - -+ + ¢, € A with all ¢; > 0) and
P, strictly dommant weights (= D Zx14;, {41, ..., 4} dual basis of {@],...,a))}).
The key fact which plays an essential role is that the nice group W acts on A.

§§3.2. Examples

Since we mainly treat coroots, we give examples of root systems in terms of co-
roots. Note that if A is a root system, then AV = {a" | @ € A} is also a root system.
There is only one root system of rank 1 and there are four root systems of rank 2:

A Ay X Aj Ar B> (OI‘ Cz) Gr

In this article, we use these root systems in examples for simplicity. It should
be noted that root systems are classified as 4,, B,, C,, Dy, E¢, E7, Eg, F4, G2 and our
theory can be applied to all these root systems.
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§4. Zeta-Functions of Root Systems

§§4.1. Witten Zeta-Functions

As prototypes of zeta-functions of root systems, we give the definition of Witten
zeta-functions, which were originally introduced to calculate the volumes of certain
moduli spaces.

Witten zeta-functions ([13, 14]): For a complex simple Lie algebra g of type X,
Lw(s; Xy) = Z(dnmp) =KX Y [ —=——
AP, a€hs G aY LA

where the summation runs over all finite dimensional irreducible representations ¢
and K(X,) € Z5) 1s a constant.

From the second expression of the definition, we see that the explicit forms of Witten
zeta-functions are obtained by formally replacing a;’ and aﬁ’ by m and n respectively:

oo

Tt An) = ) = = 2(5),

m=1]

- 1
 Ay) = 2°
S (s: A2) m; msnS(m + n)s’
- 1
. — R
Ew(s; Ba) =6 mél msnS(m + n)S(m + 2n)s’

§84.2. Zeta-Functions of Root Systems

Definition 1 ([6, 7, 8, 12]). Zeta-functions of root systems: For a root system A of

type X,, define
. — 27i(y,A)
&r(s,y; %) = Z I_I (@, /l)s"

AeP,, acA,

where s = (5¢)eea, € C**andy € V.

To define an action of the Weyl group, we extend s = (Sq)eea, 10 (Sa)aeca bY So = 5—¢
and define (ws), = s,-1,- Then we have our first theorem.

Theorem 1 ([8]). For s = k = (kz)eea, € Z24 e have

>2

Z( ]_I ( l)ka)é’ (w lk w™ y’ )— ( 1)!A+IP(k y,X)(]——l (Zﬂl)ka)

welW ageA,Nw-tA_ a€h,

where P(K,y; X,) is a multiple periodic Bernoulli function (defined later).
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cf. (X, = 4))
(2m)k

o(k,y) + (—DFp(k, —y) = = Br({»})

§5. Special Zeta-Values

Theorem 1 directly implies the following theorem:

Theorem 2 ([8]). For k = (kq)aca, € (2Zs1)2 satisfying w™'k = K for all w e W,

(W = {id, oo }).

—1)/A+ Ky
gr(k O X, ) ( 1) P(k,O,Xr)( l_[ g—zljcr—l—?—-—) € Qﬂ-zaeA+ kd_

4

a€A;

cf. (X, = A1)

(27rz)k

a@—-& eQrt  (ke2Zy).

In particular, k = (k)gea, w1th ke 2221 (that 1s, all k&, = k) satisfies the condition
in Theorem 2. In this case, £,(k, 0;.X;) € Qn!+* was shown by Witten and Zagier.
Our statement is a true generalization of their results since we also have for example,

® 1
((2,4,4,2),0; By) = Z mZn?(m + n)*(m + 2n)?

mn=1
(-1* 53 2ni)? \2( (2ni)*\2
Y2 1513512000( 21 )( 4! )
_ 53q2
"~ 6810804000°

§6. Multiple Periodic Bernoulli Functions

In this section, we give the definitions of generating functions of multiple periodic
Bernoulli functions. Let ¥ be the set of all bases V € A,, V* = {,u;’}ﬁev, the dual

basis of V¥ = {8V)gev. Let Q¥ = D]_, Zay be the coroot lattice and L(VY) =
. Bev ZB" , which is a sublattice of OV with finite index (|QY /L(VY)| < o).
Fix a certain ¢ € V and define a multiple generalization of fractional part as
CANSY (g.1)) > 0),
(Ylvg = v v
I~ (v} (b)) <0).

By using these definitions, we have

Definition 2 (generating function [8, 9, 10]). For t = (¢5)eea,,

Py = > (] - " 7)

\73 4 ‘)/EA+\V ZﬂGV tB(Y ’#ﬂ
1 tgexp(tly + qlvg)
8 |QV/L(VY)] Z (l_[ s — 1 )

geQVIL(VY) eV
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Definition 3 (multiple periodic Bernoulli functions [8, 9, 10])

F(t,y; X)) = Z Pk, y; Xr) ﬂ k!

kez!! ach,

cf. (Xr = Al)

ZBk({y»

F(, y)~

§7. Example: 4, Case

We calculate a multiple periodic Bernoulli function and its generating function in
the case of the root system of type A4>.
We have the basic data as follows:

a) +a)
AZ = {a‘l’,a;’,a}’ + CZ;_/}, ¥ ={V},V2,V3},
t= (t(llvtaz, ta,+az) = (tlvt2’t3)a

y =yi1e) +ynaj.

Fix a sufficiently small ¢ > 0 and ¢ = a{ + ea;. Then by using these data, we have
the generating function and a multiple periodic Bernoulli function as

F(t,y; 4A>) = basis V € A,, dual basis V*

t3 tlell{)’l] tzetz{yz}
35—t —thehr—1e2—-1
ty tlen{yn—yz} t3ef3[}’2'

(VV {a'l » @y } V‘ {41, 12))

+ V) ={af,a) +ay}, V5 ={d; — 43,4
L+t —t3 el —1 eb—1 (V3 = {a), ) + a3}, V3 = {1 = A2, 42})

£ tzetz(l -i-»2h t3e'3 1}

+ VY = {aY,af + a3}, Vi = {1 — A1, 4}
t1+t2—t3 ez — 1 e —1 (3 {2 1 2} 3 {2 1 1)

Fork=2=(2,2,2),

1
P2,(1,y2);42) = 3780 * 55({)’1} -1 =2} =2}

+ _;3‘6(—{)’1}6 + 40 - ¥ = 501 =)
— (2)8 = 41 = »2302) = 51 = y2 PP ).

We have a functional relation corresponding to this multiple periodic Bernoulli func-
tion:
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52, (1,x2); A2) + L2, (=1 +y2,)2); 4A2) + (2, (1,01 — ¥2)5 42)
+ $2(2, (=y2,y1 = y2); A2) + £2(2, (=31 + y2, —>1); A2) + L2(2, (—y2, —01); 42)

(2ri)®
= (1P, (y1,12); 42) Qs

In particular if (y1,y2) = (0, 0), then
1 @Qm)S _ x®
3780 (21)3 2835

£5(2,(0,0);42) = £(-17

of. (X, = A))

1 2ni)?  n?

(=50 ZL =% B =z- 0+ 08

§8. Multiple Bernoulli Polynomials

In the classical theory, Bernoulli polynomials can be derived by the analytic con-
tinuation of periodic Bernoulli functions. We explain this fact. Let $ = {y e R| {y} €

= Z (discontinuous points of {y}). Let R\ § = [[,ez D™, where DM = (v,v + 1).
From each D™ to C, the function B({y}) is analytically continued to a polynomial
function B (y) = B(y — v) € Q[y}.

DO = (0,1) ) ~ - , o~ |

| VAVAVYA NS

0 1 0 1 // 0 1
R\$ = [Tye5 DV AGY) BO(y) = By(y)

A similar procedure works well in general cases and we can define multiple gen-
eralizations of Bernoulli polynomials.

Let | 5
5=UUU{erI{y+q}v..6€Z} \/%/\\/\
Ve¥ geQV BeV _1 ‘~.‘ ,n\ ‘

(discontinuous points of {y + ¢q}v g appearing in the

generating function). ‘\/ \ /_,.-' i\\// l
V\$ = U TD(V), : . Az case

ve
where D is an open connécted component, J is a set of indices.

Theorem 3 ([8, 9, 10]). From each region D™ to the whole space C® V, P(k,y; X,)
is analytically continued in 'y to a polynomial function BE') (y; Xy) € Q[y] of total
degree at most K| = Y yep, ka» Wherey = 3, yna,
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§§8.1. Example: 4, Case

The Bermnoulli polynomial Bgo)(y;Az) is obtained by the analytic continuation of
the periodic Bernoulli function P(2,y; 4;) from the region D©.

V\$ =15 D P(2,y; A2) BO(y; 47)
(Periodic Bernoulli function) (Bernoulli polynomial)

The explicit form of the Bernoulli polynomial Bgo)(y;Az) 1s given as follows:

B3 (y: 42) = 00 3 =)+ 5 - B + )

3780 45
+ —(-2)’1)’3_ ~ 3y2y2 + 43y, — 298 +3%)
( 5y1y5 + 10y3y3 + 10y3y3 — 15y, + 6)7)
—0(6y1y2 5y = V15 + 693v2 — 25 — 2)%) € Qly).

§§88.2. Further Examples: A4,, B,, G, Cases
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The graphs in the upper (resp. lower) row are those of periodic Bernoulli functions
(resp. Bernoulli polynomials).

We summarize what we have obtained: we have constructed periodic Bernoulli func-
tions so that they describe functional-relations of multiple zeta-functions of root sys-
tems, which can be calculated by using the generating function; Bernoulli polynomi-
als are obtained by the analytic continuation of periodic Bernoulli functions.

SO T ve)eo kwlyx) = 1alp “"”Xr)(ﬂ (223%)’

welW geA,nw-lA_ e,

k

ta
F(ty; X) = ) Pk, y; X,) | ] o

(¢ 44

kezf;(;i acA,

P(k,y; X,) &= B(y; X,) € Qlyl.

§9. L-Functions of Root Systems

We give an application of periodic Bernoulli functions or equivalently Bernoulli
polynomials. For this purpose, we define an L-analogue of zeta-functions of root
systems.

Definition 4 ([9, 10]). L-functions of root systems: For a root system A of type X;,

fefne (¥, 1)
Xa a y
Lr(SaX; Xr) = 7V ns.
AEZP..:}.}. a€A+ <a ,ﬂ)sa

where ¥ = (Ya)eea, is 2 set of primitive Dirichlet characters of conductors f; € Z5;.

We extend ¥ = (xo)aea, t0 (Xa)eea BY Xo = X¥—o and define (Wx)a = xy-1,- Then we
have value-relations of L-functions.

Theorem 4 ([9, 10]). For s = k = (ko)aca, € Z!

227

Z ( ﬂ (~1)fexa(- 1))Lr(w‘l K wly; X,)

wew QEA+ ﬁw—l A

2ri)ke

W)Bky?(Xr)»

= 12 [ xat-Dgtea)

aeA,

where By y(X;) is a multiple generalized Bernoulli number (defined later).

cf. (Xr = Al)
Qni)*

L(k,x) + (=1x(=DL(k, x) = *X(—l)g(/\()—}c'!“};‘

Bk‘;('.
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§10. Special L-Values

Theorem 4 directly implies a formula for special values of L-functions:

Theorem 5 ([9, 10]). Fork € (Zs2)** and y s.t. w'k=k wly =y forallwe W
and (-1)rex(-=1) =1 forall a € A,,

' _ (_1)|kl+|A+] (27Ti)ka B
Lok, x; X)) = 0 (afe;[ "y g(xQ))Bk 7).

of. (X, = A1)

k+1 K
Lk, x) = ( 12) (2:;2{ g(X)Bkv?'
As an example, let p;7 be the Dirichlet character of conductor 7 defined by p7(1) =
07(6) = 1, p7(2) = p3(5) = €¥™/3, p7(3) = p7(4) = €*/3. Then the Gauss sum is
2(07) = 2(cos(2r/7) + e¥/3 cos(dn/T) + €¥™/3 cos(6m/7)) and we have

p7(n)p7(m + n)
m2n*(m + n)*(m + 2n)?

L2((2.4,4,2),(1,p7.07, 1%, B2) = ),
mn=1
(=)' 2mi) 2 (2mi)® 2/ 69967019 102810289 V=3
T 2221 ( 2! ) ( 2174 &P ) (6988350600 T 6988350600 )
) 12 69967019 102810289 V=3
= 8lpr)’n (181289027372537700 " 181289027372537700)'
We give two more examples. Let ps be the quadratic character of conductor 5.
Then we have

92
‘By)= —— ———— '
L2((2.2,2,2), (b5, ps: 5, P5)s B2) = 555007570
1856
L3((2,2,2,2,2,2),(ps, ps, P55, P55 P5); A3) = = 2136230468757rl2

The latter can be regarded as a character analogue of the formula in [1, Prop. 8.5].

§11. Multiple Generalized Bernoulli Numbers

The generating function of multiple generalized Bernoulli numbers is given in
terms of that of multiple Bernoulli polynomials as in the classical theory.

Definition 5 (generating function [9, 10]). For t = (f¢)qea.,

P
Gaxix) = ([ X2 rae v x)

Qqg= 1 a€A+
a€A,

where F(t,y; X,) is the generating function of multiple periodic Bernoulli functions
and ft = (fola)eea,, Y(3; 1) = Loea, 0@/ fa-
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Definition 6 (multiple generalized Bernoulli numbers [9, 10])

Gt X) = > By [ | 35 T

kezlA+l a€A,

ByX) = (] ] 27") Z [ ] xataa))Plk, y(a; 1); X,).

ac, agz=1 aelA,
a€A+

cf. (X, = 41)

) = ZX( )F(ft Zx(a) ftefr-!jz/lf) ~ inXk'

Biy = £+ ZX(“)Bk({a/ﬂ)~
a=1

§§11.1. Properties

Theorem 6 ([9, 10]). Assume that fo, > 1 if A is of type Ay. Then for w € W,
Bygwie@)=( [] (1xa(=1)Biy(X).

aeA.;.nW-lA_
Hence By (X;) = 0 if there exists an element w € Wx 0 Wy, such that

[] Dexa-1#1,

aeAnw 1AL

where Wy and Wy, are the stabilizers of k and x respectively.
cf. (X; = 41)
B, =0 if (=Df (1) # 1.

Several other properties in the classical theory such as

10
F(t.y) = F(=t,=y) fory e R\Z, Bi(l —y) = (~1)'Bx(y), ;E)F(t,y) = F(t.y)

can be reinterpreted in terms of root systems and Weyl groups.
§12. Appendix: Integral Representation
The analytic continuations of multiple zeta-functions were already obtained by

Matsumoto [11], Essouabri [3], de Crisenoy [2], etc. However we give yet another
method which is a generalization of the formula

= — = :H 1 ).
£(s) n; = ToN@™ = 1) J; - 4z (€ ankel contour)
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For £ € CR a,s € CY and b € CV*R consider the multiple series

{(€.a.b,s) =

i i 51 L. SRR
=0 (@) + byymy + -+ + bigmg)*t - - - (ay + byimy + -+ - + bypmpg)v

my=

Theorem 7 ([4, 5]). ,
06009 = oy L

elbut+big=an)zn ., e(le+"‘+bNR—aN)ZNZ'il_l .Sl

N
dz; N ---
> (ezlbll+“‘+ZNle - efi) . (ez;bm+-~-+szNR _ efR) 1 A dzp,

where ¥ is essentially a union of surfaces and S is a set of linear functionals on CV.

From the integrand, we can construct generating functions of Bernoulli numbers for
nonpositive domain.
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