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1. INTRODUCTION

This is an expository and correction of [2]. We observe that the global bound-
ary Harnack principle holds for domains satisfying some conditions related to

the quasihyperbolic metric. Let $D$ be a bounded domain in $\mathbb{R}^{n}$ with $n\geq 2$ and
let $\delta_{D}(x)=dist(x, \partial D)$ . We use the following notation: $B(x, r)$ (resp. $S(x,$ $r)$ )

stands for the open ball (resp. the sphere) center at $x$ and radius $r$ . By $A$ we
denote a positive constant which may change from one occurrence and the next.
We write $J^{\cdot}\approx g$ if $A^{-1}\leq J^{\cdot}/g\leq A$ .

Consider a pair $(V, K)$ of a bounded open set $V\subset \mathbb{R}^{n}$ and a compact set
$K\subset R^{n}$ such that

(1) $K\subset V,$ $K\cap D\neq\emptyset$ and $K\cap\partial D\neq\emptyset$ .

FIGURE 1. A pair $(V, K)$ with (1).
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Definition 1 (Globa] boundary Harnack princip]e). We say that $Denj(ys$ the
global boundary Harnack principle if for all $(V, K)$ with (1), there exists $A_{1}$

depending only on $D,$ $V$ and $K$ with thc following property: If

(i) $u$ and t) are positive superharmon $ic\cdot.f\dot{\iota}rnc\cdot tio\prime_{\Delta}$ on $D$ ,

(ii) $u$ and $v$ are bounded, positive and harmonic in $V\cap D$ ,

(iii) $u$ and $v$ vanish on $V\cap\partial D$ except for a polar set,

then
$\frac{u(x)/u(\gamma)}{v(x)/v(.y)}\leq A_{1}$ for $x,$ $y\in K\cap D$ .

Remark 1. We have the following remarks.

(i) In general, $K\cap D$ may be disconnected, so $u$ and $v$ need to be defined
on the whole $D$ and positive and superharmonic there.

(ii) Jerison-Kenig [12] and $Bass- Burdzy- Ba\tilde{n}uelos[8]$ and [9] assume that
$u$ and $v$ are positive and harmonic over the whole $D$ .

(iii) Our formulation of the boundary Harnack principle is slightly stronger.

For a Lipschitz domain the global boundary Harnack principle was proved
by Ancona [4], Dahlberg [11] and Wu [14] independently. Caffarelli-Fabes-
Mortola-Salsa [10] and Jerison-Kenig [12] gave significant extensions. From
the probabilistic point of view, $Bass- Burdzy- Ba\tilde{n}uelos[8]$ and [9] proved the
global boundary Harnack principle for a Holder domain, a domain whose bound-
ary is locally given by the graph of a H\"older continuous function in $\mathbb{R}^{n-1}$ .

Define the quasihyperbolic metric $k_{D}(x,y)$ by

$k_{D}(x,y)= \inf_{\gamma}\int\frac{ds(z)}{\delta_{D}(z)}$ ,

where the infimum is taken over all rectifiable curves $\gamma$ connecting $x$ to $y$ in $D$

and $ds(z)$ stands for the line element on $\gamma$ . Smith-Stegenga [13] said that $D$ is a
“H\"older domain“ if

(2) $k_{D}(x, x_{0}) \leq A\log\frac{\delta_{D}(x_{0})}{\delta_{D}(x)}+A’$ for all $x\in D$

with some positive constants $A$ and $A’$ . Banuelos [7] said that such a domain
is a H\"older domain of order $0$ . To avoid the confusion, we say that $D$ satisfies
the quasihyperbolic boundary condition (of’ order $0$) if (2) holds. One of the
most significant properties of domains satisfying the quasihyperbolic boundary
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condition is the exponential integrability of the quasihyperbolic metric: there
exists a positive constant $\epsilon$ such that

$\int_{l3}n-$

(Smith-Stegenga [13]).

Extending (2), we consider the following condition:

(3) $k_{D}(x, x_{0}) \leq A(\frac{\delta_{D}(r_{0})}{\delta_{lJ}(x)})\}+A’$ for all $x\in D$

with some positive constants $A$ and $A’$ . Let us say that $D$ satisfies the quasihy-
perbolic boundary condition $0$] order $\alpha$ if (3) holds. The above condition and
(2) are interior conditions. Let us consider an exterior condition.

Definition 2. By Cap we denote the logarithmic capacity if $n=2$, and the
Newtonian capacity if $n\geq 3$ . We say that the capacity density condition holds
if there exist constants $A>1$ and $r_{0}>0$ such that

Cap$(B(\xi, r)\backslash D)\geq\{\begin{array}{ll}Ar if n=2,Ar^{n-2} if n\geq 3,\end{array}$

whenever $\xi\in\partial D$ and $0<r<r_{0}$ . See Armitage-Gardiner [6] for the capacity,
which illustrates the inhomogeneity between $n=2$ and $n\geq 3$ .

$Ba\tilde{n}uelos[7]$ said that $D$ is a $uniJ\dot{o}$rmly Holder domain of order $a$ if (3) and
the capacity density condition hold. It seems that the capacity density condition
is needed for $\alpha>0$ because of the lack of the exponential integrability of the
quasihyperbolic metric.

Remark 2. We have the following remarks:
(i) Banuelos [7] showed the intrinsic ultra-contractivity for a domain sat-

isfying the quasihyperbolic boundary condition of order $\alpha,$ $0\leq\alpha<2$ ,

and the capacity density condition.
(ii) Bass-Burdzy-Banuelos [8] and [9] proved the boundary Harnack prin-

ciple for a H\"older domain. The main tool was the so-called box argu-
ment.
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(iii) They also claimed that the boundary Harnack principle may hold for a
domain satisfying the quasihyperbolic boundary condition of order $a$ ,

$0<\alpha<1$ , and the capacity density condition. However, no proof has
not been provided.

(iv) $Bass- B\iota iidzy- Ba\tilde{n}uelos[9]$ and [8] were very probabilistic.
(v) Aikawa [1] proved the local (or scale-invariant) boundary Harnack prin-

ciple for a uniform domain by an elementary and analytic argument.

Aikawa [3] gave a completely different approach to the boundary Harnack
principle: the Domar method and the equivalence between the boundary Har-
nack principle and the Carleson estimate.

Definition 3 (Global Carleson estimate). We say that $D$ enjoys the global Car-
leson estimate if for all $(V, K)$ with (1), and a point $x_{0}\in K\cap D$ , there exists $A_{2}$

depending only on $D,$ $V,$ $K$ and $x_{0}$ with the following property: If

(i) $u$ is positive superharmonic on $D$ ,

(ii) $u$ is bounded, positive and harmonic in $V\cap D$ ,

(iii) $u$ vanishes on $V\cap\partial D$ except for a polar set,

then

(4) $u(x)\leq A_{2}u(x_{0})$ for $x\in K\cap D$ .

FiGURE 2. The global Carleson estimate.

We have the following theorems.
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Theorem 1. For arbitrary domains

Global Boundary Harnack principle $\Leftrightarrow$ Global Carleson estimate.

Theorem 2. The global boundarv $Hpl$ rnack principle holds.$fOr$ a domain satis-
fy$ing$ the quasihyperbolic boundary condition ( $CJf$

. order $0$).

Theorem 3. Let $D$ be a bounded domain satisfy $ing$ the capacity density condi-
tion and the quasihyperbolic boundary condition $oJ^{\cdot}ordera$]$(?r$ some $0<\alpha<1$ .

Then the global boundary Harnack principle holds for $D$.

Remark 3. We do not know whether the restriction $a<1$ is sharp or not.
$Ba\tilde{n}uelos[7]$ showed the intrinsic ultra-contractivity for a domain satisfying
the quasihyperbolic boundary condition of order $a,$ $0\leq\alpha<2$ , and the capacity
density condition. It is interesting to study the case $1\leq a<2$ .

2. $\beta$-JOHN DOMAINS

Let $0<\beta\leq 1$ . We say that $D$ is a $\beta$-John domain, if there is a point $x_{0}\in D$

and every point $x\in D$ can be connected to $x_{0}$ by a rectifiable curve $\gamma$ with

$\delta_{D}(y)^{\beta}\geq Af(\gamma(x,y))$ for all $y\in\gamma$ ,

where $l(\gamma(x,y))$ is the arc length of the subcurve $\gamma(x,y)$ connecting $x$ and $y$

along $\gamma$ . See Ancona [5, 9.2].

FIGURE 3. A $\beta$-John domain.

Remark 4. We have the following remarks.

(i) If $\beta=1$ , then a $\beta$-John domain is a classical John domain and the
quasihyperbolic boundary condition of order $0$ is satisfied.

(ii) In general, a $\beta$-John domain satisfies the quasihyperbolic boundary
condition of order $1-\beta$ .
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Hence, we obtain the following corollary to Theorem 3.

Corollary 1. Let $0<\beta\leq 1$ . Then $c\iota\beta$-John dontain with the capacity density
condition enjoys the global $bo\iota rndcll’1^{\gamma}$ Harnack principle.

Remark 5. In view of Theorem 2, the capacity density condition is superfluous
in case $\beta=1$ .

A typical example of a $\beta$-John domain is a $\beta$-H\"older domain, whose boundary
is given locally by the graph of a $\beta$-H\"older continuous function in $\mathbb{R}^{i?}-|$ . A 1-
Holder domain is a Lipschitz domain, so that the boundary Harnack principle is
classically established. A $\beta$-John domain need not satisfy the capacity density
condition if $0<\beta<1$ . However, Bass-Burdzy [9] showed that the global
boundary Harnack principle holds for a $\beta$-H\"older domain without the capacity
density condition for $\frac{[}{2}<\beta<1$ , and then $Bass- Bnrdzy- Ba\tilde{n}uelos[9]$ for $0<$

$\beta<1$ .

Theorem 4. Let $0<\beta<1.$ A $\beta- H(\dot{)}lcler$ domain enjoys the global boundary
Harnack principle.

Their proof is very probabilistic. We shall give an elementary analytic proof
for $\frac{)}{2}<\beta<1$ .

Remark 6. There were mistakes in [2]. Here a corrected proof will be given.
Unfortunately, the $0< \beta\leq\frac{1}{2}$ cannot be covered. Its analytic simple proof
remains open.

3. BOUNDARY HARNACK PRINCIPLE AND CARLESON ESTIMATE IN TERMS OF THE GREEN
FUNCTION

The Riesz decomposition theorem says that a positive superharmonic func-
tion $u$ , which is harmonic in $D\cap V$ and vanishes on $\partial D\cap V$ except for a polar
set, can be represented as the Green potential $G\mu$ of a measure $\mu$ on $D\cap\partial V$ in
$D\cap V$ . One more geometrical observation is relevant. Let $\overline{B}$ be a closed ball
including $D$ . Then $F=\overline{B}\backslash V$ is a compact set and $D\backslash V=D\cap F$ and $K\cap F=\emptyset$ .
Consider a pair of disjoint compact sets $K$ and $F$ with

(5) $K\cap\partial D\neq\emptyset,$ $K\cap D\neq\emptyset,$ $F\cap\partial D\neq\emptyset$ and $F\cap D\neq\emptyset$ .

6



Definition 4. We say that a domain $D$ enjoys the global Carleson estimate in
zerms $0$] the Green.firnction if for each pair of disjoint compact sets $K$ and $F$

with (5) and a point $x_{0}\in K\cap D$ , there exists a constant $A_{2}$ depending only on
$D,$ $K,$ $F$ and $x_{0}$ such that

$G(x,y)\leq A_{2}G(x_{0},y)$ for $x\in K\cap D$ and $y\in F\cap D$ .

FIGURE 4. The global Carleson estimate in terms of the Green function.

The above discussion gives readily the following theorem.

Theorem 5. The global Carleson estimate and the global Carleson estimate in
terms $oJ^{\cdot}theGreenJi_{4}nction$ are equivalent.

Using the Riesz decomposition theorem, we similarly obtain the counterpart
of the boundary Harnack principle.

Definition 5. We say that a domain $D$ enjoys the global boundary Harnack
principle in terms $oJ^{\cdot}the$ GreenJimction if for each pair of disjoint compact sets
$K$ and $F$ with (5), there exists a constant $A_{1}$ depending only on $D,$ $K$ and $F$ such
that

$\frac{G(x,y)/G(x’,y)}{G(x,y’)/G(x’,y’)}\leq A_{1}$ for $x,$ $x’\in K\cap D$ and $y,$ $y’\in F\cap D$ .

Theorem 6. The global boundary Harnack principle and the global boundary
Harnack principle in terms $oJ^{\cdot}theGreen$]$i_{4}nction$ are equivalent.

Combine Theorems 1, 5 and 6.

Theorem 7. Let $D$ be a bounded domain in $\mathbb{R}^{n}$ . Then thefOllowing statements
are equivalent:
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FIGURE 5. The global boundary Harnack principle in terms of the
Green function.

(i) $D$ enjoys the global boundary Harnack principle.
(ii) $D$ enjoys the global boundary Harnack principle in terms $of\cdot the$ Green

J’unction.
(iii) $D$ enjoys the global Carleson estimate.
(iv) $D$ enjoys the global Carleson estimate in terms $oJ^{\cdot}the$ Green function.

4. LEMMAS

In order to prove the theorems we use the following notions. By $\omega(E, U)$ we
denote the harmonic measure over an open set $U$ of $E\subset\partial U$ . Let $w_{\eta}(U)$ be the
capacitary width defined by

$w_{\eta}(U)= \inf\{r>0$ : $\frac{Cap(B(x,r)\backslash U)}{Cap(B(x,r))}\geq\eta$ for all $x\in U\}$ .

Here $0<\eta<1$ .

Lemma 1. If $D$ satisfies the capacity density condition, then $w_{\eta}(\{x\in D$ :
$\delta_{D}(x)<r\})\leq 2r$for some $\eta$ .

The capacitary width is useful for the estimate of harmonic measure ([1,

Lemma 1] $)$ .

Lemma 2. There exists $A_{3}>0iJ^{\cdot}x\in U$ and $R>0$, then

$\omega^{X}(U\cap S(x,R);U\cap B(x, R))\leq\exp(2-A_{3}\frac{R}{w_{\eta}(U)})$ .

Definition 6. We say that two points $x,y\in D$ are connected by a Harnack chain
$\{B(x_{j}, \frac{1}{2}\delta_{D}(x_{j}))\}_{j=1}^{k}$ if $x \in B(x_{\mathfrak{l}}, \frac{1}{2}\delta_{D}(x_{1})),$ $y \in B(y_{k}, \frac{1}{2}\delta_{D}(y_{k}))$, and $B(x_{j}, \frac{1}{2}\delta_{D}(x_{j}))\cap$

$B(x_{j+1}, \frac{1}{2}\delta_{D}(x_{j+1}))\neq\emptyset$ for $j=1,$ $\ldots$ , $k-1$ . The number $k$ is called the length $oJ^{\cdot}$

the Harnack chain.
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Since the shortest length of the Harnack chain connecting $x$ and $y$ in $D$ is
comparable to the quasihyperbolic metric $k_{D}(x,y)$ , we have

Lemma 3. There is a cons tant $A_{4}>1$ depending only on the dimension $n$ (even

independent $0$] $D)$ such that

(6) $\exp(-A_{4}(k_{D}(x,y)+1))\leq\frac{l\tau(x)}{h(y^{f})}\leq\exp(A_{4}(k_{D}(x,y)+1))$

$f_{\dot{C}J}r$ every positive harmonic]$i_{\Lambda}nctionh$ on $D$ .

5. THE BOUNDARY HARNACK PRINCIPLE FOR DOMAINS WITH QUASIHYPERBOLIC

BOUNDARY CONDITION

We shall show the global Carleson estimate in terms of the Green func-
tion. Then Theorem 7 gives the global boundary Harnack principle. Let $D$

be as in Theorem 3, i.e. $D$ satisfies the capacity density condition and the
quasihyperbolic boundary condition of order $a,$ $0<\alpha<1$ . Let $K$ and $F$

be a pair of disjoint compact sets satisfying (5) and let $x_{0}\in K\cap D$ . Set
$U(r)=\{x\in \mathbb{R}^{n}$ : dist$(x,$ $F)<r\}$ for $r>0$ . Let $2R=dist(K, F)$ and put
$U=U(R)$ . Observe $\overline{U}\cap F=\emptyset$ . Let $\omega_{0}=\omega(D\cap\partial U, D\cap U)$ be the harmonic
measure of $D\cap\partial U$ in $D\cap U$ .

First let us compare $\omega_{0}$ and $G(x_{0}, \cdot)$ .

Lemma 4. Let $\omega_{0}=\omega(D\cap\partial U, D\cap U)$ . Then $\omega_{0}(y)\leq AG(x_{0},y)$ for $y\in F\cap D$ .

Proof. Let us employ the box argument. The main idea is to slice $U$ according
to the distance from $F$ and the value of the Green function. Let $R_{0}=R$ and

$R_{j}=(1- \frac{3}{\pi^{2}}\sum_{k=\mathfrak{l}}^{i}\frac{1}{k^{2}})R$ for $j\geq 1$ .

Then it is easy to see that $R_{j-1}-R_{j}=(3R)/(\pi^{2}j^{2})$ , so that

(7) $\sum_{j=1}^{\infty}R_{j}=\frac{R}{2}$ .

Since $G(x_{0}, \cdot)$ is bounded on $U\cap D$ , we may assume that $u=G(x_{0}, \cdot)/A$ is
bounded by 1 on $U\cap D$ by a suitable choice of $A>1$ .
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Let $j\geq 1$ and set

$U_{j}=\{y\in U(R_{j})\cap D:0<n(y)<\exp(-2^{j})\}$ ,

$D_{j}=\{y\in U(R_{j})\cap D:\exp(-2^{j\neq 1})\leq n(y)<\exp(-2^{j})\}$ .

Let

$q_{j}=\{\begin{array}{ll}\sup_{D;}\omega_{0}/u, if D_{j}\neq\emptyset,0 if D_{j}=\emptyset.\end{array}$

Since $0<u<1$ on $U\cap D$ , it follows from (7) that $F\cap\partial D$ is included in the
closure of $\bigcup_{j=1}^{\infty}D_{j}$ . Hence it is sufficient to show that $q_{j}$ is bounded.

FIGURE 6. Box argument: slice of $U$ .

By (3) and (6), we have

$\exp(-2^{j})>u(y)\geq\exp(-A_{4}(k_{D}(y, x_{0})+1))\geq A\exp(-\frac{A}{\delta_{D}(y)^{\alpha}})$ for $y\in U_{j}$ .

In other words, $\delta_{D}(y)\leq A2^{-1/\alpha}$ for $y\in U_{j}$ . Hence, Lemma 1 implies that
$w_{\eta}(U_{j})\leq A2^{-j/\alpha}$ . Observe that dist$(D\cap\partial U_{j-1}, U_{j})\geq R_{j-1}-R_{j}$ . Applying the
maximum principle on $U_{j-1}$ , we obtain

$\omega_{0}\leq\omega(D\cap\partial U_{j-1}\backslash \overline{D_{j-1}}, U_{j-1})+q_{j- 1}u$ on $U_{j-1}$ .

Divide the both sides by $u$ and take the supremum over $D_{j}$ . Then Lemma 2
yields

$q_{j}\leq A\exp(2^{j+}|-ARj^{-2}2^{1/\alpha})+q_{j-1}$ .

Since $0<a<1$ , it follows that $\sum_{j=1}^{\infty}\exp(2^{j+1}-ARj^{-2}2^{j/\alpha})<\infty$, so that $q_{j}$ is
bounded. The proof is complete. $\square$
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$Proof\cdot oJ^{\cdot}$ Theorem 3. It is sufficient to show the global Carleson estimate in terms

of the Green function by Tlieorem 7. Let $K$ and $F$ be disjoint compact sets with
(5). Let $2R=dist(K, F)$ and put $U=U(R)$ . Let $\omega_{0}=\omega(D\cap\partial U, D\cap U)$ . Then
Lemma 4 gives $\omega_{0}(y)\leq AG(x_{0},y)$ for

$-$

) $’\in F\cap D$ . Since the distance between $K$

and $U$ is positive, it is obvious that $G(x,y)\leq A$ uniformly for $x\in K\cap D$ and
$y\in U\cap D$ . Fix $x\in K\cap D$ and apply the maximum principle to $G(x, \cdot)$ and $\omega_{0}$

to obtain $G(x,y)\leq A\omega_{0}(y)$ for $y\in U\cap D$ . Hence Lemma 4 yields

$G(x,y)\leq AG(x_{0},y)$ for $y\in F\cap D$ ,

as required. 口

6. THE BOUNDARY HARNACK PRINCIPLE FOR $H\ddot{O}$LDER DOMAINS

Let $0<\beta<1$ . We may assume that $D$ is above the graph of a $\beta$-H\"older

continuous function $\varphi$ in $\mathbb{R}^{\prime p-[}$ . Moreover we may assume that $||\varphi||_{\infty}\leq 1$ and
$\varphi(x)=0$ for $|x|\geq 1$ . For a point $x\in D$ we define $d(x)=x_{n}-\varphi(x’)$ , where
$x=(x’, x_{n})$ . Let $x_{0}$ be high above from the boundary. Suppose $x$ is just below
$x_{0}$ and $0<d(x)<1$ . In general, $\delta_{D}(x)\approx d(x)$ does not hold. We can assert only
that $\delta_{D}(x\rangle^{\beta}\geq Ad(x)$ .

Considering the line segment connecting $x$ and $x_{0}$ , we obtain the following
estimate of the quasihyperbolic metric:

(8) $k_{D}(x, x_{0}) \leq A\int_{d(.))}^{d(\iota_{0})}\frac{dt}{t^{1/\beta}}\leq Ad(x)^{1- 1/\beta}+A$ .

$x_{0}$

FIGURE 7. H\"older domain: $\delta_{D}(x)$ and $d(x)$ .

The same estimate holds if $x\in D$ is close to $0$ , say $|x|<1$ . Now we have the
counterpart of Lemma 1.
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Lemma 5. Let $D$ be as above. $If\cdot 0<r<1$ , then $w,,(\{x\in D:d(x)<r\})\leq Ar$

.foor some $\eta>0$ .

This lemma can be proved by Fubini’s theorem showing the volume density
condition. In view of Theorem 7, it is sufficient to show the globa] Carleson
estimate in terms of the Green function. Let $K$ and $F$ be a pair of disjoint
compact sets with (5) and let $x_{0}\in K\cap D$ . Let $U(r)=\{x\in \mathbb{R}^{n}$ : dist$(x,$ $F)<r\}$

for $r>0$ . Let $2R=dist(K, F)$ and put $U=U(R)$ . Observe $\overline{U}\cap F=\emptyset$ . Let
$\omega_{0}=\omega(D\cap\partial U, D\cap U)$ be the harmonic measure of $D\cap\partial U$ in $D\cap U$ . We can
compare $\omega_{0}$ and $G(x_{0}, \cdot)$ .

Lemma 6. Let $\omega_{0}=\omega(D\cap\partial U, D\cap U)$. Then $\omega_{0}(y)\leq AG(x_{0},y)$ for $y\in F\cap D$ .

$Pr(oJ$. The proof is similar to that of Lemma 4. We take $R_{j},$ $U_{j},$ $D_{j}$ and $q_{j}$ in the
same way as in the proof of Lemma 4. It is sufficient to show that $q_{j}$ is bounded.
By (8) and (6), we have

$\exp(-2^{j})>u(y)\geq\exp(-A_{4}(k_{D}(y, x_{0})+1))\geq A\exp(-Ad(y)^{1-1/\beta})$ for $y\in U_{j}$ .

In other words, $d(y)\leq A2^{-1/(I/\beta- 1)}$ for $y\in U_{j}$ . Hence, Lemma 5 implies that
$w_{\eta}(U_{j})\leq A2^{-j\beta/(1-\beta)}$ . Applying the maximum principle on $U_{j-1}$ , we obtain

$\omega_{0}\leq\omega(D\cap\partial U_{j-1}\backslash \overline{D_{j- 1}}, U_{j-1})+q_{j- 1}u$ on $U_{j- I}$ .

Divide the both sides by $u$ and take the supremum over $D_{j}$ . Then Lemma 2
yields

$q_{j}\leq Aexp(2^{j+1}-ARj^{-2}2^{\beta/(1-\beta)})+q_{j-1}$ .

$Since\beta/(1-\beta)>1$ for- $<\beta<1$ , it follows that $\sum_{j=1}^{\infty}\exp(2^{j+1}-ARj^{-2}2^{j\beta/(1-\beta)})<$

$\infty$ , so that $q_{j}$ is bounded. $\square$

$Proof\cdot of\cdot Theorem4$ . Using Lemma 6, we can prove the theorem in the same
way as in the proof of Theorem 3. See [2] for details. $\square$
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