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Variable exponent version of Hedberg-Wolff inequalities

Fumi-Yuki MAEDA

Introduction.
Hedberg-Wolff gave the following inequalities in [HW]:
¢ [ [(Gar@P e < [ Wi du) < €[ [(Garw@P dz ()
RN RN RN

for every nonnegative measure u on RY with a positive constant C independent of p,
where G,, is the Bessel kernel of order o (0 < a < N)on RM, 1 <p < o0, 1/p+1/p =1

" Wi (2, R) = /OR (&M)ﬂ—l T (r>0)

rN-ap T
The function W¥ (-, R) is called the Wolff-potential of p fo order (a, p). Inequalities
(1) imply
L@ e [ Wi ) dutz) < oo 2)
where
LP(RY) = {u=Gox f; f € LP(RY)}

with the norm ||u||ap = || fllp- Since LMP(RN) = W™P(RN) for m € N (A.P. Calderén),
(2) shows that

cWmRN) e [ W@ 1) duta) < oo, @)

for m € N.
In [AH], the proof of (1) is given via the following inequalities

C™H [ Marpllg < 1Ga * plly < CliMar plly (3)

for 0 < ¢ < oo and R > 0 with a positive constant C' independent of i, where

(Mo, p)(2) = sup N pu(B(z,r)).

0<r<R

These results have been generalized to the case where G, is replaced by a general
convolution kernel satisfying certain conditions (cf. [JPW], [AE, Part II]).

In the present paper, we consider variable exponents p(z) on R™ and show that
inequalities (1) and (3) hold in some restricted forms, and relations (2) and (2') still
hold true for p with finite total mass when we replace p by p(z) satisfying certain
conditions. We discuss these for convolution kernels.
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1. Definitions

As a potential kernel function on RY, we consider k(z) = k(|z|) (with the abuse
of notation) with a nonnegative nonincreasing lower semicontinuous function k(r) on
(0, o0) such that

(k.1) there is Ry > 0 such that k(r) is positive and satisfies the doubling condition
on (0, Ro), i.e., k(r) < Cqk(2r) for 0 < r < Ro/2;

(k.2) fol E(r)rN=1dr < oco.

By (k.2), k(z) € L} (R"). The k-potential of a nonnegative measure x on RY is
defined by

(k* p)(x) = / k(z —y) du(y)-
For R > 0, the (k, R)-maximal function of u is defined by

(My,rp)(z) = sup k(r)u(B(z,T)).
O<r<R
We consider a variable exponent p(z) on R" such that
(P1) 1 <p™ :=infp(:) <p* :=supp(:) < o0;
(P2) p(-) is log-Holder continuous, namely

1
f —yl < =
or |z yl__2

Gy
p(z) —p(Y)l = log(1/|z —yl)

with a constant C, > 0, which is referred to as the constant of log-Hélder continuity.

We refer to [KR] for the definition of the p(-)-norm || fl|,(), the variable exponent
Lebesgue space LPO)(RN) and the variable exponent Sobolev space W™ (RY) (m €
N).

For R > 0, we define the (k, p(-))-Wolff potential of u by

WIJ‘

R
k,p(,)(x, R) = / k(T)p(I)M(B(fL', T.))p(:l:)—l,rN—l dr.
0

Example. For 0 < a < N, the Riesz kernel I(z) = 1/]z|¥~* and the Bessel kernel G,
of order « are typical examples of k(z). For these kernels, we can take Ro any positive

value. R (x)' -1
. p(B(z,r))\"" 7 dr
z, R) := W}mP(_),(SC;R):/ <7vt('ap—(x))*)>
0

i
W, -

and

Wga,p(')(x’ R) ~ Wg’p(,),(l‘, R)

For a nonnegative measure it and R > 0, let

M(u, R) == sup u(B(z, R)).

zeRN
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It is easy to see that if M(u, R) < oo holds for some R > 0, then so holds for all R > 0.

Lemma 1. If either k x p € LPO(RN) or My gp € LPO(RYN) or

/ y(z, R) du(z) < oo,

then M(u, R) < oo for all R > 0.

Proof. Suppose that M(u, R) = oo for some R > 0. As remarked above, we may
assume 0 < R < Ry and M(u, R/3) = oco. Then, for every n € N, there exists &, € RV
such that u(B(&,, R/3)) > n. If z € B(&,, R/3), then u(B(z, 2R/3)) > n, so that

(k* p)(z) > / k(z —y) du(y) > k(R)n
B(z,2R/3)
and
(Mo )(z) > K(2R/3)u(B(z,2R/3)) > k(R)n.
Thus
[l m@p@az= [ (kxw@P do = G
B(§,R/3)

with a constant C; > 0 independent of n. This shows that k * u ¢ LPO(RY). Similarly,
we see that My rp & LPO(RYN).
Also, if z € B(&,, R/3), then

R
Wlf: ()(IvR) > / k('f')p(x),u(B(gg,r))P(l‘)—l,rN—l dr

2R/3

R
> / k(R)P® u(B(z, 2R/3))P@ 1NV dr > CynP” 1

2R/3

with a constant C; > 0 independent of n, so that

[t R = [ WG R du) >
n 3

for all n € N.

We call [ W (z, R) du(z) the (k,p(-))-energy of p.

2. Estimate of (k,p(-))-energy by p(-)-integral of k-potential
Theorem 1. Let My > 1, 0 < R < Ro/2. Then

[, :deu()<C((RN /[k*uu]p(z)dx)

for all nonnegative measure i such that M(u, R) < My, with a constant C > 0 depending
Only on N} Cdl p+; sz MO and KR = fOR /‘C(T')T'N—l dr.
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Proof. We consider a nonlinear potential

%

kp()—k*(k*,u) (-1,

Since
itk s i@y as - [ Vi (@) duo),

it suffices to show
Wiz R) < C(1+ VI (2). (2.1)
for 0 < R < Ro/2.

Since k(r) is nonincreasing and Kp < 00, k(r) < NKgrr— for 0 < r < R. Hence,
(P2) implies that

(k(w)u(B(z, [y)))*™ < C(k(y)u(B(z, [y])))"" ™ (2.2)

for |y] < R whenever M(u, R) < My and k(y)u(B(z,|y|)) = 1, with a constant C' =
C(N,KR,CP,M0)>O. »
If |ly] < R, then |z —y — &| < 2ly| for £ € B(z,|y|), so that

k(y)u(B(z, [y])) < Cak(2y)u(B(z, ly])) < Calk * p)(z — y).
Hence, using (2.2) we have

1

W o B) = oo | KO (@B b)) a

<1 k(y)dy + C k() (k@) (B (=, )" dy

ON J{lyl<R} {lyl<R}

< Kg+ C/ ()[(k * ) (z — y)PE V-1 dy
1y|<R}

with constants C = C(N, Cy4, Kg,p*, Cp,, Mp) > 0, which shows (2.1). (Here, o denotes
the surface area of the unit sphere in R".)

Remark. In Theorem 3, it is not known whether the term u(R") is really necessary.
On the other hand, for non-constant exponent p(-), the following inequality does not
hold even if M(u, R) < My:

[tk w@P® iz < ¢ [ Wiy (@B duto)

In fact, if p(-) is continuous and non-constant in R™, then we can find nonnegative
measures {u;} such that M(u;, R) — 0 (j — oo) and

/W?f p()(T R) dp;(T)

[ UG )@

- 0 (2.3)
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as 7 — oo for every 0 < o« < N and every R > 0.

Proof. We can choose two compact sets K; and K3 and 1 < p; < py < oo such that

‘K]' > 0, I[{Q' > 0,
p(z) <p, forz e K, and p(z) > py for z € K.
Let p1; = (1/7)xk,dz, 3 = 1,2,.... Obviously, M(u;, R) — 0.
Since 1j(B(z,7)) < (1/5)enr™ for any £ € RN and r > 0,

WV»J'

R
Ga p(.)(I,R) < C(a, N, p+)/ (TG—N)p(z)[(1/]-),,.N]p(x)—1rN—1 dr
’ 0

R
= C(a, N,:D*)(l/j)”(’)'l/ re?@=tdr < Cla, N,p*,p~, R)(1/5)P®)!
0

with constants C(...) > 0. If z € Ky, then (1/5)?®~1 < (1/5)P271, so that
/ W (@, R) duss(z) < Clay Nyp*,p=, R)(1/5)7 K. (2.4)

On the other hand, since G, is positive continuous on R",
A= Ala, K1, Kp) == inf{Gy(z —y);2 € K;, y € Ky} > 0.

If x € Ky, then

(Ga * p;)(z) = (1/7) B Galz —y)dy 2 (1/5)A| Kol

Thus,

/ (Ga % )P dz > / (1/5) Al Ko |P® da
K,
> (1/7)P* min(A| K[, 1)P*| K, |.

(2.5)

In view of (2.4) and (2.5), we obtain (2.3), since p; > p;.

3. Estimate of p(:)-integral of (k, R)-maximal function by (k,p(-))-energy
Theorem 2. Let My >1 and 0 < R < Ry/3 . Then

J ()@ o < € (B + [ W (23R )

for all nonnegative measure ju such that M (p,3R) < My, with a constant C > 0 depend-
ing only on N, Cy, Kg, p*, C, and M.

Proof. Let 0 < R < Ry/3. For 0 < r < R,

3R/2 dt 3r/2 dt
/ B (B, )7 % > / B2 (B, )y
0 g r

> log(3/2)C; 7" [k(r)u( Bz, )=,
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Hence .
IRTICONPIT & (+\P() p(x) dt
My i)z < 3C k(t w(B(x,t —,
: A :
and so
@) et [ p(z) p(x) dt
(Mg p)(2)]" dz < 3C k()P u(B(z, t))P dx +
0
Now,

/ k()P (B (z,1))P™) dx
= [rerus 07 ( [ oo duw)) do
= [ ([ xowo@ber (5@ 7@ i) auty)
-/(/., P (Bl ) da ) duty)

As in the proof of Theorem 1, we have
[k(t)u(B($7t))]P(z)—l < C[k(t)u(B(:c,t))]p(y)_l < C’[k(t)p,(B(y,Zt))]p(y)_l

whenever |z — y| <t < 3R/2, M(u,3R) < Mo and k(t)u(B(z,t)) > 1, where constants
C depend only on N, Cy4, K3g, p*, C, and My. Thus,

/k(t)p(x)M(B(fc,t))”(z) dz < |B(0,t)] (k(t)u(RN) + C/k(t)p(y)u(B(y, Zt))”(y)"ld#(y)) -
Therefore

/ (Mo ) (2)]7® da

< (M(RN) / O dr / R ( [ ey, 20y du(y)> dt)

c (u(R"’) T / ( / " e u(B(y, 261N dt) du(y))

< (@M + [ Wy 0.3R) dut) )

IN

with constants C depending only on N, Cy, K3g, p*, Cp and M.
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4. Estimate of p(-)-norm of convolution potential by p(:)-norm of k-maximal
function

The example given in the Remark in section 2 also shows that the following (modular)
inequality does not hold whencver p(-) is continuous and non-constant:

/ (Gy * )P de < C (Ma R )P de.
RN RN
However, we obtain norm inequality under an additional conditions on p(z):
Theorem 3. Suppose k(r) in addition satisfies
(k.3) [T k(r)rV ) dr < oo;
(k.4) There is a constant C) > 0 such that

/ k()tNtdt < CerVk(r) for 0 < 7 < Ry;
0

and suppose p(z) in addition satisfies (P3) (log-Holder continuity at oo)

Ip(z) — p(y)] < —

—_—= . f )
~ log(e + |z]) or [y| > |z|

Then, for 0 < R < Ry/2,
Nk * pllpey < CliMi,r 1llpc

with a constant C > 0 depending only on N, Cy, Ck, k(R), K, pt, p~, Cin, Cs and R.
Note that the Bessel kernal G, satisfies (k.3) and (k.4).
To prove Theorem 3, given R > 0, let

kr(r) = k(r)xo,r)(r) and kgr(r) = k(r)X(roo)(T)-

We treat kr * p and kg * u separately. First, we show

Proposition 1. Suppose k(r) satisfies (k.1), (k.2) and (k.4), and suppose p(z) satisfies
(P1), (P2) and (P3). Then, for 0 < R < Ry/2,

kR * pllpcy < CllMi,r pllpe)
with a constant C > 0 depending only on N, Cy, Ck, k(R), p*, p~, Cin, Ce and R.

We prove this proposition applying the following theorem due to D. Cruz-Uribe, A.
Fiorenza, J.M. Martell and C. Pérez [CFMP]:

C-F-M-P Theorem. Let F be a family of ordered pairs (f, g) of nonnegative mea-
surable functions on RY. Suppose that for some py, 0 < py < 00,

flz)PPw(z)dr < C’o/ g(z)Pow(x) dx
RN RN
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for all (f,g) € F and for all Ay-weights w, where Cy depends only on py and the A,-
constant of w. Let p(-) satisfy (P1), (P2) and (P3), and assume further that p~ > py.
Then

1oy < Cllgllae

for all (f,g) € F.

Remark. In [CFMP], the last phrase in the above theorem is “for all (f,g) € F such
that f € LP(')(RN)”». By examining its proof, we see that g € LPO(RN) (1 e, [|gllpy <
oo) implies f € LPV(RY), and hence we do not need “such that f € LPO(RN)”.

Thus the proof of Proposition 1 is reduced to the verification of

Proposition 1’. Let 1 < ¢ < co. Under the assumptions on k in Proposition 1, for
0 < R < Ry/2,
/ (kr * p)fwdz < C (M. pp)?w dz
RN RN
for all A,-weights w, where C depends only on N, q, Cy, Cr, R and the A,-constant
of w.

In the case k(z) = G4, this proposition is given in [T]. For general kernels k£, we can
prove this proposition by combining the arguments given in [T] and [AE, Part II]. Since
our setting is different from either of them, we here give details of a proof.

First we recall some properties of A;-weights w. w is, by definition, a nonnegative
locally integrable function on RV such that :

/ w(z)dr < Ay|Blessinfw
5 B

for every ball (or cube) B. The constant A, is called the A;-constant of w. For a
measurable set F in RV, we write w(E) = fE w(z)dz. An A;-weight satisfies the
Aso-condition:

w(E) < C, ({g:) w(Q) (4.1)

for every cube @ and every measurable subset E of @, where C,, > 0 and ¢ > 0 are
constants depending only on N and the A;-constant of w (see, e.g., [T; Theorem 1.2.9]
or [HKM; Chap.15]).

The following is the key lemma (cf. [T; Lemma 3.1.3] and [AE; Lemma 4.3.2]):
Lemma 2. Suppose k(r) satisfies (k.1), (k.2) and (k.4). Let 0 < R < Ry/2 and w be
an A;-weight. Set a = 4C3. Then for every n > 0 there exists € € (0, 1], depending only
on N, the A;-constant of w, R, Cy, Cx and n, such that

w({z; (kg * p)(z) > ar})
< nw({z; (kg x p)(z) > A}) + w({z; (Mg p)(z) > €A})
for all X > 0.

Proof. For A > 0, let
Ey = {z;(kr * p)(z) > A}
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It i1s an open set, since kg * p is lower-semicontinuous. Let {Q;} be the Whitney
decomposition of £y into closed dyadic cubes; namely, the interiors of Q; and @ are
disjoint for j # j', £y = J, Q; and

diam @Q; < dist(Q);, EY) < 4diam Q,

for each j. If diam Q); > R/8, then subdivide it into dyadic cubes with diameter < R/8
but > R/16. We denote this modified decomposition by {Q;} again.

Let Q € {Q,}, d = diam@ and let B = B(zg,6d), where zg be the center of Q.
Note that 8d < R. Let u; = p|p and py = pt — j1;. For every x € Q, B C B(z, 7d).
Hence,

/Q (ke 0)(€) d€ = /Q ( / kR<s—y)du<y>) s [ ( /Q kR@—y)dg) du(y)
<[ . ( / - k(&)d§> du(w)

7d
= C(N) (/O k()N ! dt> w(B(z, 7d))
< Ci(N, C)|QIk(Td)pu(B(x, 7d)) (by (k.4))
< Ci(N, C)|QNU My s pe) ().

Let an A;-weight w and n > 0 be given. Then, by (4.1), we can find € € (0, 1]
depending only on n, N, Cy, Cy and the A;-constant of w such that if E C Q and |E| <
Ci(N, Ck)(2¢/a)|Q] then w(E) < nw(Q). If there exists z € Q such that (M ru)(z) <

e, then the above inequalities imply
a
{€ € @5 (kr * m)(€) > 52}

< o5 | (en e m)© de < iV, Co e/,

so that a
w({ € @; (kg * 1)) > 5A}) < nw(Q).
Thus,
w({z € Q; (kr* m)(@) > SN (Mirp)(@) < eA}) < nw(Q) (4.2).

Next, we show

{z € Q;(kr* n)(z) > aX, (Myrp)(x) < €A}

C{z € Q; (kr*)(z) > %/\, (Mi,r p)(z) < €A} (49)

If @ is one of undivided Whitney cubes, then dist(Q, E5) < 4d, so that BN ES # 0.
Let ' € BN ES. Note that d < R/8, so that 12d < Ry. If z € Q and y € B¢, then
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|x — 2’| < 7d and |x — y| > 5d, so that |x — y| > (5/12)|2' — y|. Hence, if z € @ and
(Mg,r p)(z) < €A, then

(ke + ) (@) = [

B(z,R)

Ko — y) dualy) < /( H/12) ) daty)

< Cﬁ/ k(z" —y) dpa(y)
B(z,R)

l

<cs ka' = v) duy) + C3 [ K — ) dpy)

B(z',R) B(z,R)\B(',R)
< Ci(kr * p)(z") + Cik(R)(B(z, R))

< C31+e)A <2020 < fzf/\,
Thus we have (4.3) in this case.

Next let @ be one of divided cubes. Recall that R/16 < d < R/8 If z € Q and
y € B¢, then |y — z| > 5d > (5/16)R > R/4. Hence,

(kr * p2)(z) < / k(x —y) du(y)
{R/4<|y—z|<R}
< k(R/4)u(B(z, R)) < C3R(R)u(B(z, R)) < 5(Mr p)(3).

Hence, if (Mg g p)(z) < €A, then

(kr * po)(z) <

wl@
e

which implies (4.3).
Now, from (4.2) and (4.3) we see that

w({z € Q;(kr * pu)(x) > aAr})
<nw(Q) +w({z € Q; (My,rp)(z) > eX}).

for every Q € {Q;}. Summing up over all @), we obtain Lemma 2.

Proof of Proposition 1’: Let a be as in the above lemma and F) be as in the above
proof, i.e., By = {z; (kr*pu)(z) > A} (A > 0). First assume that u has compact support.
Then, kg * 1 has compact support, too, and hence A — w(E)) is a bounded function on
(0, 00). Applying Lemma 2 with n = a~9/2, we have, for any L > 0,

alL L
/ w(E)A! d = aq/ w(Bay )N dA
0 0

L L
< %/ w(E\) A7 d) + a"/ w({z; (Mr.pu)(z) > eAPAT1dA
0 0

with € > 0 depending only on N, the A;-constant of w, R, Cyq and Cy. Hence,

alL L
/ w(ENHd) < 2a‘76_‘7/ w({z; (Mgru)(z) > APDAT1dA
0 0
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Now, letting L — oo, we have
/ (kg * 11)wdz < 2a"€*q/ (Mg g p)wdz.
RV RN

If o does not have compact support, let p,, = Xxpm)it and apply the above result
to pm, and then let m — oo. Since kr * uy T kg * p, the required result follows by the
monotone convergence theorem.

To treat I}R * 11, we prepare another lemma. For nonnegative measure yu on RY and
R >0, let N
Mp p(z) = supr™"p(B(z,1)).

>R

Lemma 3. If k(R) > 0, then
Mgy < C(N, R, k(R) M(Mir ),

where, M(f) denotes the Hardy-Littlewood mazimal function of f.

Proof. Fix z € R" and let r > R > 0. We can find a finite number of y; € B(z,r)
such that

B(z,r) C UB(yj,R/Q) and ng(yj,n/g) < A(N) < .

J
If y € B(y;, R/2), then B(y;, R/2) C B(y, R), so that

(Mg, 1)(y)

w(B(y;, R/2)) < u(B(y, R)) < k(R)

Since B(y;, R/2) C B(z,r + R/2) C B(z,2r),

(z, 7"))<Z,u (y;, R/2))

< k(R)lB(O R72)] ;/zz(yj,a/z)(Mk'Ru)(y) dy
< 2VAWN)
- ( )IB(O R)l B(z,2r)

4N A(N
< k(R)(R"? N M(Mp g p) (),

(My,r 1) (y) dy

so that
rNu(B(z,7)) < C(N, R, k(R))M(Mjr 1) (z)

for r > R. Thus, we obtain the required estimate.

Proposition 2. Suppose k(r) satisfies (k.1), (k.2) and (k.3), and suppose p(z) satisfies
(P1), (P2) and (P3). Then, for 0 < R < Ry,

kR * pllpey < Cll M ritll ey
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with a constant C' > 0 depeding only on N, R, k(R), Ci, Coo, P, p~ and

K ::/ k(r)yr™ =1 dt.

JO

Proof.

(ke » ) () = / Kz — ) duly)

JRN\B(z,R)

N /[R )k(f) du(B(z,)](r)

< limsupk(r)u(Bz,r) + | u(B(z,r))d(=k)(r).

700 (R,00)
Note that (k.3) implies that k(r) < 7= for 7 > ry. Thus, if r > max(rgy, R), we have
K(r)u(B(z, 1) < vV k(r) (Mg p)(2) < (Mg p)(2).
Hence,

lim sup k(r)u(B(z,7)) < (Mg p)(z).

T—00

On the other hand,
/( (B A=) < ( /( o d(—k)(r)) (M 1) ()

< <RNk(R) + N/ROO k(r)rN—1 dr) (MR w)(z)
< (RVK(R) + NK) (Mg p)(z).

Hence

(kr * p)(z) < C(N, R, k(R), K)(Mp ) (2)-
Thus, by Lemma 2, we have
(kr * p)(z) < CM(Myg p)(z)
with a constant C = C(N, R, k(R), K) > 0, which implies
kg * pllpy) < CIHM (Mg 9)]lpey

with C = C(N, R, k(R), K,p") > 0. Now, under our assumptions on p(-), we know (see
[CFN]) that

IMP)llpey < Cll ety

and hence we obtain the required estimate.
Combining Propositions 1 and 2, we obtain Theorem 3.

From Theorems 1, 2 and 3, we derive
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Corollary 1. Suppose p(-) satisfies (P1), (P2) and (P3), and k(r) satisfies (k.1), (k.2),
(k.3) and (k.4). Then, for nonnegative measures ju in RN with p(RY) < oo,

kxpe LPORN) if and only if /W,ff‘p(.)(:c, R)du(z) < oo.

It is known (see [GHN]) that if p(-) satisfies (P1), (P2) and (P3), then
WmPORY) = {u = Gpx £ f € PORY))
for m € N. Thus we can state

Corollary 2. If p(-) satisfies (P1), (P2) and (P3), then for nonnegative measures p on
RY with u(RY) < oo,

pe (WmPORMN)*  if and only if ‘/WT‘:W(.)(:I:, R)du(z) < oo

forme N with0 <m < N.
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