Variable exponent version of Hedberg-Wolff inequalities

Fumi-Yuki Maeda

Introduction.

Hedberg-Wolff gave the following inequalities in [HW]:

$$C^{-1} \int_{\mathbf{R}^{N}} [(G_{\alpha} * \mu)(x)]^{p'} dx \leq \int_{\mathbf{R}^{N}} \mathcal{W}^{\mu}_{\alpha,p}(x,1) d\mu(x) \leq C \int_{\mathbf{R}^{N}} [(G_{\alpha} * \mu)(x)]^{p'} dx \quad (1)$$

for every nonnegative measure μ on \mathbf{R}^N with a positive constant C independent of μ , where G_{α} is the Bessel kernel of order α (0 < α < N) on \mathbf{R}^N , 1 < p < ∞ , 1/p+1/p'=1 and

$$\mathcal{W}^{\mu}_{\alpha,p}(x,R) = \int_0^R \left(\frac{\mu(B(x,r))}{r^{N-\alpha p}}\right)^{p'-1} \frac{dr}{r} \qquad (R > 0).$$

The function $W^{\mu}_{\alpha,p}(\cdot,R)$ is called the Wolff-potential of μ fo order (α,p) . Inequalities (1) imply

$$\mu \in (\mathcal{L}^{\alpha,p}(\mathbf{R}^N))^* \quad \Leftrightarrow \quad \int_{\mathbf{R}^N} \mathcal{W}^{\mu}_{\alpha,p}(x,1) \, d\mu(x) < \infty,$$
 (2)

where

$$\mathcal{L}^{\alpha,p}(\mathbf{R}^N) = \{ u = G_\alpha * f ; f \in L^p(\mathbf{R}^N) \}$$

with the norm $||u||_{\alpha,p} = ||f||_p$. Since $\mathcal{L}^{m,p}(\mathbf{R}^N) = W^{m,p}(\mathbf{R}^N)$ for $m \in \mathbf{N}$ (A.P. Calderón), (2) shows that

$$\mu \in (W^{m,p}(\mathbf{R}^N))^* \quad \Leftrightarrow \quad \int_{\mathbf{R}^N} \mathcal{W}^{\mu}_{m,p}(x,1) \, d\mu(x) < \infty,$$
 (2')

for $m \in \mathbb{N}$.

In [AH], the proof of (1) is given via the following inequalities

$$C^{-1} \|M_{\alpha,R} \mu\|_{q} \le \|G_{\alpha} * \mu\|_{q} \le C \|M_{\alpha,R} \mu\|_{q} \tag{3}$$

for $0 < q < \infty$ and R > 0 with a positive constant C independent of μ , where

$$(M_{\alpha,R}\,\mu)(x) = \sup_{0 < r < R} r^{\alpha - N} \mu(B(x,r)).$$

These results have been generalized to the case where G_{α} is replaced by a general convolution kernel satisfying certain conditions (cf. [JPW], [AE, Part II]).

In the present paper, we consider variable exponents p(x) on \mathbb{R}^N and show that inequalities (1) and (3) hold in some restricted forms, and relations (2) and (2') still hold true for μ with finite total mass when we replace p by p(x) satisfying certain conditions. We discuss these for convolution kernels.

²⁰⁰⁰ Mathematics Subject Classification: 26D10, 31C45, 46E30

Key words and phrases: Hedberg-Wolff inequalities, variable exponent, convolution potential, Wolff potential

1. Definitions

As a potential kernel function on \mathbb{R}^N , we consider k(x) = k(|x|) (with the abuse of notation) with a nonnegative nonincreasing lower semicontinuous function k(r) on $(0, \infty)$ such that

(k.1) there is $R_0 > 0$ such that k(r) is positive and satisfies the doubling condition on $(0, R_0)$, i.e., $k(r) \leq C_d k(2r)$ for $0 < r < R_0/2$;

(k.2)
$$\int_0^1 k(r)r^{N-1} dr < \infty$$
.

By (k.2), $k(x) \in L^1_{loc}(\mathbf{R}^N)$. The k-potential of a nonnegative measure μ on \mathbf{R}^N is defined by

$$(k * \mu)(x) = \int k(x - y) d\mu(y).$$

For R > 0, the (k, R)-maximal function of μ is defined by

$$(M_{k,R} \mu)(x) = \sup_{0 < r < R} k(r) \mu(B(x,r)).$$

We consider a variable exponent p(x) on \mathbf{R}^N such that

(P1)
$$1 < p^- := \inf p(\cdot) \le p^+ := \sup p(\cdot) < \infty;$$

(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$|p(x) - p(y)| \le \frac{C_p}{\log(1/|x - y|)}$$
 for $|x - y| \le \frac{1}{2}$

with a constant $C_p \geq 0$, which is referred to as the constant of log-Hölder continuity.

We refer to [KR] for the definition of the $p(\cdot)$ -norm $||f||_{p(\cdot)}$, the variable exponent Lebesgue space $L^{p(\cdot)}(\mathbf{R}^N)$ and the variable exponent Sobolev space $W^{m,p(\cdot)}(\mathbf{R}^N)$ $(m \in \mathbf{N})$.

For R > 0, we define the $(k, p(\cdot))$ -Wolff potential of μ by

$$\mathcal{W}^{\mu}_{k,p(\cdot)}(x,R) = \int_0^R k(r)^{p(x)} \mu(B(x,r))^{p(x)-1} r^{N-1} dr.$$

Example. For $0 < \alpha < N$, the Riesz kernel $I_{\alpha}(x) = 1/|x|^{N-\alpha}$ and the Bessel kernel G_a of order α are typical examples of k(x). For these kernels, we can take R_0 any positive value.

$$\mathcal{W}^{\mu}_{\alpha,p(\cdot)}(x,R) := \mathcal{W}^{\mu}_{I_{\alpha},p(\cdot)'}(x,R) = \int_0^R \left(\frac{\mu(B(x,r))}{r^{N-\alpha p(x)}}\right)^{p(x)'-1} \frac{dr}{r}$$

and

$$\mathcal{W}^{\mu}_{G_{\alpha},p(\cdot)}(x,R) \sim \mathcal{W}^{\mu}_{\alpha,p(\cdot)'}(x,R).$$

For a nonnegative measure μ and R > 0, let

$$M(\mu, R) := \sup_{x \in \mathbf{R}^N} \mu(B(x, R)).$$

It is easy to see that if $M(\mu, R) < \infty$ holds for some R > 0, then so holds for all R > 0.

Lemma 1. If either $k * \mu \in L^{p(\cdot)}(\mathbf{R}^N)$ or $M_{k,R} \mu \in L^{p(\cdot)}(\mathbf{R}^N)$ or

$$\int \mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) \, d\mu(x) < \infty,$$

then $M(\mu, R) < \infty$ for all R > 0.

Proof. Suppose that $M(\mu, R) = \infty$ for some R > 0. As remarked above, we may assume $0 < R < R_0$ and $M(\mu, R/3) = \infty$. Then, for every $n \in \mathbb{N}$, there exists $\xi_n \in \mathbb{R}^N$ such that $\mu(B(\xi_n, R/3)) \ge n$. If $x \in B(\xi_n, R/3)$, then $\mu(B(x, 2R/3)) \ge n$, so that

$$(k*\mu)(x) \ge \int_{B(x,2R/3)} k(x-y) d\mu(y) \ge k(R)n$$

and

$$(M_{k,R} \mu)(x) \ge k(2R/3)\mu(B(x,2R/3)) \ge k(R)n.$$

Thus

$$\int [(k * \mu)(x)]^{p(x)} dx \ge \int_{B(\xi, R/3)} [(k * \mu)(x)]^{p(x)} dx \ge C_1 n^{p^-}$$

with a constant $C_1 > 0$ independent of n. This shows that $k * \mu \notin L^{p(\cdot)}(\mathbf{R}^N)$. Similarly, we see that $M_{k,R} \mu \notin L^{p(\cdot)}(\mathbf{R}^N)$.

Also, if $x \in B(\xi_n, R/3)$, then

$$\mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) \ge \int_{2R/3}^{R} k(r)^{p(x)} \mu(B(x,r))^{p(x)-1} r^{N-1} dr$$

$$\ge \int_{2R/3}^{R} k(R)^{p(x)} \mu(B(x,2R/3))^{p(x)-1} r^{N-1} dr \ge C_2 n^{p^{-1}}$$

with a constant $C_2 > 0$ independent of n, so that

$$\int \mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) \, d\mu(x) \ge \int_{B(\xi_n,R/3)} \mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) \, d\mu(x) \ge C_2 n^{p^-}$$

for all $n \in \mathbb{N}$.

We call $\int W_{k,p(\cdot)}^{\mu}(x,R) d\mu(x)$ the $(k,p(\cdot))$ -energy of μ .

2. Estimate of $(k, p(\cdot))$ -energy by $p(\cdot)$ -integral of k-potential

Theorem 1. Let $M_0 \ge 1$, $0 < R < R_0/2$. Then

$$\int \mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) d\mu(x) \le C \left(\mu(\mathbf{R}^N) + \int [(k*\mu)(x)]^{p(x)} dx\right)$$

for all nonnegative measure μ such that $M(\mu, R) \leq M_0$, with a constant C > 0 depending only on N, C_d , p^+ , C_p , M_0 and $K_R := \int_0^R k(r) r^{N-1} dr$.

Proof. We consider a nonlinear potential

$$V_{k,p(\cdot)}^{\mu} = k * (k * \mu)^{p(\cdot)-1}.$$

Since

$$\int [(k * \mu)(x)]^{p(x)} dx = \int V_{k,p(\cdot)}^{\mu}(x) d\mu(x),$$

it suffices to show

$$W_{k,p(\cdot)}^{\mu}(x,R) \le C(1 + V_{k,p(\cdot)}^{\mu}(x)). \tag{2.1}$$

for $0 < R < R_0/2$.

Since k(r) is nonincreasing and $K_R < \infty$, $k(r) \le NK_R r^{-N}$ for 0 < r < R. Hence, (P2) implies that

$$(k(y)\mu(B(x,|y|)))^{p(x)} \le C(k(y)\mu(B(x,|y|)))^{p(x-y)}$$
(2.2)

for $|y| \leq R$ whenever $M(\mu, R) \leq M_0$ and $k(y)\mu(B(x, |y|)) \geq 1$, with a constant $C = C(N, K_R, C_p, M_0) > 0$.

If $|y| \leq R$, then $|x - y - \xi| \leq 2|y|$ for $\xi \in B(x, |y|)$, so that

$$k(y)\mu(B(x,|y|)) \le C_d k(2y)\mu(B(x,|y|)) \le C_d (k*\mu)(x-y).$$

Hence, using (2.2) we have

$$\mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) = \frac{1}{\sigma_{N}} \int_{\{|y| < R\}} k(y) \left(k(y)\mu(B(x,|y|))\right)^{p(x)-1} dy
\leq \frac{1}{\sigma_{N}} \int_{\{|y| < R\}} k(y) dy + C \int_{\{|y| < R\}} k(y) \left(k(y)\mu(B(x,|y|))\right)^{p(x-y)-1} dy
\leq K_{R} + C \int_{\{|y| < R\}} k(y) [(k*\mu)(x-y)]^{p(x-y)-1} dy
\leq K_{R} + CV_{k,p(\cdot)}^{\mu}(x),$$

with constants $C = C(N, C_d, K_R, p^+, C_p, M_0) > 0$, which shows (2.1). (Here, σ_N denotes the surface area of the unit sphere in \mathbb{R}^N .)

Remark. In Theorem 3, it is not known whether the term $\mu(\mathbf{R}^N)$ is really necessary. On the other hand, for non-constant exponent $p(\cdot)$, the following inequality does not hold even if $M(\mu, R) \leq M_0$:

$$\int [(k*\mu)(x)]^{p(x)} dx \le C \int \mathcal{W}^{\mu}_{k,p(\cdot)}(x,R) d\mu(x).$$

In fact, if $p(\cdot)$ is continuous and non-constant in \mathbb{R}^N , then we can find nonnegative measures $\{\mu_j\}$ such that $M(\mu_j, R) \to 0$ $(j \to \infty)$ and

$$\frac{\int \mathcal{W}_{G_{\alpha},p(\cdot)}^{\mu_{j}}(x,R) d\mu_{j}(x)}{\int \left[(G_{\alpha} * \mu_{j})(x) \right]^{p(x)} dx} \to 0$$
(2.3)

as $j \to \infty$ for every $0 < \alpha < N$ and every R > 0.

Proof. We can choose two compact sets K_1 and K_2 and $1 < p_1 < p_2 < \infty$ such that $|K_1| > 0, |K_2| > 0$,

$$p(x) \le p_1$$
 for $x \in K_1$ and $p(x) \ge p_2$ for $x \in K_2$.

Let $\mu_j = (1/j)\chi_{K_2}dx$, $j = 1, 2, \dots$ Obviously, $M(\mu_j, R) \to 0$. Since $\mu_j(B(x, r)) \le (1/j)c_N r^N$ for any $x \in \mathbf{R}^N$ and r > 0,

$$\mathcal{W}_{G_{\alpha},p(\cdot)}^{\mu_{j}}(x,R) \leq C(\alpha,N,p^{+}) \int_{0}^{R} (r^{\alpha-N})^{p(x)} [(1/j)r^{N}]^{p(x)-1} r^{N-1} dr$$

$$= C(\alpha,N,p^{+})(1/j)^{p(x)-1} \int_{0}^{R} r^{\alpha p(x)-1} dr \leq C(\alpha,N,p^{+},p^{-},R)(1/j)^{p(x)-1}$$

with constants C(...) > 0. If $x \in K_2$, then $(1/j)^{p(x)-1} \le (1/j)^{p_2-1}$, so that

$$\int \mathcal{W}_{G_{\alpha}, p(\cdot)}^{\mu_{j}}(x, R) \, d\mu_{j}(x) \le C(\alpha, N, p^{+}, p^{-}, R) (1/j)^{p_{2}} |K_{2}|. \tag{2.4}$$

On the other hand, since G_{α} is positive continuous on \mathbf{R}^{N} ,

$$A = A(\alpha, K_1, K_2) := \inf\{G_{\alpha}(x - y); x \in K_1, y \in K_2\} > 0.$$

If $x \in K_1$, then

$$(G_{\alpha} * \mu_j)(x) = (1/j) \int_{K_2} G_{\alpha}(x - y) \, dy \ge (1/j) A|K_2|.$$

Thus,

$$\int (G_{\alpha} * \mu_{j})^{p(x)} dx \ge \int_{K_{1}} [(1/j)A|K_{2}|]^{p(x)} dx$$

$$\ge (1/j)^{p_{1}} \min(A|K_{2}|, 1)^{p_{1}}|K_{1}|.$$
(2.5)

In view of (2.4) and (2.5), we obtain (2.3), since $p_2 > p_1$.

3. Estimate of $p(\cdot)$ -integral of (k,R)-maximal function by $(k,p(\cdot))$ -energy

Theorem 2. Let $M_0 \ge 1$ and $0 < R < R_0/3$. Then

$$\int \left[(M_{k,R} \mu)(x) \right]^{p(x)} dx \le C \left(\mu(\mathbf{R}^N) + \int \mathcal{W}^{\mu}_{k,p(\cdot)}(x,3R) d\mu(x) \right)$$

for all nonnegative measure μ such that $M(\mu, 3R) \leq M_0$, with a constant C > 0 depending only on N, C_d , K_R , p^+ , C_p and M_0 .

Proof. Let $0 < R < R_0/3$. For 0 < r < R,

$$\int_0^{3R/2} k(t)^{p(x)} \mu(B(x,t))^{p(x)} \frac{dt}{t} \ge \int_r^{3r/2} k(2r)^{p(x)} \mu(B(x,r))^{p(x)} \frac{dt}{t}$$

$$\ge \log(3/2) C_d^{-p^+} [k(r)\mu(B(x,r))]^{p(x)}.$$

Hence

$$\left[(M_{k,R} \mu)(x) \right]^{p(x)} \le 3C_d^{p^+} \int_0^{3R/2} k(t)^{p(x)} \mu(B(x,t))^{p(x)} \frac{dt}{t},$$

and so

$$\int \left[(M_{k,R} \, \mu)(x) \right]^{p(x)} dx \le 3C_d^{p^+} \int_0^{3R/2} \left(\int k(t)^{p(x)} \mu(B(x,t))^{p(x)} dx \right) \frac{dt}{t}.$$

Now,

$$\int k(t)^{p(x)} \mu(B(x,t))^{p(x)} dx$$

$$= \int k(t)^{p(x)} \mu(B(x,t))^{p(x)-1} \left(\int \chi_{B(x,t)}(y) d\mu(y) \right) dx$$

$$= \int \left(\int \chi_{B(y,t)}(x) k(t)^{p(x)} \mu(B(x,t))^{p(x)-1} dx \right) d\mu(y)$$

$$= \int \left(\int_{B(y,t)} k(t)^{p(x)} \mu(B(x,t))^{p(x)-1} dx \right) d\mu(y).$$

As in the proof of Theorem 1, we have

$$\left[k(t)\mu(B(x,t))\right]^{p(x)-1} \le C\left[k(t)\mu(B(x,t))\right]^{p(y)-1} \le C\left[k(t)\mu(B(y,2t))\right]^{p(y)-1}$$

whenever |x-y| < t < 3R/2, $M(\mu, 3R) \le M_0$ and $k(t)\mu(B(x,t)) \ge 1$, where constants C depend only on N, C_d , K_{3R} , p^+ , C_p and M_0 . Thus,

$$\int k(t)^{p(x)} \mu(B(x,t))^{p(x)} dx \le |B(0,t)| \left(k(t) \mu(\mathbf{R}^N) + C \int k(t)^{p(y)} \mu(B(y,2t))^{p(y)-1} d\mu(y) \right).$$

Therefore

$$\int \left[(M_{k,R} \mu)(x) \right]^{p(x)} dx
\leq C \left(\mu(\mathbf{R}^N) \int_0^{3R/2} k(t) t^{N-1} dt + \int_0^{3R/2} t^{N-1} \left(\int k(t)^{p(y)} \mu(B(y,2t))^{p(y)-1} d\mu(y) \right) dt \right)
\leq C \left(\mu(\mathbf{R}^N) + \int \left(\int_0^{3R/2} k(t)^{p(y)} \mu(B(y,2t))^{p(y)-1} t^{N-1} dt \right) d\mu(y) \right)
\leq C \left(\mu(\mathbf{R}^N) + \int \mathcal{W}_{k,p(\cdot)}^{\mu}(y,3R) d\mu(y) \right)$$

with constants C depending only on N, C_d , K_{3R} , p^+ , C_p and M_0 .

4. Estimate of $p(\cdot)$ -norm of convolution potential by $p(\cdot)$ -norm of k-maximal function

The example given in the Remark in section 2 also shows that the following (modular) inequality does not hold whenever $p(\cdot)$ is continuous and non-constant:

$$\int_{\mathbf{R}^N} (G_\alpha * \mu)^{p(x)} dx \le C \int_{\mathbf{R}^N} (M_{\alpha,R} \mu)^{p(x)} dx.$$

However, we obtain norm inequality under an additional conditions on p(x):

Theorem 3. Suppose k(r) in addition satisfies

$$(k.3) \int_1^\infty k(r)r^{N-1} dr < \infty;$$

(k.4) There is a constant $C_k > 0$ such that

$$\int_0^r k(t)t^{N-1} dt \le C_k r^N k(r) \quad \text{for } 0 < r < R_0;$$

and suppose p(x) in addition satisfies (P3) (log-Hölder continuity at ∞)

$$|p(x) - p(y)| \le \frac{C_{\infty}}{\log(e + |x|)}$$
 for $|y| > |x|$.

Then, for $0 < R < R_0/2$,

$$||k * \mu||_{p(\cdot)} \le C ||M_{k,R} \mu||_{p(\cdot)}$$

with a constant C > 0 depending only on N, C_d , C_k , k(R), K, p^+ , p^- , C_{lh} , C_{∞} and R.

Note that the Bessel kernal G_{α} satisfies (k.3) and (k.4).

To prove Theorem 3, given R > 0, let

$$k_R(r) = k(r)\chi_{(0,R)}(r)$$
 and $\tilde{k}_R(r) = k(r)\chi_{[R,\infty)}(r)$.

We treat $k_R * \mu$ and $\tilde{k}_R * \mu$ separately. First, we show

Proposition 1. Suppose k(r) satisfies (k.1), (k.2) and (k.4), and suppose p(x) satisfies (P1), (P2) and (P3). Then, for $0 < R < R_0/2$,

$$||k_R * \mu||_{p(\cdot)} \le C||M_{k,R} \mu||_{p(\cdot)}$$

with a constant C>0 depending only on N, C_d , C_k , k(R), p^+ , p^- , C_{lh} , C_∞ and R.

We prove this proposition applying the following theorem due to D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez [CFMP]:

C-F-M-P Theorem. Let \mathcal{F} be a family of ordered pairs (f,g) of nonnegative measurable functions on \mathbb{R}^N . Suppose that for some p_0 , $0 < p_0 < \infty$,

$$\int_{\mathbf{R}^N} f(x)^{p_0} w(x) \, dx \le C_0 \int_{\mathbf{R}^N} g(x)^{p_0} w(x) \, dx$$

for all $(f,g) \in \mathcal{F}$ and for all A_1 -weights w, where C_0 depends only on p_0 and the A_1 -constant of w. Let $p(\cdot)$ satisfy (P1), (P2) and (P3), and assume further that $p^- > p_0$. Then

$$||f||_{p(\cdot)} \le C||g||_{p(\cdot)}$$

for all $(f, g) \in \mathcal{F}$.

Remark. In [CFMP], the last phrase in the above theorem is "for all $(f, g) \in \mathcal{F}$ such that $f \in L^{p(\cdot)}(\mathbf{R}^N)$ ". By examining its proof, we see that $g \in L^{p(\cdot)}(\mathbf{R}^N)$ (1.e., $||g||_{p(\cdot)} < \infty$) implies $f \in L^{p(\cdot)}(\mathbf{R}^N)$, and hence we do not need "such that $f \in L^{p(\cdot)}(\mathbf{R}^N)$ ".

Thus the proof of Proposition 1 is reduced to the verification of

Proposition 1'. Let $1 < q < \infty$. Under the assumptions on k in Proposition 1, for $0 < R < R_0/2$,

$$\int_{\mathbf{R}^N} (k_R * \mu)^q w \, dx \le C \int_{\mathbf{R}^N} (M_{k,R} \mu)^q w \, dx$$

for all A_1 -weights w, where C depends only on N, q, C_d , C_k , R and the A_1 -constant of w.

In the case $k(x) = G_{\alpha}$, this proposition is given in [T]. For general kernels k, we can prove this proposition by combining the arguments given in [T] and [AE, Part II]. Since our setting is different from either of them, we here give details of a proof.

First we recall some properties of A_1 -weights w. w is, by definition, a nonnegative locally integrable function on \mathbb{R}^N such that

$$\int_{B} w(x) \, dx \le A_1 |B| \operatorname{ess inf}_{B} w$$

for every ball (or cube) B. The constant A_1 is called the A_1 -constant of w. For a measurable set E in \mathbf{R}^N , we write $w(E) = \int_E w(x) dx$. An A_1 -weight satisfies the A_{∞} -condition:

$$w(E) \le C_w \left(\frac{|E|}{|Q|}\right)^\sigma w(Q) \tag{4.1}$$

for every cube Q and every measurable subset E of Q, where $C_w > 0$ and $\sigma > 0$ are constants depending only on N and the A_1 -constant of w (see, e.g., [T; Theorem 1.2.9] or [HKM; Chap.15]).

The following is the key lemma (cf. [T; Lemma 3.1.3] and [AE; Lemma 4.3.2]):

Lemma 2. Suppose k(r) satisfies (k.1), (k.2) and (k.4). Let $0 < R < R_0/2$ and w be an A_1 -weight. Set $a = 4C_d^2$. Then for every $\eta > 0$ there exists $\varepsilon \in (0,1]$, depending only on N, the A_1 -constant of w, R, C_d , C_k and η , such that

$$w(\{x; (k_R * \mu)(x) > a\lambda\})$$

$$\leq \eta w(\{x; (k_R * \mu)(x) > \lambda\}) + w(\{x; (M_{k,R} \mu)(x) > \varepsilon\lambda\})$$

for all $\lambda > 0$.

Proof. For $\lambda > 0$, let

$$E_{\lambda} = \{x; (k_R * \mu)(x) > \lambda\}.$$

It is an open set, since $k_R * \mu$ is lower-semicontinuous. Let $\{Q_j\}$ be the Whitney decomposition of E_{λ} into closed dyadic cubes; namely, the interiors of Q_j and $Q_{j'}$ are disjoint for $j \neq j'$, $E_{\lambda} = \bigcup_j Q_j$ and

$$\operatorname{diam} Q_j \leq \operatorname{dist}(Q_j, E_{\lambda}^c) \leq 4 \operatorname{diam} Q_j$$

for each j. If diam $Q_j > R/8$, then subdivide it into dyadic cubes with diameter $\leq R/8$ but > R/16. We denote this modified decomposition by $\{Q_j\}$ again.

Let $Q \in \{Q_j\}$, $d = \operatorname{diam} Q$ and let $B = B(x_Q, 6d)$, where x_Q be the center of Q. Note that $8d \leq R$. Let $\mu_1 = \mu|_B$ and $\mu_2 = \mu - \mu_1$. For every $x \in Q$, $B \subset B(x, 7d)$. Hence,

$$\int_{Q} (k_{R} * \mu_{1})(\xi) d\xi = \int_{Q} \left(\int_{B} k_{R}(\xi - y) d\mu(y) \right) d\xi = \int_{B} \left(\int_{Q} k_{R}(\xi - y) d\xi \right) d\mu(y)
\leq \int_{B(x,7d)} \left(\int_{B(0,7d)} k(\xi) d\xi \right) d\mu(y)
= C(N) \left(\int_{0}^{7d} k(t) t^{N-1} dt \right) \mu(B(x,7d))
\leq C_{1}(N, C_{k})|Q|k(7d)\mu(B(x,7d))$$
 (by (k.4))

$$\leq C_{1}(N, C_{k})|Q|(M_{k,R} \mu)(x).$$

Let an A_1 -weight w and $\eta > 0$ be given. Then, by (4.1), we can find $\varepsilon \in (0,1]$ depending only on η , N, C_d , C_k and the A_1 -constant of w such that if $E \subset Q$ and $|E| \le C_1(N,C_k)(2\varepsilon/a)|Q|$ then $w(E) \le \eta w(Q)$. If there exists $x \in Q$ such that $(M_{k,R}\mu)(x) \le \varepsilon \lambda$, then the above inequalities imply

$$\left| \{ \xi \in Q; (k_R * \mu_1)(\xi) > \frac{a}{2} \lambda \} \right|$$

$$\leq \frac{2}{a\lambda} \int_Q (k_R * \mu_1)(\xi) d\xi \leq C_1(N, C_k)(2\varepsilon/a)|Q|,$$

so that

$$w(\{\xi \in Q; (k_R * \mu_1)(\xi) > \frac{a}{2}\lambda\}) \le \eta w(Q).$$

Thus,

$$w(\lbrace x \in Q; (k_R * \mu_1)(x) > \frac{a}{2}\lambda, (M_{k,R}\mu)(x) \le \varepsilon \lambda \rbrace) \le \eta w(Q)$$
 (4.2).

Next, we show

$$\{x \in Q; (k_R * \mu)(x) > a\lambda, (M_{k,R} \mu)(x) \le \varepsilon \lambda\}$$

$$\subset \{x \in Q; (k_R * \mu_1)(x) > \frac{a}{2}\lambda, (M_{k,R} \mu)(x) \le \varepsilon \lambda\}$$
(4.3)

If Q is one of undivided Whitney cubes, then $\operatorname{dist}(Q, E_{\lambda}^{c}) \leq 4d$, so that $B \cap E_{\lambda}^{c} \neq \emptyset$. Let $x' \in B \cap E_{\lambda}^{c}$. Note that $d \leq R/8$, so that $12d < R_{0}$. If $x \in Q$ and $y \in B^{c}$, then $|x-x'| \le 7d$ and $|x-y| \ge 5d$, so that $|x-y| \ge (5/12)|x'-y|$. Hence, if $x \in Q$ and $(M_{k,R}\mu)(x) \le \varepsilon \lambda$, then

$$(k_R * \mu_2)(x) = \int_{B(x,R)} k(x - y) d\mu_2(y) \le \int_{B(x,R)} k((5/12)(x' - y)) d\mu_2(y)$$

$$\le C_d^2 \int_{B(x,R)} k(x' - y) d\mu_2(y)$$

$$\le C_d^2 \int_{B(x',R)} k(x' - y) d\mu(y) + C_d^2 \int_{B(x,R) \setminus B(x',R)} k(x' - y) d\mu(y)$$

$$\le C_d^2 (k_R * \mu)(x') + C_d^2 k(R) \mu(B(x,R))$$

$$\le C_d^2 (1 + \varepsilon) \lambda \le 2C_d^2 \lambda \le \frac{a}{2} \lambda.$$

Thus we have (4.3) in this case.

Next let Q be one of divided cubes. Recall that $R/16 < d \le R/8$. If $x \in Q$ and $y \in B^c$, then $|y - x| \ge 5d > (5/16)R > R/4$. Hence,

$$(k_R * \mu_2)(x) \le \int_{\{R/4 < |y-x| < R\}} k(x-y) \, d\mu(y)$$

$$\le k(R/4)\mu(B(x,R)) \le C_d^2 k(R)\mu(B(x,R)) \le \frac{a}{2} (M_{k,R} \mu)(x).$$

Hence, if $(M_{k,R} \mu)(x) \leq \varepsilon \lambda$, then

$$(k_R * \mu_2)(x) \le \frac{a}{2} \varepsilon \lambda \le \frac{a}{2} \lambda,$$

which implies (4.3).

Now, from (4.2) and (4.3) we see that

$$w(\lbrace x \in Q; (k_R * \mu)(x) > a\lambda \rbrace)$$

$$\leq \eta w(Q) + w(\lbrace x \in Q; (M_{k,R} \mu)(x) > \varepsilon\lambda \rbrace).$$

for every $Q \in \{Q_j\}$. Summing up over all Q, we obtain Lemma 2.

Proof of Proposition 1': Let a be as in the above lemma and E_{λ} be as in the above proof, i.e., $E_{\lambda} = \{x; (k_R * \mu)(x) > \lambda\}$ $(\lambda > 0)$. First assume that μ has compact support. Then, $k_R * \mu$ has compact support, too, and hence $\lambda \mapsto w(E_{\lambda})$ is a bounded function on $(0, \infty)$. Applying Lemma 2 with $\eta = a^{-q}/2$, we have, for any L > 0,

$$\int_0^{aL} w(E_{\lambda}) \lambda^{q-1} d\lambda = a^q \int_0^L w(E_{a\lambda}) \lambda^{q-1} d\lambda$$

$$\leq \frac{1}{2} \int_0^L w(E_{\lambda}) \lambda^{q-1} d\lambda + a^q \int_0^L w(\{x; (M_{k,R} \mu)(x) > \varepsilon \lambda\}) \lambda^{q-1} d\lambda$$

with $\varepsilon > 0$ depending only on N, the A_1 -constant of w, R, C_d and C_k . Hence,

$$\int_0^{aL} w(E_{\lambda}) \lambda^{q-1} d\lambda \leq 2a^q \varepsilon^{-q} \int_0^{\varepsilon L} w(\{x; (M_{k,R} \mu)(x) > \lambda\}) \lambda^{q-1} d\lambda.$$

Now, letting $L \to \infty$, we have

$$\int_{\mathbf{R}^N} (k_R * \mu)^q w \, dx \le 2a^q \varepsilon^{-q} \int_{\mathbf{R}^N} (M_{k,R} \mu)^q w \, dx.$$

If μ does not have compact support, let $\mu_m = \chi_{B(0,m)}\mu$ and apply the above result to μ_m , and then let $m \to \infty$. Since $k_R * \mu_m \uparrow k_R * \mu$, the required result follows by the monotone convergence theorem.

To treat $\tilde{k}_R * \mu$, we prepare another lemma. For nonnegative measure μ on \mathbf{R}^N and R > 0, let

 $\widetilde{M}_R \mu(x) = \sup_{r>R} r^{-N} \mu(B(x,r)).$

Lemma 3. If k(R) > 0, then

$$\widetilde{M}_R \mu \leq C(N, R, k(R)) \mathcal{M}(M_{k,R} \mu),$$

where, $\mathcal{M}(f)$ denotes the Hardy-Littlewood maximal function of f.

Proof. Fix $x \in \mathbb{R}^N$ and let $r \geq R > 0$. We can find a finite number of $y_j \in B(x,r)$ such that

$$B(x,r) \subset \bigcup_{j} B(y_j,R/2)$$
 and $\sum_{i} \chi_{B(y_j,R/2)} \leq A(N) < \infty$.

If $y \in B(y_j, R/2)$, then $B(y_j, R/2) \subset B(y, R)$, so that

$$\mu(B(y_j, R/2)) \le \mu(B(y, R)) \le \frac{(M_{k,R} \mu)(y)}{k(R)}.$$

Since $B(y_j, R/2) \subset B(x, r + R/2) \subset B(x, 2r)$,

$$\mu(B(x,r)) \leq \sum_{j} \mu(B(y_{j},R/2))$$

$$\leq \frac{1}{k(R)|B(0,R/2)|} \sum_{j} \int_{B(y_{j},R/2)} (M_{k,R} \mu)(y) dy$$

$$\leq \frac{2^{N} A(N)}{k(R)|B(0,R)|} \int_{B(x,2r)} (M_{k,R} \mu)(y) dy$$

$$\leq \frac{4^{N} A(N)}{k(R)R^{N}} r^{N} \mathcal{M}(M_{k,R} \mu)(x),$$

so that

$$r^{-N}\mu(B(x,r)) \leq C(N,R,k(R))\mathcal{M}(M_{k,R}\mu)(x)$$

for $r \geq R$. Thus, we obtain the required estimate.

Proposition 2. Suppose k(r) satisfies (k.1), (k.2) and (k.3), and suppose p(x) satisfies (P1), (P2) and (P3). Then, for $0 < R < R_0$,

$$\|\tilde{k}_R * \mu\|_{p(\cdot)} \le C \|M_{k,R}\mu\|_{p(\cdot)}$$

with a constant C > 0 depeding only on N, R, k(R), C_{lh} , C_{∞} , p^+ , p^- and

$$K := \int_0^\infty k(r) r^{N-1} dt.$$

Proof.

$$(\tilde{k}_R * \mu)(x) = \int_{\mathbb{R}^N \setminus B(x,R)} k(x-y) \, d\mu(y)$$

$$= \int_{[R,\infty)} k(r) \, d[\mu(B(x,\cdot))](r)$$

$$\leq \limsup_{r \to \infty} k(r) \mu(B(x,r)) + \int_{(R,\infty)} \mu(B(x,r)) \, d(-k)(r).$$

Note that (k.3) implies that $k(r) \leq r^{-N}$ for $r \geq r_0$. Thus, if $r > \max(r_0, R)$, we have

$$k(r)\mu(B(x,r)) \le r^N k(r)(\widetilde{M}_R \mu)(x) \le (\widetilde{M}_R \mu)(x).$$

Hence,

$$\limsup_{r \to \infty} k(r)\mu(B(x,r)) \le (\widetilde{M}_R \mu)(x).$$

On the other hand,

$$\int_{(R,\infty)} \mu(B(x,r)) d(-k)(r) \leq \left(\int_{(R,\infty)} r^N d(-k)(r) \right) (\widetilde{M}_R \mu)(x)
\leq \left(R^N k(R) + N \int_R^\infty k(r) r^{N-1} dr \right) (\widetilde{M}_R \mu)(x)
\leq (R^N k(R) + NK) (\widetilde{M}_R \mu)(x).$$

Hence

$$(\tilde{k}_R * \mu)(x) \le C(N, R, k(R), K)(\widetilde{M}_R \mu)(x).$$

Thus, by Lemma 2, we have

$$(\tilde{k}_R * \mu)(x) \leq C\mathcal{M}(M_{k,R}\mu)(x)$$

with a constant C = C(N, R, k(R), K) > 0, which implies

$$\|\tilde{k}_R * \mu\|_{p(\cdot)} \le C \|\mathcal{M}(M_{k,R} \mu)\|_{p(\cdot)}$$

with $C = C(N, R, k(R), K, p^+) > 0$. Now, under our assumptions on $p(\cdot)$, we know (see [CFN]) that

$$\|\mathcal{M}(f)\|_{p(\cdot)} \le C\|f\|_{p(\cdot)},$$

and hence we obtain the required estimate.

Combining Propositions 1 and 2, we obtain Theorem 3.

From Theorems 1, 2 and 3, we derive

Corollary 1. Suppose $p(\cdot)$ satisfies (P1), (P2) and (P3), and k(r) satisfies (k.1), (k.2), (k.3) and (k.4). Then, for nonnegative measures μ in \mathbf{R}^N with $\mu(\mathbf{R}^N) < \infty$,

$$k * \mu \in L^{p(\cdot)}(\mathbf{R}^N)$$
 if and only if $\int \mathcal{W}_{k,p(\cdot)}^{\mu}(x,R) d\mu(x) < \infty$.

It is known (see [GHN]) that if $p(\cdot)$ satisfies (P1), (P2) and (P3), then $W^{m,p(\cdot)}(\mathbf{R}^N) = \{u = G_m * f ; f \in L^{p(\cdot)}(\mathbf{R}^N)\}$

for $m \in \mathbb{N}$. Thus we can state

Corollary 2. If $p(\cdot)$ satisfies (P1), (P2) and (P3), then for nonnegative measures μ on \mathbb{R}^N with $\mu(\mathbb{R}^N) < \infty$,

$$\mu \in (W^{m,p(\cdot)}(\mathbf{R}^N))^*$$
 if and only if $\int \mathcal{W}^{\mu}_{m,p(\cdot)}(x,R) \, d\mu(x) < \infty$

for $m \in \mathbb{N}$ with 0 < m < N.

References

- [AE] H. Aikawa and M. Essén, Potential Theory Selected Topics, LNM 1633, Springer, 1996.
- [AH] D.R. Adams and L.I. Hedberg, Function Spaces and Potential Theory, Springer, 1996.
- [CFMP] D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez, The boundedness of classical operators on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239–264.
- [CFN] D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer, The maximal function on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238.
- [GHN] P. Gurka, P. Harjulehto and A. Nekrinda, Bessel potential spaces with variable exponent, Math. Inequal. Appl. 10 (2007), 661–676.
- [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993.
- [HW] L.I. Hedberg and Th.H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble 33,4 (1983), 161–187.
- [JPW] B. Jawerth, C. Pérez and G. Welland, The positive cone in Triebel-Lizorkin spaces and realtion among potential and maximal operators, Contemporary Mathematics, Vol. 107, 71–91, Amer. Math. Soc., 1990.
- [KR] O. Kováčik and J. Rákosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), 592–618.
- [T] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, LNM 1736, Springer, 2000.

4-24 Furue-higashi-machi, Nishi-ku Hiroshima 733-0872, Japan E-mail: fymaeda@h6.dion.ne.jp