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1 Introduction

Variable exponent spaces have been studied in many articles over the past decade;
for a survey see [6, 22]. These investigations have dealt both with the spaces
themselves, with related differential equations, and with applications.

Our aim in this note is to deal with Sobolev’s inequality for Orlicz-Sobolev
functions with |Vu| € LPO log LIO(Q) for Q ¢ R™ Here p and g are variable
exponents satisfying natural econtinuity conditions. For g = 0, there are many
results for Sobolev’s embeddings (see e.g. A. Almeida and S. Samko (1], B. Cekig,
R. Mashiyev and G. T. Alisoy [3], L. Diening [5], D. Edmunds and J. Rdkosnik [7, 8],
V. Kokilashvili and S. Samko [15], S. Samko, E. Shargorodsky and B. Vakulov [23]).
Also the case when p attains the value 1 in some parts of the domain is included
in the results.

Our results obtained here will appear in the papers [14] and [19].

2 Variable exponents

Following Cruz-Uribe and Fiorenza [4], we consider more general variable expo-

nents p and g on R™ satisfying:

(pl) 1 < p™ = infiern p(z) < sSUPLegn p(T) = pT < 00;
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C
N - f g h) - n g p n.
(p2) Ip(z) — pv)] log(e + 1/ — g|) whenever z € R" and y € R™;
(p3) |p(z) — ply)] < ———g———— whenever |y| > |z|/2;
}L p g p J ~ 10g(€+ ‘l|) - - J = y
(ql) —oo0 < ¢~ = infegn () < supegn ¢(z) =: ¢ < o0;

C
log(e + log(e + 1/|x — yl))

(a2) lg(z)—q(y)| <

Set

whenever r € R"” and y € R™.

O(x,t) = t") (log(co + )7,
where ¢y 2 e is chosen such that
(P1) P(z,-) is convex on [0, 00) for fixed z € R™.
In view of (®,), t7'®(z,t) is nondecreasing on (0, c0) for fixed z € R™, that is,
() sP@ =1 (log(e + )1 < tP®1(log(e + 1)1

whenever 0 < s < t and z € R".

REMARK 2.1. Note that {(®;) holds if there is a positive constant K such that

K(p(z) — 1)+ q(z) > 0. (2.1)

We define the space L*(Q) (= LPU) log LIV (Q)) to consist of all measurable
functions f on an open set §2 with

L@(x,@) dr < oo

for some A > 0. We define the norm

”f||L<l’(Q)=irlf{/\>0/Q ( /(= )|> \1}

for f € L*(Q). These spaces have been studied in [4, 18]. Note that L®(Q) is a
Musielak—Orlicz space [20]. In case ¢ = 0, L*(£2) reduces to the variable exponent
Lebesgue space LPO)(Q).

Let B(z,r) denote the open ball centered at z with radius r. For a locally

integrable function f on R", we consider the maximal function M f defined by

1
M(z) = sup fa = swp - [ 1 (w)ldy,
B B |Bl /s

where the supremum is taken over all balls B = B(xz,r) and |B| denotes the volume
of B.
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REMARK 2.2. For o > 0, consider

Po when = < 0,
Palz) = ¢ Po+ W when 0 < z < 79,

1
Po + (l—og_l/‘r_o)‘; when z = To,

where pg > 1 and 0 < r¢g < 1 is chosen such that

1
(log 1/]s — t[)=

(see [9, Example 2.1]). Note here that p,(-) satisfies the log-Holder condition when
a > 1. We can show that

IPa(s) — pa(t)] < whenever |s — t| < 1

(i) if & > 1, then M is bounded from LP=()(R!) to LP=()(R!) ; and
(ii) if 0 < , B < 1, then M fails to be bounded from LP=()(R!) to LPFO)(R?Y) .

To show (ii), consider

flz) = lz|~YPo(log 1/|z|)~%/P° when —7¢ < z < 0,
o 0 when =z = 0.
Then it suffices to see that
(i) f € LP=O)(RY) for all o > 0; and

(i) Mf & LPsO(R?) for any 0 < B < 1.

3 Weak type inequality of maximal functions

Our aim in this section is to prove a weak-type inequality for the maximal function.
The following lemma is an improvement of [18, Lemma 2.6].

LEMMA 3.1. Let f be a nonnegative measurable function on R™ with || f||Legn) < 1.
Set

1
[ = f(y)dy
BN Joen
and )
J = ————-/ Oy, f dy.
Then

I < C{JYP@) (log(cy + J))~9@)/P) 4 1},



Proof. By condition (®,), we have for K > 0

C fy) log(co + f(y)

94

ply)-1 ) a(y)
I <K 4 —"F (1 ( ) ( Y ) dy,
|B(z,7)| JB(m Fy) K log(co + K) Y

where the first term, K, represents the contribution to the integral of points where

fly) < K. If J <1, then we take K = 1 and obtain
I<1+CJ<C.
Now suppose that J > 1 and set,

K = CJYP@) (log(cy + J))~&/Pl@)

Note that JC/108(C7") < C and (log(co + J))C/lesllog(e+CI™)
<

assumed that || f||Legn) < 1, we conclude that

1 1
J< m—— | P fly)dy < w—-
Bl S T W S 1B
Hence, by conditions (p2) and (q2), we obtain, for y € B(z,r), that

KPW < {CIYP® (log(co + J)) 1@/} 77 p(z)+C/log(1/7)

{CJl/p(’”)(log(co + J))—Q(.r /p(x)}—p(x)+C/log(CJl/n)
CJ Y(log(co + J))4=

NN

and

(log(co + K))_Q(y) < {Clog(co + J)}“Q(“)+C/10g(10g(e+1/r))
< {Clog(co + J)} 9+ logllog(e+CT1/m)
< C(log(co + J))~7=),

Consequently it follows that

I < CJl/p(z)(]Og(Co + J))“(I(x)/P(I).

Since we

Combining this with the estimate / < C from the previous case yields the claim.

O

In view of Lemma 3.1, for each bounded open set G in R™ we can find a positive

constant C such that

{M ()} < C{Mg(z)(log(co + Mg(x)))™ " + 1},

(3.1)
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so that
Oz, M f(z)) < C{Mg(z) + 1} (3.2)

for all z € G and g(y) := ®(y, f(y)), whenever f is a nonnegative measurable
function on R™ with || f]| Lo gn) < 1.

LEMMA 3.2. Let f be a nonnegative measurable function on R™ with || f|| e gn) < 1.
If J <1, then

1
I = ..__._/ fy)dy < C{JYP®) + (1 + |z|)~v/PE,
IB(:Ca,")' B(a,r) { ( }

LEMMA 3.3. Let f be a nonnegative measurable function on an open set G with
| fllLeey < 1. Set

N(z) := Mg(z)"""@ (log(co + Mg(z))) 9&)/P=),
where g(y) := ®(y, f(v)). Then
/ O(x,t) dx < C,
Ey

where By = {x € G: N(z) > t,Mg(z) > C;(1 + |z|)™™} and C; := |B(0,1/2)|7*.

We are now ready to give a weak-type estimate for the maximal function, which
is an extension of [2, Theorem 1.6] and [12, Theorem 3.2].

THEOREM 3.4. Let f be a nonnegative measurable function on R™ with || f|| Logny <

1. Then
/ O(z,t) de < C.
{z€R™:M f(z)>t}

4 Weak type inequality for Riesz potentials

For 0 < a < n, we define the Riesz potential of order « for a locally integrable

I.f(x) :=/ —~f—(—y—)——dy.

Rn |T — Y|

function f on R™ by

Here it is natural to assume that
[ @b iswidy < oo, (4.1)
Rn

which is equivalent to the condition that I,|f| # oo (see [16, Theorem 1.1, Chapter

2])
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Our aim in this section is to establish weak-type estimates for Riesz potentials

of functions in L?(R"), when the exponent p satisfies

pt < n/a.

Let p! (x) denote the Sobolev conjugate of p(z), that is,

1/pt(z) = 1/p(z) - a/n.
LEMMA 4.1. Suppose that p* < n/c. If f is a nonnegative measurable function on

R™ with HfHL‘I’(IR") < 1, then

f(y) Cn/plz n
/nan\s<xr>m——“d?/<0{r°’ /P 4 (1 + |g])>/P=)}

forallz € R® andr > 1/e.
LEMMA 4.2. Suppose that p* < n/a. Let f be a nonnegative measurable function

on R™ with || f||Le®n) < 1. Then

/ f(y)n_a dy < C57) (log(co + 1/6))-9@)/p(@)
B{z,1/e)\B(z,5) lz -yl

forallz € R® and 0 < § < 1/e.
The next lemma is a generalization of {18, Theorem 2.8].

LEMMA 4.3. Suppose that pt < nj/a. Let f € L*(R™) be nonnegative with
”f”L‘P(IRn) < 1. Then

]af(x) < C’{Mf(x)p(z)/r’i(x)(log(c() + Mf(x)))—aq(z)/n + (1 + 'z|)~n/pna(z)}.

Set |
Wal(z,t) = {t(log(co + 1))7@)/P@ 1P

Note from condition (®;) that ¥,(z,-) is convex on (0, 00) for each fixed z € R™.

LEMMA 4.4. Suppose that p* < n/a. Let f be a nonnegative measurable function
on an open set G with || f|l ey < 1. Set

N(z) := Mg(z)"/") (log(co + Mg(z)))~9)/P=),
where g(y) := ®(y, f(y)). Then

/_ Vo(z,t) dz < C,

E

where E, .= {z € G : N(z) > t,Mg(z) > C,(1 + |z|)™™} and Cy :=|B(0,1/2)|7}.
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Now we are ready to introduce the weak-type estimate for Riesz potentials, as
an extension of [2, Theorem 1.9] and [12, Theorem 3.4].

THEOREM 4.5. Suppose thatp™ < n/a. Let f be a nonnegative measurable function
on R™ with || f|| Lo mny < 1. Then

/ V,(z,t) de < C.
{zeR™: 14 f(x)>1}

REMARK 4.6. In view of [17], for each # > 1 one can find a constant C > 0 such
that

/R af (@)} (log(e + 1f(2)))* (log(e + Lo/ (2) ™)) # dz < C

whenever f is a nonnegative measurable function on R™ with || f|| s¢)(gsy) < 1. This
gives a supplement of O'Neil [21, Theorem 5.3].

5 Sobolev functions

Let us consider the generalized Orlicz-Sobolev space W1%(G) with the norm

||U||1,L4’(G) = “U»”m(c) + IIVUIIm(c) < 00.

Further we denote by Wy'®(G) the closure of C$°(G) in the space W1®(G) (cf. [10]
for definitions of zero boundary value functions in the variable exponent context).
To conclude the paper, we derive a Sobolev inequality for functions in VVO1 ’q)(G’) as
the application of Sobolev’s weak type inequality for Riesz potentials of functions
in L?(G).

Let us begin with the following lemma:
LEMMA 5.1 (Corollary 2.3, [18]). Set k(y, t) := t(log(e+1t))Y fory andt > 0. Then
w(y,at) < 7(y,)n(y, 1 |
whenever a,t > 0, where
7(y,a) := amax {(Clog(e + a))?, (Clog(e + a™*)) ¥} .

Using the previous lemma we can derive a scaled version of the weak type
estimate from the previous section which will be needed below.
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LEMMA 5.2. Suppose that p* < nj/a. Let f € L*(R") be nonnegative with
| fllLe@®ny < 1. Then for every € > 0 there exists a constant C > 0 such that

/ Vol t) dx < C'Hf{{”(n;n) ,
{zeR™: 1, f(z)>1}

for every t > 0.

LEMMA 5.3. Suppose that p* < min{n, (p})~} and G is an open set. If u €
Wy * (R™), then there exists a constant ¢; > 0 such that

HUHL‘I’I(G) < cﬂlvullm(mn).

Proof. We may assume that ||Vul|| »gr) < 1 and u is nonnegative. It follows from
[16, Theorem 1.2, Chapter 6] that

[v(z)] < C(n) 11| V|(z)

for v € Wy''(G) and almost every z € G. For u € Wy ?(G) and each integer
7, we write U; = {27 < u(z) < 2’*'} and v; = max{0, min{u — 27,27}}. Since
€ Wy''(G) and v;(z) = 27 for almost every z € Uj+1, we have

11|V”Uj|(17) 2 CQJ

for almost every z € U,,;. It follows that

/n\lll( Z/ (z,u(x)) dz

jez Y Ui

CZ/ (z,27%) dx
]+1

JEZ

< CZ/ U, (z,C27) dx.

JEZ {JZEUj+12]1IVUjI($)>CQj}

Taking r € (p*, (p})~), we obtain by Lemma 5.2 that
Ui(z,C%)dz < C > [|[V;l[7ezn
JEZ

C'Z/ z, |Vu(z)|)dz < C,

JEZ

which completes the proof. |
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Recall that ®(z,t) = (tlog(cy + t)?@/PENPE) and U, (2, 1) = <I>(.1-.,t)7’g'(””)/”(”) —
(tlog(co + t)(’("”)/”(“))Pgm) where p! (z) denotes the Sobolev conjugate of p(z), that

Lph(z) = 1/p(x) — a/n.

The space L¥=(9) is defined in the same manner as L¥(2) (see Section 2).

THEOREM 5.4. Let p and q satisfy the above conditions. If pt < n, then

lulle: @) < arllVullpe @
for every u € W3*(Q).

This extends [11, Proposition 4.2(1)] and [13, Theorem 3.4] which dealt with
the case ¢ = 0.

Proof of Theorem §.4. We may split R™ into a finite number of cubes Q;, ..., Q4
and the complement of a cube, 0y, in such a way that pgi < (pﬁ)gi for each i.
Then

k k
llullpe: @y < Z lullLe @) < a Z IVullLemny = (k + 1)c1||Vull Lo gn),
i=0 i=0
by the previous lemma. J

6 Variable exponents near Sobolev’s exponent

In this section we assume that G is a bounded open set in R™. The results in
this and next sections will appear in the paper by Y. Mizuta, T. Ohno and T.
Shimomura [19].

Let p, g, ® = ®(z,t) and ¥, = VU, (z,t) be as before.

THEOREM 6.1. Suppose further
1<p <p(x) <n/a
for x € GG. Then there exists a constant ¢; > 0 such that
I ok llLvace) < eill flloe
for all f € L®(G), where

Y(z) = pfx(x)(q(x)“(“’)"l)/”(x)(logpg,(x))"(z)/p(z).
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THEOREM 6.2. Suppose further

p(z) =2 nj/a and qg(z) < p(x) -1

for x € G. Then there exist constants ¢y, cy > 0 such that

Iof(z yp(E)/(p(e)—q(z)-1)
[ (e ) 2 <

for all nonnegative measurable functions f on G with ||f||L+G) < 1, where

15(2) = 7a(2) PO (10g(1/75(2))) =2
with vo(z) = min{p(z) — ¢(z) — 1,1/2}.
THEOREM 6.3. Suppose further
p(z) 2 n/a and  q(z) = p(z) — 1
for x € R™. Then there exist constants c;,cy > 0 such that
p(z)/(p(z)—1)
/Gexp (exp (]afcéffz))/(p(z)_l) )) dzr < c

for all nonnegative measurable functions f on G with || f||Lec) < 1.

7 Continuity of Riesz potentials
THEOREM 7.1. Suppose further
p(z) 2n/a  and  q(z) > p(z) — 1

for x € R". If f is a nonnegative measurable function on G with ||f|| ey < 1,
then I, f(x) is continuous and

|]af(2) — ](,f(I)l < C'YS(T)(IOg(l/IZ — xl)) (q(z)—p(z)+1)/p(x)
as z — x for each © € GG, where
vs(z) = 74(I)~(P(:C)~1)/P(z)(log(l/,n(x)))q(x)/p(x)

with v4(z) = min{q(z) — p(z) + 1, 1/2}.
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