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Predual of Campanato spaces and Riesz potentials
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1. INTRODUCTION

This is an announcement of my recent work.
Let X = (X, 4, ) be a space of homogeneous type (SHT), i.e. X is a topological

space endowed with a quasi-distance § and a nonnegative measure p such that
6(z,y) >0 and 4(x,y) =0if and only if z =y,
o(z,y) = 6(y, ),
(1.1) é(z,y) < Ky (0(z, 2) + 6(2,¥)),
the balls B(z,7) = {y € X : §(z,y) < 7}, r > 0, form a basis of neighborhoods of

the point z, i is defined on a o-algebra of subsets of X which contains all balls,

and
(1.2) 0 < u(B(z,2r)) < Kypu(B(z,r)) < 00,

where K; > 1 (i = 1,2) are constants independent of z,y,2 € X and 7 > 0.
If there are constants 6 (0 < 8 < 1) and K3 > 1 such that

(13) |6(I’ Z) - (5(y7 Z)I < K3 (5(7’2) + 5(y’ Z))1—05($)y)0’ zT,Y,z € X,

then the balls are open sets. The number 6 is called the order of the SHT.
We shall say that a SHT is normal if there are constants K4 > 0 and K5 > 0

(1.4) Kar < u(B(z,7)) < Ksr for z € X and p({z}) < r < u(X).

We note that, for any SHT (X,d,u), there exists a quasi-distance § such that
(X, 8, 1) is normal and of some order 6, and that the topologies induced on X by d
and J coincide (Macias and Segovia (1979)).

Let X = R”, d(z,y) = |z—y| and p be the Lebesgue measure. If §(z,y) = |[z—y|",
then (R™, 6, 1) is normal and of order 1/n.
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In this talk we always assume that (X9, ) is normal and of order 6 and that
pw({z}) =0 for all z in X.

We consider Riesz potentials

/5 yla d(y),

for 0 < o < #. It is kown that the operator [, is bounded from LP(X) to LI(X) if
l<p<g<ooand —1/p+ a = —1/q (Gatto and Vagi(1990)). This boundedness
is well known as the Hardy-Littlewood-Sobolev theorem in R"™ case.

In this report, we define a generalized Hardy space H[[f ‘{”(X ) and investigate
continuity of Iy on H?%(X). We show

(HET(X)) = Loo(X),

where L, 4»(X) is a Campanato space. Campanato spaces are Banach spaces modulo
constants, which include BMO(X') and Lip,(X) as special cases.
We first define I, for functions f € L 4(X). To do this we define the modified

version of I, as follows;

L1 = [ 10 (535 = Sragiss)

where By = B(zo, 7o) is a fixed ball. We can show that I, f(z) converges absolutely

for all z and therefore changing By in the definition above results in adding a

constant. We assume that ¢ satisfies the cancellation property;

(1.5) /X(( ! — — ! —~ )du(y):() for any z,z’ in X.

Sz, y)t== oz )=
In case of X = R™ or T”, (1.5) holds for §(z,y) = |z — y|™ and for 0 < a < 1.
For other examples of spaces of homogeneous type with the property (1.5), see [3].
We note that, for all normal spaces (X, 4, u) with p(X) = oo and u({z}) = 0 for

all z € X, we can fined a quasi-distance J, equivalent to d, such that (1.5) holds
(see [2]).

2. CAMPANATO SPACES L, 4(X) AND HOLDER SPACES A4(X)

Let 1 <p <ooand ¢: X x (0,00) — (0,00). For a ball B = B(x,r), we shall
write ¢(B) in place of ¢(z, 7). The function spaces £, 4(X) and A4z(X) are defined
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to be the sets of all f such that [|f]|,, < co and [|f][s, < o0, respectively, where

1/p
ey = sup s (2 / 0) = fuPdnta))

£lla, = sup 21f Wl
z,ye€X, x#y ¢(.’13, (5(:5, y)) + ¢(y, ( ,IIJ))

- /B f(z) dulz)

Then L,4(X) and Ag(X) are Banach spaces modulo constants with the norms
1 fllz,, and || flla,, respectively. If p=1 and ¢ = 1, then £, 4(X) = BMO(X).
Let G, be the set of all functions ¢ : X x (0,00) — (0, 00) such that

and

1 oz, s) 1 s
(2.1) A—lé 3z, ) < Ay, §S;32,
(2.2) d(z, 1) < Ax0(y, s), B(z,r) C B(y,s),

where A; and A, > 0 are independent of r,s > 0, z,y € X.
Theorem 2.1. Let ¢ € G,. Then
Lpe(X) = L1,4(X)

with equivalent norms for every 1 < p < oo.

Theorem 2.2. Let ¢ € G, and there exists C > 0 such that
é(z.y) ¢

(2.3) / qb(x )dt < Co(z,6(z,y)), =z,ye X.
0

Then
Ag(X) = Lpo(X)
with equivalent norms for every 1 < p < co.

We say that a(-) : X — [0,00) is log-Holder continuous if there exists Cy > 0
such that

Co
(2.4) la(z) — a(y)] < log(1/5(z.9)) for 4(z,y) < 1/2.
Let a_ = infzex a(z) and ay = sup,cy a(z).

Example 2.1. Let a(-) be log-Holder continuous and

oz, 7) = r¥®)  with 0 < a_ < a, <6.
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Then ¢ € G, and satisfies (2.3). In this case we denote Ay(X) by Lip,,(X) and

Hf]] ) — sup 2,f(I) — f(y)l
Lipacy m’yéxy'm_#y (5(:[;, y)a(x) 4+ 5(@/7 LE)O‘(?/)'
If a(z) = o, then Lip,,(X) = Lip,(X).

3. GENERALIZED HARDY SPACES H}f”‘”(X)
Let ¢ : X x (0,00) — (0,00), 1 < ¢g<ocand 1l/qg+1/¢ = 1.

Definition 3.1 ([¢,gq]-atom). A function a on X is called a [¢, g]-atom if there
exists a ball B such that

(i) suppa C B,

. <
(ll) ”a”q — III(B)]’/ql(ﬁ(B)’
(i) | ofa)du(z) =0,
X
where ||al|, is the L9 norm of a. We denote by A[g, ¢] the set of all [¢, g]-atoms.

Let F be the set of all continuous, increasing and bijective functions ® : [0, c0) —
[0, 00). Then ®(0) = 0 and lim, . ®(r) = oo for all € F.
Let Fx be the set of all functions ® : X x [0,00) — [0, 00) such that
(i) ®(z,-) € F for every z € X, and
(ii) ®(-,r) is measurable on X for all r € [0, 00).
We denote by ®~*(z, -) the inverse of ®(z,-) with respect to r € [0, c0).
For ® € Fx and B = B(z,r), let

1
G ) =) = e B
Then ) .
— 1/‘1( -1 R
WBY7g(E) ~ MBTE (z M(B)) |
If ®(z,7) =rP@ p(-): X — (0,1], then
B M)

If ®(z,7) =7rP,0<p <1, then
1
u(B)M9 $(B)
In this case, [¢, g]-atoms are the usual (p, q)-atoms.

— 'LL(B)I/Q—l/P.
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We define H}}M](X) as a subspace of the dual of Ly 4(X). We can see A[¢p,q] C
(Ly6(X))" as follows. If a is a [$, g]-atom and a ball B satisfies (i)-(iii), then

(3.2) /X a(2)9(x) dulz)| = / a(2)(g(x) - g1r) dulz)
1/4¢
< Jlal, (/1 9() - gal? du(x))
1 1 q/ ‘ 1/fl
< (M( 55 [ 1ata) — gl dum)
< llgllc,,..

That is, the mapping g — [, agdu is a bounded linear functional on Ly 4(X) with

norm not exceeding 1.

Definition 3.2 (H,[f’q](X)). Let ¢ : X x(0,00) — (0,00),1 < qg<o00,1/g+1/q¢ =1
and U € F be concave. We define the space H{?‘q](X) C (Ly¢(X))* as follows:
fe Hl[}b‘q](X) if and only if there exist sequences {a;} C A[¢,q]

and positive numbers {);} such that

(3.3) f=>_Xa;in (Lye(X))" and D U(N) < oo.
J J
From U(0) = 0 and the concavity of U it follows that
(3.4) UCr)<CU(r), 1<C<o0, 0<T <00,
(3.5) Uir+s)<U(r)+U(s), 0<rs<oo.

Then H([}P’Q](X) is a linear space.

In general, the expression (3.3) is not unique. We define

1l pgg0 = in {U-l (Z U(An) } ,

where the infimum is taken over all expressions as in (3.3). We note that ||f||Hb¢_q]
is not a norm in general. Let m(f,g) = U(||f — g”H,[j"‘”) for f,g € Hl[f’vq](X). Then
m(f, g) is a metric and H,[f’q}(X) is complete with respect to this metric.

If $(B) = u(B)YP~! and U(r) = rP, then H([f’ql(X) coinsides HP9(X) defined
by Coifman and Weiss (1977). They showed HP?(X) = HP*(X) with equivalent
metrics when 0 < p < 1 < ¢ € o and denoted this space by HP(X). We extend
this result to HP9(X) = H({f’m](X) in the next section.
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Let I(r) = r. Then || f]|¢.a is a norm and H}M](X) is a Banach space, which
7
was defined by Zorko (1986) in the case X = R™. Therefore, our definition is a
generalization of both definitions.
From the definition we have the following relations.
Proposition 3.1. (i) If1 < q1 < ¢2 < 00, then
HP™(X) € HP™ (X)),
(ii) If Y(B) < Cp(B) for all balls B, then
HP(X) c HY9(X).
(iii) If V(r) < CU(r) for 0 < r <1, then
1 (X)) € HP(X).
(iv) For any concave function U € F,
HIPY(X) ¢ HP(X).

In the above, the inclusion mapping are continuous.

4. EQUIVALENCE H9(X) = HIP*l(X)

Theorem 4.1. Let ¢ € G,. If there exists C, > 0 such that

(4.1) U(rs) < CLU(r)U(s) for 0<r,s<1,
BBIIBYY _ o MB)

(4.2) U (M(Bz)fﬁ(Bz)) < C*u(Bg) for By C By,

then

HPY(X) = B (X),

with equivalent topologies.
For ®(x,r) € Fx, let

b(z,r) = $(B) = !

w(BY®-1(z, 1/u(B))
Example 4.1. Assume that pu(X) < co. Let p(-) be log-Holder continuous and

®(z,7) =rP@ U(r) =rP+ with 0<p_ <p; <1
Then the assumption of Theorem 4.1 holds. Therefore

HP(X) = HP=I(X).
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In this case we denote H!"¥(X) by HP')(X). If p(-) = p, then HP)(X) = HP(X),

the usual Hardy space.

5. DuAaLITY

Let LI(X) be the set of all L?-functions with bounded support, and let
12°00) = {1 e 206+ [ fu- o}.
X

Then, for 1 < g < oo, LZ%(X) is dense in H[(}’S’Q](X).
If g€ Ly4(X) and f € LI°(X), then f(g + c) is integrable for all constants ¢
and [, f(g+ c)du is independent of c.

Theorem 5.1. If U satisfies

(5.1 sup 7

— 0 (r—0),
then )

(HPI0)) = £g.4(X).
More precisely, if g € Ly 4(X), then the mapping £: f — [, f(g+c)du, for f €
L9%(X), can be extended to a continuous linear functional on H,[f’Q](X). Conversely,
if ¢ is a continuous linear functional on H,[f‘Q](X), then there exists g € Ly 4(X)
such that £(f) = [y f(g+ c)du for f € L¥°(X). The norm ||| is equivalent to

HQHLQ,,,,-

Corollary 5.2. Let ¢ € G.. Then, for any q € (1, 00| and for any concave function
U € F with (5.1),

(HEI(X)) " = £1.4(X).

Corollary 5.3. Let ¢ = 1. Then, for any q € (1, 00| and for any concave function
U e F with (5.1),

(HW(X))* = BMO(X).

Corollary 5.4. Let ¢ € G, and there exists C > 0 such that

3(z.y)
/ "“j’ Dt < Coe,8(x,9), mye X
0
Then, for any q € (1,00] and for any concave function U € F with (5.1),
(HENX)) = As(X).
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Example 5.1. Under the assumption of Example 4.1,
let a(z) = 1/p(xz) — 1. Then

(HP(X))" = Lipaey(X).

6. EQUIVALENCE H,[J‘p’d(X, d, ) = H([}/”"](X, 5, 1)

For a space of homogeneous type (X, d, i) such that the balls are open sets, let
inf{u(BY): Bisz,y } ifz#y,
6.1 Sz, y) =
(6.1 (2,9) {O oy
where B? denotes a ball by the quasi-distance d. Then (X, 9, 1) is normal and the
topologies induced on X by d and ¢ coincide.
Theorem 6.1. Suppose that ¥ : X x (0, 00) — (0, 00) satisfies (2.1). Let ¢p(z,7) =
d(z, w(B4zx,7))). Then
EP‘CE<X’ da /’1’) = Ep,(f)(Xa 53 :U‘))
HYN( X, d, p) = HPY(X, 6, 1),

with equivalent topologies, respectively.

Example 6.1. Let X = R", d(z,y) = |z — y| and p be the Lebesgue measure.
Then

Un n

where v,, is the volume of the unit ball. Therefore, (R™, 4, ) is of order 1/n and,
for0<a<6=1/n,

L f(z) = f(y)

Rn 6($1 y)l-—a

duly) = /Rn( ) du(y).

o -yl

7. RIESZ POTENTIALS ON L 4(X)

Theorem 7.1. Let 0 < a < 0,1 <p< oo and ¢,¥ € G,. Assume that there exists
a constant A > 0 such that, for allx € X and r > 0,

(7.1) 79 /00 1°¢(z, 1) dt < Ay(z,T).

t1+6

Then I, is bounded from L, 4(X) to L4 (X).
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Corollary 7.2. Let u(X) < oo, 0 < v < 0. Assume that 3(-) and v(-) are log-

Holder continuous and
a+ fx)=~y(x) with 0<f- <~y <8.

Then I, is bounded from Lipg(y(X) to Lip,,(X).

8. RIESZ POTENTIALS ON H([f"""](X)

Theorem 8.1. Let 0 < a < 0, ¢, € G, and U,V € F be concave. Assume that
there ezist 0 < e <1,0< 7 <1 and A > 0 such that

(8.1) Wiz, r)r* < A¢(z,7), 7 >0,

(8.2) s*07 (sl ) < AP0 (rp(z, )0, 0 < <,
(8.3) V(r) < Ar", re(0,1],

(8.4) V(rs) < AV(r)U(s), 0<r7s<1.

Then there exists C > 0 such that
laall 1000 < C  for all a € A[g, 0],
v
and I, extends to a continuous linear map from H([f’oo](X) to HIY*N(X).

Corollary 8.2. Let pu(X) < 00, 0 < a < 0. Assume that p(-) and q(-) are log-
Holder continuous and

(8.5) N LI
' OB C) 1+6 P~ ="

Then there exists C > 0 such that

“Iaa”HQ(‘) —-<— C fOT' all a € A(p(),OO),

and I, extends to a continuous linear map from HPO(X) to HIO(X).

In the above, a € A(p(-), c0) means that there exists B = B(x,r) such that
(i) suppa C B,
(ii) [lally < w(B)YI71PD,

(iii) /Xa(a:)d/i(:zr):o.
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