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Lattices of Non-Compact Lie Groups
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1 Introduction

Consider solvable Lie groups of type H = R™ x4, R*!'  (n > m). Here ¢ is a
homomorphis from R™ to GL(n + 1,R) and the group structure of H is given by

(s,x)(t,y) = (s + t,x + ¥(t)(y)), (s,t €R™ x,y € R*™).

We call Lie groups of this type 1-step solvable Lie groups. In this paper we study
about the automorphisms groups of lattices (cocompact discrete subgroups ) of 1-
step solvable Lie groups H.

The unimodularization of n products Afft(R)" of the affine group Aff*(R) is a
1-step solvable Lie group which takes the form of R™ x, R™'. In this case, the
homomorphism % is injective and splits as a direct sum of non-equivariant real 1-
dimensional representations. Conversely, if the homomorphism 1 of H = R™ x,R"*!
has all of these properties, then H is isomorphic to Afft(R)". Let I' be a lattice
of H = R" x4y R™! = Afff(R)". In [2], we defined an algebraic number field
k(I') of degree n + 1 which is associated with a lattice ', and showed that the
automorphism group Aut(I') of a lattice IV commensurable with I' is essentially
identified with a subgroup of the automorphism group Aut(k(I')/Q) . More precisely,
there is a surjection from the set {Aut(I") | IV < H, I € Com(I')} to the set
{F | F < Aut(k(I')/Q) } (Theorem 1.2 in [2] ). Here Com(I') denotes the set of
lattices I" which are commensurable with T" (see §4). But, when n > m, we have
quite different results from those in the case of n = m.

In the first half of this paper, we review basic facts about lattices of 1-step
solvable Lie groups H = R™ x, R"*! and in §4 we state an interesting Theorem
1.2 in [2]. In the last two sections, we study the case of m < n, especially the case
ofn=m+ 1.

From now on, let H denote l-step solvable Lie groups of type R™ x, R"*!.
Moreover we assume that 1 is injective and splits as a direct sum of non-equivariant
real 1-dimensional representations.
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2 Structure matrix of H

From the assumption that 1 splits as a direct sum of non-equivariant real 1-dimensional

representations, for a basis {e;, ez, - ,en} of R™, A; := ¢(e;) (1 < j < m) are
simultaneously conjugate to diagonal matrices diag (e*7,e*» .-, e*+15). Put
A1l Az 0 Aim Ay
A21 Aozt Aom A,
Aw = . . . - . 9
/\n+1,1 /\n+1,2 e )\n+1,m An+1

and call Ay the structure matriz of H = R™ R™*!. Clearly H is determined by
the structure matrix.

We note here some fundamental facts on Ay.

1. Changing bases of R™ and R™"!, the new structure matrix A, is written as
A:/, = TAyP, where T is a row exchanging matrix and P is an m-square non-
singular matrix, that is P € GL(m,R). If A}, = TAy P holds, then we say A,
and A, to be equivalent and identify Ay with Ay,

2. Let A : G — R, be the modular function of a Lie group G defined by A(g) =

|det Ad,|. For H = R™ x,, R"*!, the modular function A : H — R, is given
n+1

by A(t,x) :exp(z A; - t).

=1

3. If there exists a cocompact discrete subgroup (i.e. a lattice) I' of H, then
n+1

A(t,x) =1 forY(t,x) € H = R™x,R™". Thisshows » A;-t =0 ("t € R™),
=1
n+1

and thus Z A; = 0.

=1

In this paper, we study about lattices of H. Thus, from now on, we assume that
n+1

the structure matriz Ay satifies Z A;=0.

i=1

3 Lattices and algebraic number fields

In this section, we define the algebraic number field k(I') associated with a lattice
I of H. Let Hy := [H,H| and H, := H/Hy,. Then Hy = R H; = R™ and
H =R™ xy R = H, x4 Hp holds. The following is a known result.

Lemma 3.1 ( [3, Lemma 2.3]) LetT < H be a lattice. PutTy :=TNHp = rNR™ !
and T’y :=T/Ty. Then I’y and I'y are lattices of R™*! and R™, respectively.
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From Lemma 3.1, we can see ['; = Z"™! and I';y = Z™. Moreover we have the
exact sequences

1 » R 5 H — R™ — 1
U U )
1 - Ty - T —»- It —» 1

In general, I' is not a semi-direct product group. But the restriction ¢r, becomes
a homomorphism from I'y to Aut(I'y), and hence, ¥ (t) € SL(n + 1,Z) (t € T'}).
Thus we may assume that, in the structure matrix

A1 Az o A
A21 Az 0 Aom
A'/’ = : : : ’
)\n+1,1 /\n+1,2 Tt )\n-{—l,m
the numbers e, % ... e*+1i are eigenvalues of an integer matrix 4; = P(t;) €

SL(n+ 1,Z), that is, those numbers are algebraic integers. Here {t;,ts,-- ,t,,} is
a Z-basis of '} =2 Z™.
We suppose the following condtions on Ay.

Assumtion A on ¢ (i.e. on Ay)

1. 7 is injective.

2. There exists to € I'; such that each eigenvalue oy, s, -+ ,apy1 of ¥(tg) = A
is an algebraic integer of degree n 4+ 1. Here oy, a9, -+ ,a,y1 are each other
conjugate elements.

Remark 3.1.

(1) When n = m, the assumption 2 is automatically derived from the assumption
1.

(2) For each t € I';, the matrix 1(t) can be described as g(A) (¢9[X] € Q[X])
because ¥ (t) and ¥(ty) = A are commutative ([2, Corollary 3.2]).

Under Assumption A, we can assign a totally real algebraic number field k(I") =
Q(a) of degree n + 1 to a lattice I' < H, where a@ = o in the above assumption 2.
Call k(") the algebraic number field associated with T'. We note that, from Remark
3.1-(2), k(") does not depends on the choice of to.

Lattices I' and I" are called to be commensurable and denoted by T' X" TV

if I :TNI'| < oo and |I" : I'NI'| < oo. From Remark 3.1-(2), it follows
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that k(I') = k(I") if T X" I'. Furthermore we say that I' and I are weakly
commensurable if there exists ¢ € Aut(H) such that o(I') X" I''. When n = m,
k(I'") = ¢.(k(T")) holds ([2, Lemma 3.3]). From those facts, we obtain the following
theorem.

Theorem 3.2 Suppose n = m. Then the map

the set of all weakly the set of all isomorphism
commensurable classes — ¢ classes of totally real algebraic
of lattices of H number fields of degree n + 1

induced from the map I' — k(T') is bijective.

4  Aut(l)
Let T" be a lattice of H, and take ¢ € Aut(I'). Then the following hold.

1. ¢ naturally induces automorphisms ¢, : I'y = I'y and ¢q : ['g — T'y.

2. P(pi(t)) = wop(t)py' (tel =2").

The equality 2 follows from that ¢ is a homomorphism. We call this equality in
2 the compatibility condition for (¢1, o).

Remark 4.1. It is known that ¢ € Aut(I") is uniquely extended to ¢ € Aut(H) (e.g.
[1][2]). Clearly the compatibility condition holds for (&, @o).

Using 1 and 2 above, we can define a homomorphism
Ar @ Aut(l') — Aut(k(T)/Q)

by
Ar () (¥ (to)) = ¥ (p1(to)) = worb(to)wy

From the definition, the map Ar(y) induces a permutation of the set {& = a1, 22, -+ , 1}

Theorem 4.1 Suppose m = n. Let I' be a lattice of H. Then, for each subgroup
F < Aut(k(I")/Q), there exists a lattice I" < H such that

(1) I'" is commensurable with T,

(2) Ar(Aut(I")) = F.
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Outline of the proof. Let k be a totally real algebraic number field of degree n+1
and let {fM), f@ ... f(r+LY be the set of all imbeddings of k into R. Let O(k)
be the subring of algebraic integers in k. The ring O(k) is isomorphic to Z"*' as
additive groups. Denote by £(k) the unit group of O(k) and put

EXY k) ={e€&k)| fP%)>0 1<i<n+1)}.
Define an injective map 4 : £¥ (k) — R"*! by

ti(e) = (log (fM(e)) , log (FP(e)) .-+, log (F"*V(e)))

The Dirichlet’s unit theorem asserts that £, (7 (k)) is alattice of V' = {(z1, 22, -+ , Zn41) €
n-+1

R | Zmz =0 }. Put

Ty = G(EF(K)) Xy, OK), Hy= (L(E¥(K) @R) xy, (O(k) ®R).

The homomorphism vy, : £,(E7(k)) — Aut(O(k)) is given by ¥ o £y = 1, where ¢
is the tautological map defined by wx(¢)(y) = v (v € k). The homomorphism 1), is
the naural extension of .

Now take groups H and I' in the theorem. Then we can construct an isomorphism
Up from H to Hj such that ¢, (Up(T)) X' Ty for r, € Aut(Hy) ([2, Lemma 3.6]).
From this, to prove the theorem, we may assume I' =1'y C Hy = H.

Suppose H = Hj,,I' = I';. From the definition, Ar, (Aut(I'x)) = Aut(k/Q) holds.
Take a subgroup & < £7(k) with |ET(k) : £1| < 0o, and put I := £, (&) Xy, O(k).
Clearly I'; and I'V are commensurable. Moreover it is seen that

Ad(e;) Ar (Aut(IY)) = {o € Aut(k/Q) | 0(&1) = &1 }-
Thus, for a given F' < Aut(k/Q), we only have to construct £ such that
F={oe€Aut(k/Q) | o(&) =& }
Such an &; can be constructed by using Artin’s theorem on relative fundamental

units (e.g., [2, Theorem 4.1 ]). -

When n = m, we showed that if ¢ € KerAr, then ¢? = Ad(hy) for some hy € H
( [2, Corollary 3.11]).

5 Aut(I') when n >m

In the rest of paper, we treat the case where n > m, that is, H = R™x 4R (n > m).
We add one more assumption on the structure matrix Ay.
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Assumption B on A,

Every m row vectors A;,, A,,---,A;,, of Ay are linearly independent over R.

Remark 5.1. When n = m, Assumption B is automatically derived from the
injectivity of .

Let I" be a lattice of H, and take ¢ € Aut(['). Then, from the compatibility con-
dition (¢, (t)) = wotb(t)py?, the map Ar(p) € Aut(k(I')/Q) induces a permutation
0 € Spy1.- Moreover ¢ € Aut(I') acts on the strucure matrix A, as follows.

Al A1
Ao Ao
T,Ay =T, , = . P, (5.1)
An+1 An—}-l

where T, is the row exchanging matrix corresponding to o and P, € GL(m,Z). Let

A1 Im Al
Az _ C11,€C12,°** , Cim ne
An+1 Cp1,Cp2;, " , Cpm Am
wherep=n+1—m.
-1
A Ay
. , A, Ao ) . .
Putting P, = ) P, ) , the above relation (5.1) is re-written as
Am Am
I, I,
C11,C12," " ,Cim . C11,C12, " , Cim ’
Ly o0 = F,. (5.2)
Cp1, Cp2, y Cpm Cp1, Cp2, » Cpm
n+1

From the condition Z A; = 0, we have

1=1

p
1+ ;=0 (1<j<m). (5.3)
=1

Remark 5.2. When n = m, for every permutation ¢ € S,,;, the conditions
(5.1)(5.2) are satisfied.

Divide each permutation ¢ € S,4; into a product of distinct cylic permu-
tations, ¢ = 0,09-:-0r. We say cyclic permutations o; = (i1,42, -+ ,%) and
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o; = (J1,J2, -+ ,Jjr) to be distinct if i35 # j, (1 # j7) (1 < s < ¢, 1 <t < k),
and define the length of o; = (41,142, , %) to be £. For example, (123) and (4567)
are distinct cyclic permutations, and (123) and (3456) are not distinct.

The following propositions are given by simple calculations (see [5] for the de-
tails). In the propositions and corollaries below, we suppose Assumption B.

Proposition 5.1 ([5]) Let 0 = 0109+ 0k € Spy1 (0 # trivial ) be the product of
distinct cyclic permutations. Suppose that, for the o = o102 - -0, there exists P,
satisfying the condtions (5.2)(5.3). Then all o; have the same length, or the length
of o1 1s 1 and the other o;’s have the same length.

When each non-trivial cyclic permutation o; of 0 = 0,02 --0; has the same
length, we also say the length to be the size of o. For example, the size of o =
(123)(456)(789) is 3.

Proposition 5.2 ([5]) If (n 4+ 1) — m = s is even, then the size of o satisfying the
conditions (5.2) (5.3) is not larger than s.

Corollary 5.3 ([5]) Suppose that n + 1 is even and (n + 1) — m = 2. Then a
permutation o satisfying the conditions (5.2)(5.3) is one of
(1) trivial, (2) o= (12)(34)---(m+1,m + 2),

by renumbering row vectors Ay, Ag, -, Apt1 of Ay if necessary. Moreover, in the
case of (2), the structure matriz Ay is equivalent to the form

A
I, Ay

a, b1 Qo bg s Ak bk . . (S)
by a1 by ay -+ by ag A‘

We say Ay to be type (S) if it is equivalent to the above form (S). Corolally 5.3
implies that Aut(I") in the case n > m is quite different from that in the case n = m.

Corollary 5.4 ([5]) Let T be a lattice of H = R™ xy R™*'. Suppose that n + 1 is
even and (n+ 1) —m = 2. Then

|Ar (Aut())[ < 2.
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6 Case of H = R? x, R*

In this section we treat H = R? Xy R*, and give two examples of I' such that
|Ar(Aut(T'))| = 2 and |Ar(Aut(T"))| = 1. See [4] for another examples.

Let A; (1 < j < 3) be the 4 x 4 integer matrices given by

0 0
1 0
Ar=10
0 0
Ag:z

o O

0

p—i

-1
7
—-13
7

-9
69
—153
104

Then we can see the following.

5 1 0 -1

-12 -2 1 7
, Api= 7 1 2 —12]°
-1 0 1 5

—-104 575 2742
719 3921 18619
—1283 —6756 —31725
975 2742 12438

1. detAd; =1 (j = 1,2,3), that is, A; € SL(4,Z).

2. Let fo(z) = —x3 + 72% — 12z + 5, f3(x) = 104z — 15322 + 692 — 9. Then
Ay = fa(A1), Az = f3(A1).

3. Let gj(z) be the characteristic polynomial of A4;. Each g;(z) is given as

a1(z)
92(z)
g3(z)

= zt - 73 41322 — T2 + 1,
(z? — 3z + 1)?,
zt — 639222 + 151565822 — 11717z + 1,

and thus all of the eigenvalues of the matrices A; (1 < j < 3) are positive real

numbers.

4. The eigenvalues of A; are

Clearly the eigenvalues of A, and Aj

(03]

(05)]

a3

(071

numerical values of «; are

_7=v5 _ 1. /19-75
- 4 2 2
_ 7=v5 + L 19-7V5
— T4 2 2
_1=v5 1 /19475
4 2 2
. T+V5 4+ 1 1947V5
- T 1 2 2

f2(ey) and f3(a;) (1 < i < 4). The

o
-
@

o; = 0.544113
o = 1.8378528
as = 0.227777

oy = 4.390257
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5. Let A be the 4 x 2 matrix whose (¢j) entry is log (f;(a;)) (1 <i < 4,1 <5 <2).
(We put f1(z) := z). Then the numerical value of A is the following:

A=

—0.608598 —0.962424
0.608598 —0.962424
—1.47939  0.962424

1.47939  0.9692424

6. Let A, be the “upper half” of A. That is, let A, be the 2 x 2 matrix whose
(zj) entry is log (fj(cu)) (1 <3< 2,1 <j<2). Then we have

A(A) ™ =

1 0

0 1
0.71541 —1.71541
—1.71541 0.71541

7. Let A’ be the 4 x 2 matrix whose (i1) entry is log a; and (:2) entry is log f3(c)
(1 <4< 4). Then the numerical value of A’ is the following:

A=

—0.608598 —9.35757
0.608598  5.50787

—1.47939 —4.87376
1.47939 8.72346

Lemma 6.1 (1) A in 5 is of type (S), (2) A’ in 7 is not of type (S).

Proof 1t is seen that

AL
_ | =M
A= o
— )y
Thus
A1
- "")\ /1,1 1 (
A(A,)™t = '
() Ao o | 2
—A2 g

We omit the proof of (2).

H1
H1
: + iz = 0).
Lo (1 + p2 )
H2
1 0
0 1
M1 _/—’J1> | Mg+ Aopr Arpe — Aopn
ArA - 201 14y 211y
Al — Agptr Arpg + Agpi
21 1 2y
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Proposition 6.2 Let H = R? x,, R* be a 1-step solvable Lie group such that the
structure matriz Ay is A (resp. A') in Lemma 6.1. Let I' be the lattice of H given
by Z*? <, Z*. Then |Ap(Aut(T))| = 2 (resp. |Ar(Aut(T'))| =1) .

Proof Let Ay = A, and let o = (12)(34). Then the homomorphism ¢ € Aut(T)

given by g = 1T,, o1 = P, = _01 (1) clearly satisfies the relation T,A = AP,,

and thus Ar(¢) = o. Let Ay, = A’. Then Corollary 5.3 and Lemma 6.1 show

|Ar(Aut(I'))] = 1. O
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