Lattices of Non-Compact Lie Groups

山川あい子 (国際基督教大学) Aiko YAMAKAWA (International Christian University)

1 Introduction

Consider solvable Lie groups of type $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$ $(n \geq m)$. Here ψ is a homomorphis from \mathbb{R}^m to $GL(n+1,\mathbb{R})$ and the group structure of H is given by

$$(\mathbf{s}, \mathbf{x})(\mathbf{t}, \mathbf{y}) = (\mathbf{s} + \mathbf{t}, \mathbf{x} + \psi(\mathbf{t})(\mathbf{y})), \quad (\mathbf{s}, \mathbf{t} \in \mathbb{R}^m, \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}).$$

We call Lie groups of this type 1-step solvable Lie groups. In this paper we study about the automorphisms groups of lattices (cocompact discrete subgroups) of 1-step solvable Lie groups H.

The unimodularization of n products $\operatorname{Aff}^+(\mathbb{R})^n$ of the affine group $\operatorname{Aff}^+(\mathbb{R})$ is a 1-step solvable Lie group which takes the form of $\mathbb{R}^n \ltimes_{\psi} \mathbb{R}^{n+1}$. In this case, the homomorphism ψ is injective and splits as a direct sum of non-equivariant real 1-dimensional representations. Conversely, if the homomorphism ψ of $H = \mathbb{R}^n \ltimes_{\psi} \mathbb{R}^{n+1}$ has all of these properties, then H is isomorphic to $\operatorname{Aff}^+(\mathbb{R})^n$. Let Γ be a lattice of $H = \mathbb{R}^n \ltimes_{\psi} \mathbb{R}^{n+1} \cong \operatorname{Aff}^+(\mathbb{R})^n$. In [2], we defined an algebraic number field $k(\Gamma)$ of degree n+1 which is associated with a lattice Γ , and showed that the automorphism group $\operatorname{Aut}(\Gamma')$ of a lattice Γ' commensurable with Γ is essentially identified with a subgroup of the automorphism group $\operatorname{Aut}(k(\Gamma)/\mathbb{Q})$. More precisely, there is a surjection from the set $\{\operatorname{Aut}(\Gamma') \mid \Gamma' < H, \Gamma' \in \operatorname{Com}(\Gamma)\}$ to the set $\{F \mid F < \operatorname{Aut}(k(\Gamma)/\mathbb{Q})\}$ (Theorem 1.2 in [2]). Here $\operatorname{Com}(\Gamma)$ denotes the set of lattices Γ' which are commensurable with Γ (see §4). But, when n > m, we have quite different results from those in the case of n = m.

In the first half of this paper, we review basic facts about lattices of 1-step solvable Lie groups $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$, and in §4 we state an interesting Theorem 1.2 in [2]. In the last two sections, we study the case of m < n, especially the case of n = m + 1.

From now on, let H denote 1-step solvable Lie groups of type $\mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$. Moreover we assume that ψ is injective and splits as a direct sum of non-equivariant real 1-dimensional representations.

2 Structure matrix of H

From the assumption that ψ splits as a direct sum of non-equivariant real 1-dimensional representations, for a basis $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_m\}$ of \mathbb{R}^m , $A_j := \psi(\mathbf{e}_j)$ $(1 \le j \le m)$ are simultaneously conjugate to diagonal matrices diag $(e^{\lambda_{1j}}, e^{\lambda_{2j}}, \cdots, e^{\lambda_{n+1,j}})$. Put

$$\Lambda_{\psi} := \left(egin{array}{cccc} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1m} \ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2m} \ dots & dots & dots \ \lambda_{n+1,1} & \lambda_{n+1,2} & \cdots & \lambda_{n+1,m} \end{array}
ight) = \left(egin{array}{c} \Lambda_1 \ \Lambda_2 \ dots \ \Lambda_{n+1} \end{array}
ight),$$

and call Λ_{ψ} the *structure matrix* of $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$. Clearly H is determined by the structure matrix.

We note here some fundamental facts on Λ_{ψ} .

- 1. Changing bases of \mathbb{R}^m and \mathbb{R}^{n+1} , the new structure matrix Λ'_{ψ} is written as $\Lambda'_{\psi} = T\Lambda_{\psi}P$, where T is a row exchanging matrix and P is an m-square non-singular matrix, that is $P \in GL(m,\mathbb{R})$. If $\Lambda'_{\psi} = T\Lambda_{\psi}P$ holds, then we say Λ_{ψ} and Λ'_{ψ} to be *equivalent* and identify Λ_{ψ} with Λ'_{ψ} .
- 2. Let $\Delta: G \to \mathbb{R}_+$ be the modular function of a Lie group G defined by $\Delta(g) = |\det Ad_g|$. For $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$, the modular function $\Delta: H \to \mathbb{R}_+$ is given by $\Delta(\mathbf{t}, \mathbf{x}) = \exp(\sum_{i=1}^{n+1} \Lambda_i \cdot \mathbf{t})$.
- 3. If there exists a cocompact discrete subgroup (i.e. a lattice) Γ of H, then $\Delta(\mathbf{t}, \mathbf{x}) = 1 \text{ for } \forall (\mathbf{t}, \mathbf{x}) \in H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}. \text{ This shows } \sum_{i=1}^{n+1} \Lambda_i \cdot \mathbf{t} = 0 \quad (\forall \mathbf{t} \in \mathbb{R}^m),$ and thus $\sum_{i=1}^{n+1} \Lambda_i = \mathbf{0}.$

In this paper, we study about lattices of H. Thus, from now on, we assume that the structure matrix Λ_{ψ} satisfies $\sum_{i=1}^{n+1} \Lambda_i = 0$.

3 Lattices and algebraic number fields

In this section, we define the algebraic number field $k(\Gamma)$ associated with a lattice Γ of H. Let $H_0 := [H, H]$ and $H_1 := H/H_0$. Then $H_0 \cong \mathbb{R}^{n+1}$, $H_1 \cong \mathbb{R}^m$ and $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1} = H_1 \ltimes_{\psi} H_0$ holds. The following is a known result.

Lemma 3.1 ([3, Lemma 2.3]) Let $\Gamma < H$ be a lattice. Put $\Gamma_0 := \Gamma \cap H_0 = \Gamma \cap \mathbb{R}^{n+1}$ and $\Gamma_1 := \Gamma/\Gamma_0$. Then Γ_0 and Γ_1 are lattices of \mathbb{R}^{n+1} and \mathbb{R}^m , respectively.

From Lemma 3.1, we can see $\Gamma_0 \cong \mathbb{Z}^{n+1}$ and $\Gamma_1 \cong \mathbb{Z}^m$. Moreover we have the exact sequences

In general, Γ is not a semi-direct product group. But the restriction $\psi_{|\Gamma_1}$ becomes a homomorphism from Γ_1 to $Aut(\Gamma_0)$, and hence, $\psi(\mathbf{t}) \in SL(n+1,\mathbb{Z})$ ($\mathbf{t} \in \Gamma_1$). Thus we may assume that, in the structure matrix

$$\Lambda_{\psi} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1m} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2m} \\ \vdots & \vdots & & \vdots \\ \lambda_{n+1,1} & \lambda_{n+1,2} & \cdots & \lambda_{n+1,m} \end{pmatrix},$$

the numbers $e^{\lambda_{1j}}, e^{\lambda_{2j}}, \cdots, e^{\lambda_{n+1,j}}$ are eigenvalues of an integer matrix $A_j = \psi(\mathbf{t}_j) \in SL(n+1,\mathbb{Z})$, that is, those numbers are algebraic integers. Here $\{\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_m\}$ is a \mathbb{Z} -basis of $\Gamma_1 \cong \mathbb{Z}^m$.

We suppose the following condtions on Λ_{ψ} .

Assumtion A on ψ (i.e. on Λ_{ψ})

- 1. ψ is injective.
- 2. There exists $\mathbf{t}_0 \in \Gamma_1$ such that each eigenvalue $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$ of $\psi(\mathbf{t}_0) = A$ is an algebraic integer of degree n+1. Here $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$ are each other conjugate elements.

Remark 3.1.

- (1) When n = m, the assumption 2 is automatically derived from the assumption 1.
- (2) For each $\mathbf{t} \in \Gamma_1$, the matrix $\psi(\mathbf{t})$ can be described as g(A) ($g[X] \in \mathbb{Q}[X]$) because $\psi(\mathbf{t})$ and $\psi(\mathbf{t}_0) = A$ are commutative ([2, Corollary 3.2]).

Under Assumption A, we can assign a totally real algebraic number field $k(\Gamma) = \mathbb{Q}(\alpha)$ of degree n+1 to a lattice $\Gamma < H$, where $\alpha = \alpha_1$ in the above assumption 2. Call $k(\Gamma)$ the algebraic number field associated with Γ . We note that, from Remark 3.1-(2), $k(\Gamma)$ does not depends on the choice of \mathbf{t}_0 .

Lattices Γ and Γ' are called to be *commensurable* and denoted by $\Gamma \stackrel{com}{\sim} \Gamma'$ if $|\Gamma : \Gamma \cap \Gamma'| < \infty$ and $|\Gamma' : \Gamma \cap \Gamma'| < \infty$. From Remark 3.1-(2), it follows

that $k(\Gamma) = k(\Gamma')$ if $\Gamma \stackrel{com}{\sim} \Gamma'$. Furthermore we say that Γ and Γ' are weakly commensurable if there exists $\varphi \in \operatorname{Aut}(H)$ such that $\varphi(\Gamma) \stackrel{com}{\sim} \Gamma'$. When n = m, $k(\Gamma') = \varphi_*(k(\Gamma))$ holds ([2, Lemma 3.3]). From those facts, we obtain the following theorem.

Theorem 3.2 Suppose n = m. Then the map

$$\left\{\begin{array}{c} \text{the set of all weakly} \\ \text{commensurable classes} \\ \text{of lattices of } H \end{array}\right\} \to \left\{\begin{array}{c} \text{the set of all isomorphism} \\ \text{classes of totally real algebraic} \\ \text{number fields of degree } n+1 \end{array}\right\}$$

induced from the map $\Gamma \to k(\Gamma)$ is bijective.

4 $\mathbf{Aut}(\Gamma)$

Let Γ be a lattice of H, and take $\varphi \in \operatorname{Aut}(\Gamma)$. Then the following hold.

- 1. φ naturally induces automorphisms $\varphi_1:\Gamma_1\to\Gamma_1$ and $\varphi_0:\Gamma_0\to\Gamma_0$.
- 2. $\psi(\varphi_1(\mathbf{t})) = \varphi_0 \psi(\mathbf{t}) \varphi_0^{-1} \quad (\forall \mathbf{t} \in \Gamma_1 = \mathbb{Z}^m)$.

The equality 2 follows from that φ is a homomorphism. We call this equality in 2 the *compatibility condition* for (φ_1, φ_0) .

Remark 4.1. It is known that $\varphi \in \operatorname{Aut}(\Gamma)$ is uniquely extended to $\tilde{\varphi} \in \operatorname{Aut}(H)$ (e.g. [1][2]). Clearly the compatibility condition holds for $(\tilde{\varphi}_1, \tilde{\varphi}_0)$.

Using 1 and 2 above, we can define a homomorphism

$$A_{\Gamma}: \operatorname{Aut}(\Gamma) \longrightarrow \operatorname{Aut}(k(\Gamma)/\mathbb{Q})$$

by

$$A_{\Gamma}(\varphi)(\psi(\mathbf{t}_0)) = \psi(\varphi_1(\mathbf{t}_0)) = \varphi_0\psi(\mathbf{t}_0)\varphi_0^{-1}.$$

From the definition, the map $A_{\Gamma}(\varphi)$ induces a permutation of the set $\{\alpha = \alpha_1, \alpha_2, \cdots, \alpha_{n+1}\}$.

Theorem 4.1 Suppose m = n. Let Γ be a lattice of H. Then, for each subgroup $F < Aut(k(\Gamma)/\mathbb{Q})$, there exists a lattice $\Gamma' < H$ such that

- (1) Γ' is commensurable with Γ .
- (2) $A_{\Gamma'}(Aut(\Gamma')) = F$.

Outline of the proof. Let k be a totally real algebraic number field of degree n+1 and let $\{f^{(1)}, f^{(2)}, \dots, f^{(n+1)}\}$ be the set of all imbeddings of k into \mathbb{R} . Let $\mathcal{O}(k)$ be the subring of algebraic integers in k. The ring $\mathcal{O}(k)$ is isomorphic to \mathbb{Z}^{n+1} as additive groups. Denote by $\mathcal{E}(k)$ the unit group of $\mathcal{O}(k)$ and put

$$\mathcal{E}^+(k) := \{ \varepsilon \in \mathcal{E}(k) \mid f^{(i)}(\varepsilon) > 0 \ (1 \le i \le n+1) \}.$$

Define an injective map $\ell_k : \mathcal{E}^+(k) \to \mathbb{R}^{n+1}$ by

$$\ell_k(\varepsilon) = \left(\log\left(f^{(1)}(\varepsilon)\right), \log\left(f^{(2)}(\varepsilon)\right), \cdots, \log\left(f^{(n+1)}(\varepsilon)\right)\right)$$

The Dirichlet's unit theorem asserts that $\ell_k(\mathcal{E}^+(k))$ is a lattice of $V = \{(x_1, x_2, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i = 0 \}$. Put

$$\Gamma_k = \ell_k(\mathcal{E}^+(k)) \ltimes_{\psi_k} \mathcal{O}(k), \quad H_k = (\ell_k(\mathcal{E}^+(k)) \otimes \mathbb{R}) \ltimes_{\tilde{\psi_k}} (\mathcal{O}(k) \otimes \mathbb{R}).$$

The homomorphism $\psi_k : \ell_k(\mathcal{E}^+(k)) \to \operatorname{Aut}(\mathcal{O}(k))$ is given by $\psi_k \circ \ell_k = \iota_k$, where ι_k is the tautological map defined by $\iota_k(\varepsilon)(\gamma) = \varepsilon \gamma$ $(\gamma \in k)$. The homomorphism $\tilde{\psi}_k$ is the naural extension of ψ_k .

Now take groups H and Γ in the theorem. Then we can construct an isomorphism Ψ_{Γ} from H to H_k such that $\varphi_k(\Psi_{\Gamma}(\Gamma)) \stackrel{com}{\sim} \Gamma_k$ for $\varphi_k \in \operatorname{Aut}(H_k)$ ([2, Lemma 3.6]). From this, to prove the theorem, we may assume $\Gamma = \Gamma_k \subset H_k = H$.

Suppose $H = H_k$, $\Gamma = \Gamma_k$. From the definition, $A_{\Gamma_k}(\operatorname{Aut}(\Gamma_k)) = \operatorname{Aut}(k/\mathbb{Q})$ holds. Take a subgroup $\mathcal{E}_1 < \mathcal{E}^+(k)$ with $|\mathcal{E}^+(k) : \mathcal{E}_1| < \infty$, and put $\Gamma' := \ell_k(\mathcal{E}_1) \ltimes_{\psi_k} \mathcal{O}(k)$. Clearly Γ_k and Γ' are commensurable. Moreover it is seen that

$$Ad(\iota_k^{-1})A_{\Gamma'}(\operatorname{Aut}(\Gamma')) = \{ \sigma \in \operatorname{Aut}(k/\mathbb{Q}) \mid \sigma(\mathcal{E}_1) = \mathcal{E}_1 \}.$$

Thus, for a given $F < \operatorname{Aut}(k/\mathbb{Q})$, we only have to construct \mathcal{E}_1 such that

$$F = \{ \sigma \in \operatorname{Aut}(k/\mathbb{Q}) \mid \sigma(\mathcal{E}_1) = \mathcal{E}_1 \}.$$

Such an \mathcal{E}_1 can be constructed by using Artin's theorem on relative fundamental units (e.g., [2, Theorem 4.1]).

When n = m, we showed that if $\varphi \in Ker A_{\Gamma}$, then $\varphi^2 = Ad(h_0)$ for some $h_0 \in H$ ([2, Corollary 3.11]).

5 Aut(Γ) when n > m

In the rest of paper, we treat the case where n > m, that is, $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1} (n > m)$. We add one more assumption on the structure matrix Λ_{ψ} .

Assumption B on Λ_{ψ}

Every m row vectors $\Lambda_{i_1}, \Lambda_{i_2}, \cdots, \Lambda_{i_m}$ of Λ_{ψ} are linearly independent over \mathbb{R} .

Remark 5.1. When n=m, Assumption B is automatically derived from the injectivity of ψ .

Let Γ be a lattice of H, and take $\varphi \in \operatorname{Aut}(\Gamma)$. Then, from the compatibility condition $\psi(\varphi_1(\mathbf{t})) = \varphi_0 \psi(\mathbf{t}) \varphi_0^{-1}$, the map $A_{\Gamma}(\varphi) \in \operatorname{Aut}(k(\Gamma)/\mathbb{Q})$ induces a permutation $\sigma \in S_{n+1}$. Moreover $\varphi \in \operatorname{Aut}(\Gamma)$ acts on the strucure matrix Λ_{ψ} as follows.

$$T_{\sigma}\Lambda_{\psi} = T_{\sigma} \begin{pmatrix} \Lambda_{1} \\ \Lambda_{2} \\ \vdots \\ \Lambda_{n+1} \end{pmatrix} = \begin{pmatrix} \Lambda_{1} \\ \Lambda_{2} \\ \vdots \\ \Lambda_{n+1} \end{pmatrix} P_{\sigma}$$
 (5.1)

where T_{σ} is the row exchanging matrix corresponding to σ and $P_{\sigma} \in GL(m, \mathbb{Z})$. Let

$$\begin{pmatrix} \Lambda_1 \\ \Lambda_2 \\ \vdots \\ \Lambda_{n+1} \end{pmatrix} = \begin{pmatrix} I_m \\ c_{11}, c_{12}, \cdots, c_{1m} \\ \cdots \\ c_{p1}, c_{p2}, \cdots, c_{pm} \end{pmatrix} \begin{pmatrix} \Lambda_1 \\ \Lambda_2 \\ \vdots \\ \Lambda_m \end{pmatrix}.$$

where p = n + 1 - m.

Putting $P'_{\sigma} = \begin{pmatrix} \Lambda_1 \\ \Lambda_2 \\ \vdots \\ \Lambda_m \end{pmatrix} P_{\sigma} \begin{pmatrix} \Lambda_1 \\ \Lambda_2 \\ \vdots \\ \Lambda_m \end{pmatrix}^{-1}$, the above relation (5.1) is re-written as

$$T_{\sigma} \begin{pmatrix} I_{m} \\ c_{11}, c_{12}, \cdots, c_{1m} \\ \vdots \\ c_{p1}, c_{p2}, \cdots, c_{pm} \end{pmatrix} = \begin{pmatrix} I_{m} \\ c_{11}, c_{12}, \cdots, c_{1m} \\ \vdots \\ c_{p1}, c_{p2}, \cdots, c_{pm} \end{pmatrix} P'_{\sigma}.$$
 (5.2)

From the condition $\sum_{i=1}^{n+1} \Lambda_i = \mathbf{0}$, we have

$$1 + \sum_{i=1}^{p} c_{ij} = 0 \quad (1 \le j \le m). \tag{5.3}$$

Remark 5.2. When n=m, for every permutation $\sigma \in S_{n+1}$, the conditions (5.1)(5.2) are satisfied.

Divide each permutation $\sigma \in S_{n+1}$ into a product of distinct cyclic permutations, $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$. We say cyclic permutations $\sigma_i = (i_1, i_2, \cdots, i_\ell)$ and

 $\sigma_j = (j_1, j_2, \dots, j_k)$ to be distinct if $i_s \neq j_t$ $(i \neq j)$ $(1 \leq s \leq \ell, 1 \leq t \leq k)$, and define the length of $\sigma_i = (i_1, i_2, \dots, i_\ell)$ to be ℓ . For example, (123) and (4567) are distinct cyclic permutations, and (123) and (3456) are not distinct.

The following propositions are given by simple calculations (see [5] for the details). In the propositions and corollaries below, we suppose Assumption B.

Proposition 5.1 ([5]) Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k \in S_{n+1}$ ($\sigma \neq trivial$) be the product of distinct cyclic permutations. Suppose that, for the $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$, there exists P'_{σ} satisfying the conditions (5.2)(5.3). Then all σ_i have the same length, or the length of σ_1 is 1 and the other σ_i 's have the same length.

When each non-trivial cyclic permutation σ_i of $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ has the same length, we also say the length to be the *size* of σ . For example, the size of $\sigma = (123)(456)(789)$ is 3.

Proposition 5.2 ([5]) If (n + 1) - m = s is even, then the size of σ satisfying the conditions (5.2) (5.3) is not larger than s.

Corollary 5.3 ([5]) Suppose that n + 1 is even and (n + 1) - m = 2. Then a permutation σ satisfying the conditions (5.2)(5.3) is one of

(1)
$$trivial$$
, (2) $\sigma = (12)(34) \cdots (m+1, m+2)$,

by renumbering row vectors $\Lambda_1, \Lambda_2, \dots, \Lambda_{n+1}$ of Λ_{ψ} if necessary. Moreover, in the case of (2), the structure matrix Λ_{ψ} is equivalent to the form

$$\begin{pmatrix}
I_m \\
a_1 & b_1 & a_2 & b_2 & \cdots & a_k & b_k \\
b_1 & a_1 & b_2 & a_2 & \cdots & b_k & a_k
\end{pmatrix}
\begin{pmatrix}
\Lambda_1 \\
\Lambda_2 \\
\vdots \\
\Lambda_m
\end{pmatrix}.$$
(S)

We say Λ_{ψ} to be type (S) if it is equivalent to the above form (S). Corolally 5.3 implies that $\operatorname{Aut}(\Gamma)$ in the case n > m is quite different from that in the case n = m.

Corollary 5.4 ([5]) Let Γ be a lattice of $H = \mathbb{R}^m \ltimes_{\psi} \mathbb{R}^{n+1}$. Suppose that n+1 is even and (n+1)-m=2. Then

$$|A_{\Gamma}(Aut(\Gamma))| \leq 2.$$

6 Case of $H = \mathbb{R}^2 \ltimes_{\psi} \mathbb{R}^4$

In this section we treat $H = \mathbb{R}^2 \ltimes_{\psi} \mathbb{R}^4$, and give two examples of Γ such that $|A_{\Gamma}(\operatorname{Aut}(\Gamma))| = 2$ and $|A_{\Gamma}(\operatorname{Aut}(\Gamma))| = 1$. See [4] for another examples.

Let A_j $(1 \le j \le 3)$ be the 4×4 integer matrices given by

$$A_{1} := \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -13 \\ 0 & 0 & 1 & 7 \end{pmatrix}, \quad A_{2} := \begin{pmatrix} 5 & 1 & 0 & -1 \\ -12 & -2 & 1 & 7 \\ 7 & 1 & 2 & -12 \\ -1 & 0 & 1 & 5 \end{pmatrix},$$

$$A_{3} := \begin{pmatrix} -9 & -104 & -575 & -2742 \\ 69 & 719 & 3921 & 18619 \\ -153 & -1283 & -6756 & -31725 \\ 104 & 575 & 2742 & 12438 \end{pmatrix}.$$

Then we can see the following.

- 1. $\det A_j = 1 \ (j = 1, 2, 3)$, that is, $A_j \in SL(4, \mathbb{Z})$.
- 2. Let $f_2(x) = -x^3 + 7x^2 12x + 5$, $f_3(x) = 104x^3 153x^2 + 69x 9$. Then $A_2 = f_2(A_1)$, $A_3 = f_3(A_1)$.
- 3. Let $g_j(x)$ be the characteristic polynomial of A_j . Each $g_j(x)$ is given as

$$g_1(x) = x^4 - 7x^3 + 13x^2 - 7x + 1,$$

$$g_2(x) = (x^2 - 3x + 1)^2,$$

$$g_3(x) = x^4 - 6392x^2 + 1515658x^2 - 11717x + 1,$$

and thus all of the eigenvalues of the matrices A_j ($1 \le j \le 3$) are positive real numbers.

4. The eigenvalues of A_1 are

$$\alpha_1 = \frac{7 - \sqrt{5}}{4} - \frac{1}{2} \sqrt{\frac{19 - 7\sqrt{5}}{2}}$$

$$\alpha_2 = \frac{7 - \sqrt{5}}{4} + \frac{1}{2} \sqrt{\frac{19 - 7\sqrt{5}}{2}}$$

$$\alpha_3 = \frac{7 - \sqrt{5}}{4} - \frac{1}{2} \sqrt{\frac{19 + 7\sqrt{5}}{2}}$$

$$\alpha_4 = \frac{7 + \sqrt{5}}{4} + \frac{1}{2} \sqrt{\frac{19 + 7\sqrt{5}}{2}}$$

Clearly the eigenvalues of A_2 and A_3 are $f_2(\alpha_i)$ and $f_3(\alpha_i)$ $(1 \le i \le 4)$. The numerical values of α_i are

$$\alpha_1 \doteq 0.544113$$
 $\alpha_2 \doteq 1.8378528$
 $\alpha_3 \doteq 0.227777$
 $\alpha_4 \doteq 4.390257$

5. Let Λ be the 4×2 matrix whose (ij) entry is $\log (f_j(\alpha_i))$ $(1 \le i \le 4, 1 \le j \le 2)$. (We put $f_1(x) := x$). Then the numerical value of Λ is the following:

$$\Lambda \doteqdot \begin{pmatrix} -0.608598 & -0.962424 \\ 0.608598 & -0.962424 \\ -1.47939 & 0.962424 \\ 1.47939 & 0.9692424 \end{pmatrix}$$

6. Let Λ_u be the "upper half" of Λ . That is, let Λ_u be the 2×2 matrix whose (ij) entry is $\log(f_j(\alpha_i))$ $(1 \le i \le 2, 1 \le j \le 2)$. Then we have

$$\Lambda(\Lambda_u)^{-1} \doteq \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0.71541 & -1.71541 \\ -1.71541 & 0.71541 \end{pmatrix}.$$

7. Let Λ' be the 4×2 matrix whose (i1) entry is $\log \alpha_i$ and (i2) entry is $\log f_3(\alpha_i)$ ($1 \le i \le 4$). Then the numerical value of Λ' is the following:

$$\Lambda' \doteq \begin{pmatrix} -0.608598 & -9.35757 \\ 0.608598 & 5.50787 \\ -1.47939 & -4.87376 \\ 1.47939 & 8.72346 \end{pmatrix}$$

Lemma 6.1 (1) Λ in 5 is of type (S), (2) Λ' in 7 is not of type (S).

Proof It is seen that

$$\Lambda = \begin{pmatrix} \lambda_1 & \mu_1 \\ -\lambda_1 & \mu_1 \\ \lambda_2 & \mu_2 \\ -\lambda_2 & \mu_2 \end{pmatrix}, \quad (\mu_1 + \mu_2 = 0).$$

Thus

$$\Lambda(\Lambda_u)^{-1} = \begin{pmatrix} \lambda_1 & \mu_1 \\ -\lambda_1 & \mu_1 \\ \lambda_2 & \mu_2 \\ -\lambda_2 & \mu_2 \end{pmatrix} \frac{1}{2\lambda_1\mu_1} \begin{pmatrix} \mu_1 & -\mu_1 \\ \lambda_1 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\lambda_1\mu_2 + \lambda_2\mu_1}{2\lambda_1\mu_1} & \frac{\lambda_1\mu_2 - \lambda_2\mu_1}{2\lambda_1\mu_1} \\ \frac{\lambda_1\mu_2 - \lambda_2\mu_1}{2\lambda_1\mu_1} & \frac{\lambda_1\mu_2 + \lambda_2\mu_1}{2\lambda_1\mu_1} \end{pmatrix}.$$

We omit the proof of (2).

Proposition 6.2 Let $H = \mathbb{R}^2 \ltimes_{\psi} \mathbb{R}^4$ be a 1-step solvable Lie group such that the structure matrix Λ_{ψ} is Λ (resp. Λ') in Lemma 6.1. Let Γ be the lattice of H given by $\mathbb{Z}^2 \ltimes_{\psi} \mathbb{Z}^4$. Then $|A_{\Gamma}(Aut(\Gamma))| = 2$ (resp. $|A_{\Gamma}(Aut(\Gamma))| = 1$).

Proof Let $\Lambda_{\psi} = \Lambda$, and let $\sigma = (12)(34)$. Then the homomorphism $\varphi \in \operatorname{Aut}(\Gamma)$ given by $\varphi_0 = T_{\sigma}$, $\varphi_1 = P_{\sigma} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ clearly satisfies the relation $T_{\sigma}\Lambda = \Lambda P_{\sigma}$, and thus $A_{\Gamma}(\varphi) = \sigma$. Let $\Lambda_{\psi} = \Lambda'$. Then Corollary 5.3 and Lemma 6.1 show $|A_{\Gamma}(\operatorname{Aut}(\Gamma))| = 1$.

References

- 1. M. Saito, Sur Certains Groups de Lie Resoluble II, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 7 (1957), 157- 168
- 2. N. Tsuchiya and A. Yamakawa, Lattices of Some Solvable Lie Groups and Actions of Products of Affine Groups, Tohoku Math. J. 61 (2009), 349-364
- 3. A. Yamakawa and N. Tsuchiya, Codimension One Locally Free Actions of Solvable Lie Groups, Tohoku Math. J. 53 (2001), 241-263
- 4. A. Yamakawa and N. Tsuchiya, Equivalence Classes of Codimension One Homogeneous Actions of $\mathbb{R}^2 \ltimes \mathbb{R}^3$ and $\mathbb{R}^3 \ltimes \mathbb{R}^5$, preprint (2006)
- 5. A. Yamakawa, On Automorphism Groups of Lattices of $\mathbb{R}^m \ltimes \mathbb{R}^{n+1} (n > m)$, preprint (2009)