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ABSTRACT. The notion of an isovariant map, i.e, an equivariant map preserving
the isotropy subgroups, plays an important role in equivariant topology. In this
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1. BACKGROUND – $HoPF’ S$ CLASSIFICATION THEOREM

Let $M$ be a connected, orientable, closed n-manifold, and $S^{n}$ the n-sphere $(n\geq$

1 $)$ . Let $[M, S”]$ denote the set of homotopy classes of continuous maps $f$ : $Marrow S^{n}$ .
As is well-known, the degree $\deg f$ of $f$ induces the degree function deg $:[M, S^{n}]arrow$

$Z$ , and H. Hopf [3] showed

Theorem 1.1. The degree function $\deg$ is a bijection.

There are many researches on the equivariant version of Hopf’s classification the-
orem, i.e., the equivariant Hopf theorem (see [4, 2] etc). For example the following
can be shown.

Theorem 1.2. Suppose that a finite group $G$ acts freely on $S^{n_{J}}n\geq 1$ .

(1) The degree function deg $:[S^{n}, S^{n}]_{G}arrow Z$ is injective.
(2) The image of $\deg$ coincides with $1+|G|Z$ .

As a consequence, by setting $D([f])=(\deg f-1)/|G|$ , we have the following
equivariant Hopf type theorem.

Corollary 1.3. The map $D:[S^{n}, S^{n}]_{G}arrow Z$ is a bijection.
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2. ISOVARIANT MAPS AND ISOVARIANT HOMOTOPY CLASSES

We consider an isovariant version of Hopf’s classification theorem. Several re-
sults have been obtained in our previous works [8, 9]. In this article we present a
generalization of them whose proof will be given in [10].

The notion of an isovariant map was introduced by Palais [11] in order to study
a classification problem for orbit maps of G-spaces.

Definition. A (continuous) G-map $f$ : $Xarrow Y$ between G-spaces is called G-
isovariant if $f$ preserves the isotropy subgroups, i.e., $G_{f(x)}=G_{x}$ for all $x\in X$ .

In other words, it is an equivariant map which is injective on each orbit of $X$ .

Similarly, if a G-homotopy $F$ : $X\cross Iarrow Y$ is G-isovariant, then it is called a
G-isovariant homotopy.

Let $[X, Y]_{G}^{isov}$ denote the G-isovariant homotopy set, i.e., the set of isovariant
homotopy classes of G-isovariant maps from $X$ to $Y$ .

We investigate $[M, SW]_{G}^{isov}$ for the following $M$ and $SW$ .

$\bullet$
$\Lambda f$ is a connected, orientable, closed free G-manifold (i.e., $G$ acts freely on
M$)$ .

$\bullet$ $SW$ is a (unitary) representation sphere, i.e., the unit sphere of a unitary
G-representation $W$ . We assume that $W$ is faithful (or equivalently $G$ acts
effectively on $W$ ).

We also assume the Borsuk-Ulam inequality:

$\dim M+1\leq\dim SW-\dim SW^{>1}$ .

Here $SW>1$ denotes the singular set of $SW$ , i.e.,

$SW>1= \bigcup_{1\neq H\leq G}SW^{H}$
.

As a convention, we set $\dim SW>1=-1$ if $SW>1=\emptyset$ . The Borsuk-Ulam inequality
is connected with a Borsuk-Ulam type theorem. Indeed, it appears in the following
isovariant Borsuk-Ulam theorem.

Theorem 2.1. Let $M$ be $a$ mod $|G|$ homology sphere with free G-action $(G\neq 1)$

and $SlV$ a representation sphere. If there is a G-isovariant map $f$ : $Marrow SW$ ,
then

$\dim M+1\leq\dim SW-\dim SW>1$

For other results on isovariant Borsuk-Ulam type theorems, see [12, 5, 6, 7]. Set
$SW_{free}=SW\backslash SW^{>1}$ .

Note that $G$ acts freely on $SW_{free}$ . Let $f$ : $Marrow SW$ be an isovariant map. By
isovariance, it follows that $f(M)\subset SW_{free}$ . We may consider equivariant maps from
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$M$ to $SW_{free}$ . In fact $[M, SW]_{G}^{isov}$ is identified with G-homotopy set $[A4, SW_{free}]_{G}$ :

$[M, SW]_{G}^{isov}=[M, SW_{free}]_{G}$ .

In equivariant obstruction theory, the equivariant cohomology $ii_{G}^{*}(M;\pi)$ plays an
important role, where $\pi$ is a ZG-module. The equivariant cochain complex is
defined by

$C_{G}^{*}(M;\pi):=Hom_{ZG}(C_{*}(M);\pi),$ $\delta:=Hom_{ZG}(\partial)$ .

Definition.
$\mathfrak{H}_{G}^{*}(M;\pi):=H^{*}(C_{G}^{*}(M;\pi), \delta)$

In our case $\pi$ is taken as $\pi_{q}(SW_{free})$ , and so we need to know the homotopy group
of $SW_{free}$ .

3. TOPOLOGY OF $SW_{free}$

The following proposition holds.

Proposition 3.1. Let $d=\dim SW-\dim SW>1$ .
(1) $SW_{free}$ is $(d-2)$ -connected, i. e., $\pi_{q}(SW_{free})=0$ for $0\leq q\leq d-2$ .
(2)

$\pi_{d-1}(SW_{free})\cong H_{d-1}(SW_{free};Z)$

$\cong\oplus_{H\in A}H_{d-1}(S(W^{H})^{\perp};Z)$

$\cong\oplus_{H\in A}Z$ ,

where $\mathcal{A}=\{H\in$ Iso $(W)|\dim SW^{H}=\dim SW>1\}$ , and $(W^{H})^{\perp}is$ the orthogonal
complement of $W^{H}$ in $W$ .

Outline of Proof. Statement (1) follows from general position arguments.
(2): Note that $\dim S(W^{H})^{\perp}=d-1$ for $H\in \mathcal{A}$ . Using the Mayer-Vietoris exact
sequence, one has

$H_{d-1}(SW_{free}; Z)\cong\bigoplus_{H\in A}H_{d-1}(S(W^{H})^{\perp};Z)\cong\bigoplus_{H\in A}$
Z.

$\square$

Remark. Note that $d\geq 2$ since $W$ is unitary and faithful. When $d>2$ , the first
isomorphism is obtained form the Hurewicz isomorphism. If $d=2$ , then $\dim M\leq 1$

by the Borsuk-Ulam inequality, and so $G$ must be cyclic. In this case, one also sees
$\pi_{1}(SW_{free})\cong\oplus_{(H)\in A}Z$ .

Since $G$ acts on $SW_{free},$ $\pi_{d-1}(SW_{free})$ and $H_{d-1}(SW_{free};Z)$ are regarded as $Z$G-
modules. For $H\in \mathcal{A}$ , one can see that $gS(W^{H})^{\perp}=S(W^{gHg^{-1}})^{\perp}$ for $g\in G$ , and
$gS(W^{H})^{\perp}=S(W^{H})^{\perp}$ iff $g\in NH$ , the normalizer of $H$ in $G$ . Therefore we have
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Lemma 3.2. There are ZG-isomorphisms

$\Psi:ff_{d-i}(SW_{free};Z)arrow\bigoplus_{(H)\in A/G}Z[G/NH]$
,

where $\mathcal{A}/G=\{(H)|H\in \mathcal{A}\}$ , and

$\Psi\circ h:\pi_{d-1}(SW_{free})arrow\bigoplus_{(H)\in A/G}Z[G/NH]$
,

where $h$ is the Hurewicz homomorphism.

4. EQUIVARIANT OBSTRUCTION THEORY

Set $\pi_{d-1}=\pi_{d-1}(SW_{free})$ and $m=\dim M$ . Let $f,$ $g$ : $Marrow SW_{free}$ be G-maps.
Since $SW_{free}$ is $(d-2)$ -connected and $m\leq d-1$ , the equivariant obstruction class
$\dot{\gamma}_{G}(f, g)$ to the existence of a G-homotopy between $f$ and $g$ is defined in $\mathfrak{H}_{G}^{m}(M;\pi_{m})$ .

Remark. For $d=2$ , since $\pi_{1}$ is abelian, $\mathfrak{H}_{G}^{*}(\Lambda f;\pi_{1})$ is well-defined.

When $m\leq d-1$ , the equivariant obstruction class $\gamma_{G}(f, g)$ to the existence of
a G-homotopy between $f$ and $g$ is defined in $\mathfrak{H}_{G}^{m}(M;\pi_{m})$ . Since $\mathfrak{H}_{G}^{m}(M;\pi_{m})=0$

when $m<d-1$ , we have

Theorem 4.1. If $m<d-1$ , then $[M, SW]_{G}^{isov}=\{*\},\cdot$ namely, all isovariant maps
from $M$ to $SW$ are isovariantly homotopic each other.

Hereafter we assume that

$m=d-1$ $(m=\dim M, d=\dim SW-\dim SW>1)$ .

By equivariant obstruction theory, we have

Proposition 4.2. The correspondence $[f]\mapsto\gamma_{G}(f_{0}, f)$ gives a bijection
$\gamma_{f_{0}}:[M, SW_{free}]_{G}arrow \mathfrak{H}_{G}^{d-1}(M;\pi_{d-1})$ ,

where $f_{0}$ is a fixed isovariant map.

Remark. Since $W$ is unitary and faithful, $d$ is even and $\geq 2$ , and so $\dim M$ is odd.

Next we determine the equivariant cohomology group. Let $w:Garrow\{\pm 1\}$ be
the orientation homomorphism defined by setting, for $g\in G$ ,

$w(g)=\{\begin{array}{ll}+1 if g acts orientation- preservingly on M-1 if g acts orientation- reversingly on M.\end{array}$

Let $Z_{w}$ be the ZG-module whose underlinying module is $Z$ and the G-action is
induced from the orientation homomorphism $w$ : $Garrow\{\pm 1\}$ , i.e., $g\cdot k=w(g)k$ .

Let $K_{w}=Kerw$ and
$\mathcal{A}^{+}=\{H\in \mathcal{A}|NH\leq K_{w}\}$ ,
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$\mathcal{A}^{-}=\{H\in \mathcal{A}|NH\not\leq K_{w}\}$ .

We obtain the following result.

Theorem 4.3. Under the assumption,

$\mathfrak{H}_{G}^{d-1}(M;\pi_{d-1})\cong\bigoplus_{(H)\in A+/G}Z\oplus\bigoplus_{(H)\in A^{-}/G}Z_{2}$
.

Consequently there is $a$ one-to-one correspondence:

$[M, SW]_{G}^{isov} \cong\bigoplus_{(H)\in A+/G}Z\oplus\bigoplus_{(H)\in A^{-}/G}Z_{2}$
.

Proof. As seen before, $\pi_{d-1}\cong c\oplus_{(H)\in A/G}Z[G/NH]$ , and so

$\mathfrak{H}_{G}^{d-1}(M;\pi_{d-1})\cong\bigoplus_{(H)\in A/G}\mathfrak{H}_{G}^{d-1}(M;Z[G/NH])$
.

$\mathfrak{H}_{G}^{d-1}(M;Z[G/NH])\cong H^{d-1}(M/G;\{Z[G/NH]\})$ , where $\{Z[G/NH]\}$ denotes
the local coefficient system over $M/G$ induced from the ZG-module $Z[G/NH]$ .
Using the Poincar\’e duality in local coefficients, we have

$H^{d-1}(M/G;\{Z[G/NH]\})\cong H_{0}(M/G;\{Z_{w}[G/NH]\})$ .

We then have $H_{0}(M/G;\{Z_{w}[G/NH]\})\cong$

$\frac{Z_{w}[G/NH]}{\{a-w(g)a|a\in Z[G/NH],g\in G\}}\cong\{\begin{array}{ll}Z if NH\leq K_{w}Z_{2} if NH\not\leq K_{w}. ’\end{array}$

and so $\mathfrak{H}_{G}^{d-1}(M;\pi_{d-1})\cong\oplus_{(H)\in A+/G}Z\oplus\oplus_{(H)\in A^{-}/G}Z_{2}$ . $\square$

5. THE MULTIDEGREE AND THE ISOVARIANT HOPF THEOREM

We next introduce the multidegree of an isovariant map as a generalization of
our previous definition. Set

$SW_{A+}$ -free $=SW\backslash$ $\cup$ $SW^{H}$ ,
$H\in A+$

$SW_{A^{-}}$ -free $=SW\backslash$ $\cup$ $SW^{H}$

$H\in A^{-}$

Then

Lemma 5.1. The inclusion

$i:SW_{free}arrow SW_{A^{+}- free}\cap SW_{A^{-}}$ -free

induces a ZG-isomorphism
$H_{d-1}(SW_{free})\cong_{G}H_{d-1}(SW_{A^{+}-}$ free $)\oplus H_{d-1}(SW_{A^{-}-}$ free $)$

Lemma 5.2. Under identifying $H_{d-1}(SW_{A^{\pm}- free};Z)$ $with\oplus_{(H)\in A}\pm/c^{Z[G}/NH]$ ,
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(1) $Ther\cdot c$ exist rntegcrs $d_{H}(f)$ such th at $f_{*}^{+}([ilI])=((f_{H}(f)\sigma_{H})_{(H)\in A+/G},$ $wf\iota e7^{\backslash }e$

$\sigma_{H}=\sum_{a\in G/NH}w(a)\overline{o}$ .

(2) $f_{*}^{-}([\lrcorner lI])=0$ .

This follows from the fact that, for any $g\in NH\backslash K_{w},$ $g$ acts orientation-
reversingly on $M$ ; on the other hand, $g\in G$ acts orientation-preserving on $S(W^{H})^{\perp}$ .

Remark. In $Z_{2}$ -coefficients, it also holds that $f_{*}^{-}([M])=0$ .

Definition. The multidegree $mDegf$ of an isovariant map $f$ : $Marrow SW$ (or a
G-map $f$ : $Marrow SlV_{free}$ ) is defined by

$mDegf=(d_{H}(f))_{(H)}\in\bigoplus_{(H)\in A+/G}$
Z.

Clearly the multidegree is an isovariant homotopy invariant. The following is
the main result.

Theorem 5.3. Under the assumption,
(1) For any two $G$ -isovariant maps $f,$ $g:Marrow SW$,

$mDegf-mDegg\in\bigoplus_{(H)\in A+/G}|NH|Z$
.

(2) Fix a G-isovariant map $f_{0}:Marrow SW$ . For any $\alpha\in\oplus_{(H)\in A+/G}|NH|Z$ ,
there exists a G-isovariant map $f:Marrow SW$ such that

$mDegf-mDegf_{0}=\alpha$ .

(3) There are $2^{|A^{-}/G|}$ G-isovariant homotopy classes with the same multidegree.
(4) In particular, if $\mathcal{A}^{-}=\emptyset$ (hence $\mathcal{A}=\mathcal{A}^{+}$ ), then

$mDeg:[M, SW]_{G}^{isov}arrow\bigoplus_{(H)\in A/G}Z$

is injective.
By (1) of the above theorem, one can define $D_{fo}(f)$ by

$D_{f_{0}}(f)=(\frac{1}{|NH|}(d_{H}(f)-d_{H}(f_{0})))_{(H)}\in\bigoplus_{(H)\in A+/G}Z$ ,

where $f_{0}$ is a fixed isovariant map. Then we have the isovariant Hopf theorem.

Corollary 5.4. If $A^{-}=\emptyset$ , then

$D_{f_{0}}:[M, SIW]_{G}^{isov}arrow\bigoplus_{(H)\in A/G}Z$

is a bijection. In particular $G$ acts orientation-preservingly on $M$ , then $D_{fo}$ is a
bijection.
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Corollary 5.5. Let $M$ be $a$ mod $|G|$ homology sphere $w\iota$ th $f_{\mathcal{T}}ee$ G-action. Since we
are assuming that $\dim M=d-1$ and $W$ is unitary, it follows that $\dim M$ is odd.
In this case, $G$ acts orientation-preservingly on $M$ , and $f\iota e7\iota ce$ we have

$D_{f_{0}}:[, SW]_{G}^{isov} \cong\bigoplus_{(H)\in A/G}$
Z.

Remark. If $\dim M<d-1$ , then $[M, SW]_{G}^{isov}=\{*\}$ as mentioned before. If
$\dim M>d-1$ , then $[M, SW]_{G}^{isov}=\emptyset$ , since the isovariant Borsuk-Ulam theorem
says that there is no isovariant map if $\dim M>d-1$ .

Corollary 5.6. Suppose that $G$ is an abelian group. If the action on $M$ is orienta-
tion-preserving, then $\mathcal{A}=\mathcal{A}^{+}$ and so

$[M, SW]_{G}^{isov} \cong\bigoplus_{H\in A}$
Z.

If the action on $M$ is not orientation-preserving, then $A=A^{-}$ and so

$[M, SW]_{G}^{\iota sov} \cong\bigoplus_{H\in A}Z_{2}$
.

Remark. In the latter case, it follows that $mDegf=0$ for any isovariant map.

6. EXAMPLES

Let $D_{2^{n}}=\langle a,$ $b|a^{2^{n-1}}=b^{2}=1,$ $bab^{-1}=a^{-1}\rangle$ be a dihedral group of order $2^{n}$

$(n\geq 3)$ . There are 3 conjugacy classes of subgroups of index 2; $D=\langle a^{2},$ $b\}\cong$

$D_{2^{n-1}},$ $D’=\{a^{2}, ab\}\cong D_{2^{n-1}},$ $C=\{a^{2^{n-1}}\}\cong C_{2^{n-1}}$ .
Let $V_{1}$ be a 2-dimensional irreducible representation of $D_{2^{n}}$ such that $C$ acts freely

on $SV_{1}$ . Set $W=sV_{1}$ for sufficient large $s$ . Then one can see $\mathcal{A}/G=\{(\langle b\}), (\{ab\})\}$

and $d=2s$ .
Let $M_{1},$ $M_{2},$ $M_{3}$ be $(2s-1)$ -dimensional free $D_{2^{n}}$ -manifolds whose $K_{w}$ are $D$ ,

$D’,$ $C$ respectively. (Such $D_{2^{n}}$ -manifolds exist for sufficiently large $s.$ )

Example 6.1.
(1) $[M_{1}, SW]_{D_{2^{n}}}^{isov}\cong Z\oplus Z_{2}$ .
(2) $[M_{2}, SW]_{D_{2^{n}}}^{isov}\cong Z\oplus Z_{2}$ .

(3) $[M_{3}, SW]_{D_{2^{n}}}^{isov}\cong Z_{2}\oplus Z_{2}$ .

Let $V_{2}$ be the l-dimensional irreducible representation of $D_{2^{n}}$ whose kernel is $D$ .
Next, we set $U=sV_{1}\oplus V_{2}$ . Then $\mathcal{A}/G=\{(\{b\})\}$ and $d=2s$ . Then we have

Example 6.2.
(1) $[M_{1}, SU]_{D_{2^{n}}}^{isov}\cong Z$ .
(2) $[M_{2}, SU]_{D_{2^{n}}}^{isov}\cong Z_{2}$ .
(3) $[M_{3}, SU]_{D_{2^{n}}}^{isov}\cong Z_{2}$ .
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