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STUDY OF THE SMITH SETS OF GAP OLIVER GROUPS
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Abstract. For various finite groups G, Smith equivalent pairs of real
G-modules have been studied since 1960’s. The Smith set of G is defined
to be the subset of the real representation ring RO(G) consisting of all
differences [V] — [W] of Smith equivalent real G-modules V' and W. In
the present paper, we discuss the Smith sets of gap Oliver groups with

small nilquoticnt.

1. INTRODUCTION

Let G be a finite group. In this paper, a manifold means a smooth manifold, a
G-action on a manifold does a smooth G-action, a real G-module does a real G-
representation space of finite dimension.

Given a family X of G-actions on manifolds, two real G-modules V and W are called
X-related and written with V. ~x W if there exists X € X such that V =2 T,(X) and
W = T,(X) for some a, b € X, where T,(X) and T,(X) are tangential G-representations
at a and b, respectively. We call such a G-action X an X-realization of V and W. In

order to study X-relation, we use the real representation ring RO(G) and the subset
RO(G,X) = {[V] - [W] € RO(G) | V ~x W}.

As our convention, we regard that RO(G,X) = 0 if X is empty.
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In the present paper, we will deal with the following three families:
G = the family of G-actions on standard spheres S such that |SY| = 2,
Sy = the family of G-actions on homotopy spheres ¥ such that IZGI = 2,
D = the family of G-actions on disks D such that |D¢| = 2.

If two real G-modules V and W are Gy¢-related then we say that V and W are Smith
equivalent. In this paper we discuss RO(G, &), RO(G, Gy), RO(G, D), and the set

RO(G,D6) = {[V] - [W] € RO(G) | V ~s W and V ~p W}.

In other papers, the set RO(G, Gy;) has been called the Smith set of G, denoted by
Sm(G), and studied as the Smith Problem.

Smith Problem. Are two real G-modules V and W isomorphic to each other if they
are Smith equivalent; namely RO(G, Gy;) = 07

C. Sanchez [24] showed RO(G, &) = 0 if the order of G is an odd-prime power; on
the other hand, T. Petrie and S. Cappell-J. Shaneson showed RO(G, Gyt) # 0 if G is
isomorpic to C, x C,, with n = p1papsps or Cy,, with m > 2, where C,, denotes the cyclic
group of order n, and p;, p2, p3, ps are distinct odd primes. One may immediately ask

the next problem.

Problem. Do the following equalities hold:
(1) RO(G,6) = RO(G,By) ?
(2) RO(G,96) =RO(G,D9)NRO(G,6) ?
There are no known finite groups GG for which the equalities above fail. Let us abuse
the term ‘Smith set’ not only for RO(G, &y ) but also for RO(G, &). In the case where
distinctive use of the term is necessary, we explain what the term actually means there.
In order to discuss further results, we use the following notation. For sets F, G
consisting of subgroups of G and for a subset A of RO(G), we define
AF ={[V]-W]e A|VE=0=WH (VH € F)},
Ag = {[V] = [W] € A | resGV = resGW (VH € G)},
AL = (AF)g.

Let us use the following notation.
S(G) : the set of all subgroups of G,
P(G) = {P € S(G) | |P| is a prime power},
P(G)oda = {P € S(G) | |P| is an odd-prime power}.
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The next implication follows from Sanchez [24]:
(1.1) RO(G, &) C RO(G, Gw) C RO(G)SL, .

In addition, if G does not contain elements of order 8 then RO(G, &y,) C RO(G);((%).

We have the following improvements of (1.1). Set
N(G)={N<SG| |G:N|=1, p},
for a prime p.

Theorem 1 ([12]). The implication RO(G, Gy,) C RO(G);;/(ZC(;?(?M holds for an arbitrary

finite group G.

Theorem 2 ([7]). If a Sylow 2-subgroup of G is a normal subgroup of G then the
implication RO(G, Gy) C RO(G)g?éC)?;N:’(G) holds.

If G admits a G-action on a disk D with |D¢| = 2 then G is called an Oliver group.
B. Oliver [18] proved
(12) RO(G, D) = {RO(G);,C;%) (if G is .an Oliver group),
(otherwise)
A finite group G is an Oliver group if and only if there never exists a normal series
P < H 4 G such that |P| and |G/H| both are prime powers and H/P is a cyclic

group. Clearly, we obtain the equality

for an arbitrary Oliver group G.

Proposition 3. For an arbitrary finite group G, RO(G, &) N\ RO(G, G)p(q) is a finite
(possibly empty) set. If G does not contain elements of order 8 then RO(G, &) coincides
with RO(G, 6)7:((;).

We call RO(G, G)p(q) the primary Smith set of G. If G is a nontrivial perfect group
then by [9], the primary Smith set RO(G, &)p(s) coincides with RO(G);?é).

For a prime p, let G{P} (resp. G"!) denote the smallest normal subgroup H such that
|G/H| is a power of p (resp. G/H is nilpotent). This subgroup G} is called the Dress
subgroup of type p of G. It is useful to keep the next equality in mind:

Gl = m G{”},

P
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where p ranges over the set of all primes dividing |G|. The family
L(G)={H € S(G) | H> G for some prime p}

plays a key role to delete or insert components of G-fixed point sets of closed G-
manifolds. A finite group G is called a gap group if there exists a real G-module V

satisfying the condition

VH =0 for any H € L(G),
dim V¥ > 2dim V¥ for all P € P(G) and H € §(G) with H 2 P.

K. Pawatowski-R. Solomon [19] showed the implication RO(G);C,((g)) C RO(G, 6) for an
arbitrary gap Oliver group G. A little further work provides the next theorem.
Theorem 4 ([14]). If G is a gap Oliver group then the implication
(G
RO(G)p¢) € RO(G, DS)
holds.

Thus onc may ask the problem.

Problem ([14]). Does the implication RO(G);;((?) C RO(G, D) hold for an arbitrary
Oliver group G?

T. Sumi gives results related to this problem in the present issue of Kokyuroku.
Putting implications mentioned above for an Oliver group G together, we obtain the

diagram:

RO(G, D6) > RO(G, &) p(g) G > RO(G, D)

A
gap G24G by [18)

f y

RO = RO — RO~ RO,

We have seen in [7] that if G = SG(1176,220), SG(1176,221) then

Z = RO(G)5, = RO(G)piy) # RO(G, 8)p(e) = RO(G, &) = 0.
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Let C, and D,, denote the cyclic group of order n and the dihedral group of order
2n, respectively. We say that G is of type (S) if G/G"! is isomorphic to onc of the
following.

(1) P: |P| is a power of a prime.

(2) Cy x P: |P| is a power of an odd prime.

(3) P x Cs: |P| is a power of 2, and any element g of P is conjugate to g~ ! in P.
According to T. Sumi [25], if G is an Oliver group satisfying RO(G’);C(%) # 0 and

RO(G)f,((g)) = 0 then G is of type (S). Thus we are interested in the Smith sets for finite

Oliver groups G of type (S).

Theorem 5. Let G be an Oliver group. If G/G"™! has order 3 and G™! has a subquotient

group tsomorphic to Dy, for an odd prime q then the equalities
RO(G)5ek, = RO(G, D6) = RO(G, B)p(q)

hold.

For integers p, ¢ > 3, let D,,” denote the p-fold catesian product of Dy,, and let
D(pa 2q) = D2qp ~ Cp
be the semidirect product, where C, acts on D,,P by permuting the components.

Theorem 6. Let G be an Oliver group. If G/G™ is a cyclic group of order 6 and G
contains a normal subgroup N C G™! such that G/N = D(3,2q), then the equalities

RO(G)p:y) = RO(G,D&) = RO(G, G)p(s
and
N2
rank RO(G)pis; = rank RO(G)5(g) + 1
hold. In particular, the set RO(G,D6) \ RO(G’);((?) is not empty.

2. CONSTRUCTION OF (G-ACTIONS ON SPHERES

In this section, let G be an Oliver group. Let V and W be real G-modules. Suppose
there exists a G-action on a disk Y such that Y¢ = {a,b}, T,(Y) =V and T,(Y) = W.
Then the double D(Y) = Y |J,Y’ is a sphere with D(Y)® = {a,b,a’,b'}, where Y’
is a copy of Y. If there exist G-actions on spheres &, and ¥, such that ¢ = {a"},



131

S = {V'}, T (Ba) = T (D(Y)) and Ty (5y) = Ty (D(Y)) then take the G-connected
sum

S:=DY) # T, # .

(a'a) ()

Picture of ¥

Clearly we have ¢ = {a,b} and we can conclude V ~g W. Thus it is useful for the
study of RO(G, &) to construct various two-fixed-point actions on disks and one-fixed-
point actions on spheres.

Let us recall Oliver’s construction of G-actions on disks with prescribed fixed point
sets. We begin with describing necessary conditions. Now suppose a disk D with
G-action has the G-fixed point set M. Since resﬁ;}T(D) is a product bundle, so is
its restriction resf’;}T(D)l M- By the Smith theory, for each Sylow p-subgroup P of
G, where p is a prime, resfp, 7'(D))| pr®™ and hence res{py (D) mE™ are equivariantly
product bundles for some positive integer m prime to p. Thus there exists a G-vector
bundle 7 over M satisfying

n® = T(M) @ ep(R¥) for some integer k > 0,
(2.1) [rosg’;}n] =0 ini(/:é(M),
[resEn) =0 in KOp(M), for all P € P(G) and primes p|| P|.

The converse of this is also true.

Theorem (B. Oliver). Let G be an Oliver group, M a compact manifold (with trivial
G-action) and n a real G-vector bundle over M. If M and n satisfy Condition (2.1)
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and m is a sufficiently large integer then there exists a G-action on a disk D satisfying
DS =M and T(D)u ®em(RF) = n @ en(R[G]6c™™),

where here R[G]¢ = R[G] — R.

Applying this thecorem to M = {a,b} and n = VI W, recaders can casily verify the
equality RO(G,D) = RO(G)5t.

To study the set RO(G, ©6), since RO(G,D6) C RO(G);Y?((;?), we need modification
of Oliver’s method, which is studied in [15] and [16].

Theorem 7 ([14)). Let G be an Oliver group, M a compact G-manifold and n a real
G-vector bundle over M. If M and 1 satisfy the condition

n D T(M) @ epn(RF) for some integer k > 0,

n = T(M)? @ epu (R¥) for all H € L(G),

[resfyn] = 0 in I?a(resg}M),[res,G;n] — 0 in KO(resG M) )

for all P € P(G) and p||P|,

and m 1s a sufficiently large integer then there exists a G-action on a disk D satisfying
DG = MG and T(D)lDG @ epc (Rk) = T]|DG D Epc (R[G]c(c)@m),

where
R[G]cq) = (R[G] — R) — P(R[G/GP — R).
P
When G is a gap Oliver group, the theorem above is used to construct smooth actions

on disks together with the next.

Theorem 8 (Under Gap Condition, [13]). Let G be an Oliver group and D a disk with
G-action. If D satisfies the conditions
(1) D NoD = 0,
(2) CNOD = O for every connected component C of D, where H € L(G), such
that CC # 0,
(3) dim D¥ > 2(dim D¥ + 1) for all P € P(G) and H € §(G) with P C H,
(4) 7 (DF) is a finite group and (|7,(DF)|,|P|) = 1 for all P € P(G),
(5) dim D=# > 3 for all H € S(G) having P € P(H) such that P < H and H/P
s cyclic, and
(6) dim D¥ > 5 for all P € P(G),



133

then there exists a G-action on a standard sphere S satisfying
S¢ = D% and T(S)|se = T(D)|pe.

In the above, D= stands for the set consisting of all points in D with isotropy
subgroup H.

Let V and W be real G-modules. For a prime p, we say that V' and W are p-matched
if resEV = resGW for all P € P(G) such that |P| is 1 or divisible by p. Moreover, we
say that V and W arc P-matched if V and W arc p-matched for all primes p. ,

Corollary 9. Let G be a gap Olievr group, and V and W real G-modules. If V and
W are P-matched and L(G)-free, namely VHE =0 = WH for all H € L(G), U is a gap
G-module, and m is a sufficiently large integer (with respect to |G|, V, W and U ), then
there exists a G-action on a standard sphere S satisfying

S6 = {a,b} (a#b),

T.(S) =V e U®* o R[G]r)"™

Ty(S) = W & U® @ R[G ) ®™,
where £ = dimV + 1.

For a nongap group GG, we can use [17, Theorem 36]. We have the next improvement
due to the equivariant surgery theory of A. Bak—-M. Morimoto [1] and the induction
theory similar to [11].

Theorem 10 (Under Weak Gap Condition). Let G be an Oliver group and D a disk
with G-action. If D satisfies the conditions

(1) D NoD =0,

(2) CNAD = B for every connected component C of D¥, where H € L(G), such
that CC # 0,

(3) dim D¥ > 2dim D¥ for all P € P(G) and H € S(G) with P C H,

(4) m(DF) is simply connected for all P € P(G),

(5) for some P € P(G) and H € S(G) with P C H, if dim DY = 2dim D¥ then
|H : P| =2 and D= is connected,

(6) for some P € P(G) and H, K € S(G) with P ¢ H and P C K, if dimDF =
2dim D¥ = 2dim D¥ then the smallest subgroup of G containing H U K does
not contain any Dress subgroups G194},

(7) dim D=# > 3 for all H € S(G) having P € P(H) such that P I H and H/P

is cyclic, and
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(8) dim D¥ > 5 for all P € P(G),
then there exists a G-action on a standard sphere S such that

S¢ = DY and T(S)|se = T(D)|pc.

We remark that Hypotheses (5)—(8) above can be removed if we use D x D(R[G] ¢ &3y
instead of D (cf. {8], [10, Theorem 2.5]).

Theorem 11. Let G be an Oliver group, and V and W real G-modules. If V and W
are P-matched, L(G)-free and satisfy

dim VP > 2dim V¥ and dimW?F* > 2dimWw¥#

for all P € P(G) and H € S(G) with |H : P| = 2, and m is a sufficiently large
integer (with respect to |G|, V, W), then there exists a G-action on a standard sphere

S satisfying
S¢ = {a,b} (a#Db),
T,(S)=Ve& R[G][;(G)@m,
To(S) = W @ R[G)*™.

3. APPLICATIONS OF P-MATCHED PAIRS OF TYPE 1

Let G be an Oliver group. This section is devoted to explaining how to construct
one-fixed point G-actions on standard spheres S from given P-matched pair (V, W)
satistying certain conditions.

A P-matched pair (V,W) of real G-modules is called of type I by B. Oliver if it

satisfies

(3.1) dimV® =1 and dimW¢ = 0.

Lemma 12 (B. Oliver [18]). Let G be a finite group not of prime-power order. There
ezrists a P-matched pair (V,W) of real G-modules of type 1 if and only if G has a

subquotient group isomorphic to Dap,, where p and q are distinct primes.

Let us recall Oliver’s construction of G-actions on disks with prescribed fixed point
manifolds. Let (V,W) be a P-matched pair of real G-modules of tyle 1 and M a
compact manifold. Here we regard M as a G-manifold with trivial action. Let 7 be a
subbundle of €,;(R™), where n is a positive integer. and let v be the complementary

bundle of 7 in £3;(R™), namely 7 @ v = €y (R"). Consider the G-vector bundle

n=(TV)®d (v W).
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Then 7 satisfies Condition 2.1. Applying Theorem 2 to these M and 7, we obtain a
G-action on a disk D with D¢ = M. In order to use Theorem 8, we have to control
the connected components of D containing G-fixed points for H € L(G). For this
purpose, we need to modify Lemma 12.

We call a P-matched pair (V, W) of real G-module of type (L1) if it satisfies either

G __ /62 ~
(32) Ve
%% = 0 for all primes p,
or

G __ N ~
(33 {v = VN =R for all N € N>(G),

WGnil —_ 0

Let (V,W) be a P-matched pair of real G-modules satisfying Condition 3.3. Let
M = P(VG"“) denote the real projective space associated with V& let v be the
canonical line bundle over M, and let v;3; be the complementary bundle of va in
er(VE™). Then M has a unique fixed point, so say zo, and the real G-vector bundle
T(M) @ ep(R) is isomorphic to vy ® VE™. Now consider the real G-vector bundle

(3.4) E=(meV)® (hweW)
Then we obtain [res(.&] = 0 in ]%(reS{e}M) as well as [respf] =0 in I?ap(reSPM)(p)
for all subgroups P € P(G) and primes p||P|. Note

é-Gnn — v ® VGnu ~ T(M) @ SM(R).

Using the fact, we obtain the next theorem.

Theorem 13. Let G be a gap Oliver group and (V,W) a P-matched pair of real G-
modules of type (L1). If m 1is a sufficiently large integer then there exists a G-action
on a disk D satisfying

DC = {z,},

Tpo(S) = (V" = V) @ R[G)*™,

the connected components of D™ are closed manifolds for all primes p.

Using Theorem 8, we obtain the next theorem.

Theorem 14. Let G be a gap Oliver group and (V;, W;), i =1, ..., t, P-matched pairs
of real G-modules of type (L1). Then the implication

(([V;G"“ . vﬁ} li=1,...,t)7+ RO(G’)‘(G))P(G) c RO(G,D6),
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where ([V;Gn” — V.GJ | 2 =1,...,t)7 is the subgroup of RO(G) generated by the elements
ve - ve].

Let us consider which finite groups possess P-matched pairs of real G-modules of
type (L1).

Lemma 15. Let G be an Oliver group such that Gt¥ = G and G™! = N, G} has
a subquotient group isomorphic to a dihedral group D,u, with distinct primes a and
b, where the order of Dags, ts 2ab. Then there exists a P-matched pair (V,W) of real

G-modules satisfying
ve = R[G/G™] and WE™ =0

as real G/G™-modules.
Immediately we get the next.

Theorem 16. Let G be an Oliver group such that G2} = G and G™ has a subquotient
group i1somorphic to Doy, with distinct primes p and q. Then the implication
(([RIG/G™] - R])z + RO[G]®9) , ., < RO(G,DE)

holds, where ([R[G/G““] — R])Z s the subgroup of RO(G) generated by the element
[R[G/G"] — R].

This thcorem can be partially improved to Theorem 5 by using the next topological
result.
Lemma 17. Let C be a cyclic group of odd order p > 3 and U a faithful real C-module
of dimension 2. Let M = P(R & U) be the projective space associated with R & U and

let yupr be the canonical line bundle over M. Then

e ® = en(RY)
and
T(M)®4 D 6M(R4) = EM(U&M) &) EM(R4)

as real C-vector bundles over M.
Next we consider cases where G/ G =,

Theorem 18. If G is a gap Oliver group having a subquotient group Dy, of type (B/N)
then

([RIG/G°%] - R])z + RO[G]*®)_ . c RO(G, D).

P(G)
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In order to work in a slightly general setting, set

Godd _ ﬂ (;r{p}7
P
where p ranges over the set of all odd primes dividing |G|.

Definition 19. We say that G has a subquotient group Dy, of type (B/N) if there is a
pair (B, N) of subgroups B and N satisfying the following conditions.

(1) Bc G°¥ and N < B.
(2) The quotient group B/N is isomorphic to a dihedral group
Dé? X CQ(Q)
of order 4q for some odd integer ¢ > 3 such that
D§) =cM .

Let m: B — Dy, X C’éz) denote the associated epimorphism.
3) B-G% =¢G.
(4) (BN G > .

For such a group G, we can obtain a modification of Lemma 12.

Lemma 20. If G has a subquotient group D4, of type (B/N), then there exists a P-
matched pair (V, W) of real G-modules satisfying Condition 3.3.

Recall the group D(p,2q) = Dy,” x C, defined in Section 1.

Lemma 21. If a finite group G has a normal subgroup N such that N C G"! and
G/N = D(p,2q) for some odd integers p and q¢ > 3, then G is a gap Oliver group
having a subquotient group Di, of type (B/N).

We can obtain the next result by using Lemma 20.

Theorem 22. If G is a gap Oliver group having a subquotient group Ds, of type (B/N)
then

(([R[G/G°¥] — R])z + RO[GIF@) . C RO(G,DS).

P(G)

If G = D(3,2q) then we obtain Theorem 6. In the special case where G = D(3, 6),
the next holds.
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Corollary 23. If G = D(3,6) then G/G"! is isomorphic to Cs and the equalities

RO(G,D6) = RO(G, 6) = RO(G, &1,) = RO(G)52)

hold and the rank of the last additive group s 3.
4. PROBLEMS
Let us close this paper with problems presently interested in.
Problem. Is the set RO(G, &)p(g) an additive subgroup of RO(G)?
Problem. Determine RO(G,D&) for all Oliver groups G of order < 2000.

T. Sumi [25] gave information of Oliver groups G with |G| < 2000 for which we had
not determined whether RO(G, Gy) was trivial or not. Still now, we can not answer
whether RO(G, Gy,) are trivial for the Oliver groups SG(864,4672), SG(1152, 155470)
and SG(1152,155859), where SG(m, n) denotes the small group of order m, type n in
the computer software GAP [6].

Problem. Determine RO(G,D&) for Oliver groups G such that G/G"! is an elemen-

tary abelian 2-group.

We remark that if G is a gap Oliver group such that G/G"! is an elementary abelian
2-group then the equality RO(G,D6) = R,O(G)gég) holds.

Problem. Determine RO(G, D) for Oliver groups G such that G/G"! = Cy, for some
odd prime p.

Note that if G is a gap Oliver group such that G/G"!' = Cy and a Sylow 2-subgroup
of G is a normal subgroup of G then the equality RO(G,D6) = R,O(G),E)((g)) holds.

REFERENCES

(1] A. Bak and M. Morimoto, Equivariant intersection theory and surgery theory for manifolds with
middle dimensional singular sets, J. K-Theory 2 Special Issue 03 (2008), 507-600.

(2] G. E. Bredon, Representations at fired points of smooth actions of compact groups, Aun. of Math.
(2) 89 (1969), 515-532.

[3] S. E. Cappell and .J. L. Shancson, Fized points of periodic maps, Proc. Nat. Acad. Sci. USA 77
(1980), 5052-5054.

[4] S. E. Cappell and J. L. Shaneson, Fized points of periodic differentiable maps, Invent. Math. 68
(1982), 1-19.

[5] S. E. Cappell and J. L. Shaneson, Representations at fized points, in Group Actions on Manifolds,
pp-151-158, ed. R. Schultz, Contemp. Math. 36, 1985.

[6] GAD, Groups, Algorithms, Programming, a System for Computational Discrete Algebra, Relcase
4.3, 06 May 2002, URL: http://www.gap-system.org.



7]
(8}
[9]

[10]

139

A. Koto, M. Morimoto and Y. Qi, The Smith sets of finite groups with normal Sylow 2-subgroups
and small nilquotients, J. Math. KKyoto Univ. 48 (2008), 219-227.

E. Laitinen and M. Morimoto, Finite groups with smooth one fized point actions on spheres, Forum
Math. 10 (1998), 479-520.

E. Laitinen and K. Pawalowski, Smith equivalence of representations for finite perfect groups,
Proc. Amer. Math. Soc. 127 (1999), 297-307.

M. Morimoto, The Burnside ring revisited, in Current Trends in Transformation Groups, pp. 129-
145, ed. A. Bak, M. Morimoto and F. Ushitaki, K-Monographs in Mathemaics, Kluwer Academic
Publ., Dordrecht-Boston-London, 2002.

M. Morimoto, Induction theorems of surgery obstrauciton groups, Trans. Amer. Math. Soc. 355
No. 6 (2003), 2341-2384.

M. Morimoto, Smith equivalent Aut(Ag)-representations are isomorphic, Proc. Amer. Math. Soc.
136 (2008), 3683-3688.

M. Morimoto, Fized-point sets of smooth actions on spheres, J. K-Theory 1 (2008), 95~128.

M. Morimoto, Nontrivial P(G)-matched &-related pairs for finite gap Oliver groups, accepted by
J. Japan Math. Soc.

M. Morimoto and K. Pawatowski, Equivariant wedge sum construction of finite contractible G-CW
complexes with G-vector bundles, Osaka J. Math. 36 (1999), 767-781.

M. Morimoto and K. Pawatowski, The equivariant bundle subtraction theorem and its applications,
Fund. Math. 161 (1999}, 279-303.

M. Morimoto and K. Pawalowski, Smooth actions of Oliver groups on spheres, Topology 42 (2003),
395-421.

B. Oliver, Fized point sets and tangent bundles of actions on disks and Euclidean spaces, Topology
35 (1996), 583-615.

K. Pawalowski and R. Solomon, Smith equivalence and finite Oliver groups with Laitinen number
0 or 1, Algebr. Geom. Topol. 2 (2002), 843-895.

K. Pawatowski and T. Sumi, The Laitinen conjecture for finite solvable Oliver groups, Proc. Amer.
Math. Soc. 137 (2009), 2147-2156.

T. Petrie, Three theorems in transformation groups, in Algebraic Topology, Aarhus 1978, pp. 549—
572, Lecture Notes in Math. 763, Springer Verlag, Berlin-Heidelberg-New York, 1979.

T. Petrie, The equivariant J homomorphism and Smith equivalence of representations, in Current
Trends in Algebraic Topology, pp. 223-233, ed. M. Kane, S. O. Kochman, P. S. Serik and V. P.
Snaith, CMS Conference Proc. 2, Part 2, 1982.

T. Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983),
61-99.

C. U. Sanchez, Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math.
Soc. 54 (1976), 445-448.

T. Sumi, Finite groups possessing Smith equivalent, nonisomorphic representations, RIMS
Kokyuroku No. 1569 (2007), 170-179.

T. Sumi, Smith problem for a finite Oliver group with non-trivial center, RIMS Kokyuroku No.
1612 (2008), 196-204.



