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Wasserstein geometry of non-linear Fokker—Planck type
equations
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1. INTRODUCTION

This note is a survey of the author’s preprint [17], which concerns
the geometric structure of the ¢-Gaussian measures in terms of LZ2-
Wasserstein geometry and solutions to porous medium equations. We
give an explicit expression of the solution to the porous medium equa-
tion when the initial data is a ¢-Gaussian measure.

Otto’s remarkable paper [14] studied a formal Riemannian struc-
ture of the L?-Wasserstein space, and gave applications to the study of
porous medium equations. He showed that non-linear Fokker--Planck
type equations can be considered to be gradient flows on the space of
probability measures, equipped with the formal Riemannian manifold
structure whose arc length distance coincides with the L2-Wasserstein
distance W,. (The definition of W5, which is given in the next sec-
tion, has its roots in the Monge Kantorovich transport theory. Note
that the convergence in the sense of L2-Wasserstein distance is some-
what stronger than weak convergence, see [21, Theorem 6.9].) Precisely
speaking, the gradient flow of the Tsallis entropy F,, is the porous
medium equation

0(—)11) = grad by, ), = A(p™) PME,,
for m > d/(d+ 2), m > (d —1)/d and mm # 1. Here we identify a
probability measure p with its density. The Tsallis entropy E,, and its
free energy density e, are given by

. dp
En () = — /Rd €m ((—1;> dx,
e, (1) _ " —

(See [18] for further discussions about Tsallis entropy.) When m con-
verges to 1, the Boltzmann entropy is recovered, that is

m—1 . dpu
E,. (1) mel, F(i) = — /d e (é) dx.
R x

6,,1(1') l_:l‘) ff(iT') =rinuxr.

m—1
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Otto also demonstrated that the gradient flow of the Boltzmann en-
tropy F is the heat equation

)

—ézp = gradE, = Ap. HE

In what follow, F; stands for the Boltzmann entropy £ and PME;
stands for the heat equation HE. The Boltzmann entropy is obtained
when all the component particles of a thermodynamic system as statis-
tically independent. Note that the Boltzmann entropy is a Lyapunov
functional, that is, monotonically increasing functional, under the heat

equation.
For a solution p to PME,,,, we define p by
1 _ xr 1
p(t,z) = P (lnt, F) .= -1 73 (1)
Then p is a solution to a non-linear Fokker—-Planck type equation
0 _ - 1
—(,% = Ap" + a div {p (Vil;rlg)} , NFPE,,

where div stands for the adjoint operator of the gradient V. This
non-linear Fokker—Planck equation NFPE,, has a stationary solution
oy, given by ’

oy _ [ [A= Bly)7. if A— Bly|> >0
Pm () { 0, otherwise

where B = (m — 1)a/(2m). The other constant A is defined by the
total mass of the solution. In our case, we normalized the total mass
and a precise value of A is defined in (8). (A more detailed treatment
can be found for instance in [14, Subsection 3.4].)

Otto moreover verified that NFPE,, can be regarded as a gradient
flow of a functional F,,, given by

. «
Fm(“‘) = -E/m(.u') + 5/ IUIlel(y)
R4

This gradient structure derives the following asymptotic behaviors of
the solutions p to NFPE,,:

% [exp(Q('lT)Igradme[Q] <0, (2)
d ‘ o
dr [exp(2a7)(F5,.(p) — Fn( m))] <0, (3)
% [eXI)(Qf,lT)‘-"1"2(ﬁ* 77,,,,)2] <0, (4)

where |gradF,, 5|? is identified with a functional:

, o} 2 _
lgrad £}, 5° = / ‘V (e,,,,(ﬁ) + §|l/|2)l p(y)dy.
Rd
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Asm tends to 1, Fm(f) F..(p;,) tends to the relative entropy H(p)p?,)
between p and p;,, similarly, |gradF,,5|> tends to the relative Fisher
information I(p|p;,) between p and p*. Here the relative entropy H
and the relative Fisher information / are given by

dp . dp e .
In —dr. 1if 1 is absolutely continuous w.r.t v
H(ulv) = Jgadv " dv pis an y
+00, otherwise
/ Vi dld if 1 1s absolutel ntin t. v
n —|dyp. if 10 is absolutely continuous w.r.t.
I(ply) = RA dv | / y
+00, otherwise.

When p is absolutely continuous with respect to v, the relative entropy
H and the relative Fisher information I are expressed in terms of the
free energy density e of the Boltzmann entropy as follows:

o= [ e (2) - () -+ (&) (- 2)] =
1) = [ |9 { (#) . (—f—)} d

dx

From this point of view, it is natural to define functionals associated
with the Tsallis entropy, called n-relative entropy H,, and m-relative
Fisher information /,,, as follows:

_ du ([ dv S (dv\[dp dv ’
Hm(ﬂ'lu)_/md [em (E) fm ( d.r) “m (d;r)(dr d;z‘)} az,
_ A L [dv du
I‘m(“’l/) - Ad \% [('m (dl) —€m (({.T>j| ——dx.

dx

Throughout the paper, we use the convention that oc-0 = 0. Otto [14]
showed a relation between £}, (p) — F..(pr,) and H,,(p|pk,):

, [ > H, (255, if m > 1
Pm(ﬁ) - Fnl(p'm) { — ]{711(5]5:71)\ lf m S 1

The functional |grad F;,5|* coincides with I, (p|p%,):

lgrad F, 5% = 1 (0] 05,)-

The key ingredient for proving the asymptotic results is some “con-
vexity” of E,,.This concept is called displacement convexity, introduced
by McCann [10]. Otto derived the following inequalities which play cru-
cial roles in the proof of asymptotic results from the convexity of E,,:

nal 1 %
En(ﬁ) - Pm( m.) < Z_O]ﬂl(m/)7:1)’

~ (£ (P) = Fin(pmm)) -

—_~

S ]'m. (/)I/)m) H,2 (/) /‘3‘:”)

1

v >

Wa(p, p,)? <
Fm(ﬁ) - Fm(ﬁ*m

\_/.\
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More generally, the displacement convexity of F,, brings out the fol-
lowing inequalities:

1
Hon () < 55 A (pulv). LSm(3)
2
Walkv) <[5 Hm(plv), T ()
Hm(,ul]/) < [Trl(/l’l’/)""‘/’?(N"- V) - %LVZ (/J'v 7/)2' HWIm(]{)
A

Here K may take any values, however we assume that )\ is positive. If
we have equalities in LS, (), T,,(A) and HWI,,(K'), then v must be a
g-Gaussian measure (see [1],(6],(7],(8],[17])-

When m=1, the inequality LS,,()\) is called logarithmic Sobolev
inequality and the inequality T,,()\) is called Talagrand inequality.
Equalities in the logarithmic Sobolev inequality and the Talagrand in-
equality hold if and only if x is a translation of v and v is a Gaussian
measure whose covariance matrix is a scalar matrix (see [4],[9] and
also [15]).

A probability measure with mean v and covariance matrix V' is a ¢-
Gaussian measures N, (v, V) if it maximizes the Tsallis entropy E,. The
g-Gaussian measures are characterized by the g-exponential function
exp,, which is given by

1
_ ) I+ (1= g)t]7. fl+(1—qg)t>0
P, (1) { 0, - otherwise.

This function converges to the general exponential function exp when
q converges to 1. For example, p; dx is one of the g-Gaussian measures
when m + ¢ = 2. When ¢ tends to 1, N,(v. V') tends to the Gaussian
measure N(v, V) with mean v and covariance matrix V. (Note that
Gaussian measures, which are characterized by the exponential func-
tion, maximize the Boltzmann entropy E.) We only treat the case of
the parameter m and ¢ satisfying that

m>d/(d+2), m>(d-1)/d. m<2 and ¢g=2—m.

Ohara-Wada [13] showed that the space N (g, d) of ¢-Gaussian mea-
sures on R? is invariant under PME,,, for 1 < m < 2. This fact implies
that the solution to PME,, can be explicitly solved ([13, Remark 2]).
We give an explicit expression of the solution to PME,,:

Theorem. We assume that m+q =2 and 0 < g < (d+4)/(d+2). Let
C' be a positive constant defined in (9). For any Ny(v,CO) in N(q,d),
we set a time dependent matriz ©, as

O, = O +a(t)l,
d 1=
a(@:mma@)%
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Then the density of N,(v.(©,) 1s a solution to the porous medium
equation PME,,.

Here 1, is the unit matrix of size d. In the case of m = 1, this theorem
corresponds to the well-known fact that a solution to the heat equation
is obtained by a convolution of an initial data with the heat kernel:

N(v,0y) = N(v,© + 2tly) = N(v,0) * N(0,2t1y).

Due to the rescaling in (1), we also have an explicit expression of a solu-
tion to NFPE,, when an initial data is a ¢-Gaussian measure. Indeed,
if a time dependent matrix =, satisfies

—

Z1 = Z @ symunetric positive definite matrix,
d -

EET = —2a=; + 2a(det ET)‘ITq[d.,
then the density of N,(0.CZ;) is a solution to NFPE,,. In particular,
the density of N,(0,C1y) is a stationary solution to NFPE,,, that is,

N,(0.C1y) = 77 dx.

This explicit expression of the solutions to NFPE,, helps us to under-
stand the asymptotic behavior of the solutions to NFPE,,. In Section 3,
we consider correspondences to the results in Otto [14].

Finally, we state the properties of H,, and I,,. These functionals are
non-negative and they are equal to 0 if and only if y=v. Note that
H, is a f3-divergence up to a multiplicative constant depending on m
when 3=m—1. (See [13] for properties of the /3-divergence and ref-
erences therein.) The J-divergence satisfies the Pythagorean relation.
Namely, for an absolutely continuous measure y, let v, be a minimizing
g-Gaussian measure for the variational problem

min  H,, (p]r).
VeN (o.d) r:(/l )

Then the following Pythagorean relation holds for all v in N (q, d):
Hy(pe|v) = Hp(pulinn) + Hpy (04 |1). (5)

(See the books of Amari [2] and Amari-Nagaoka [3] for more infor-
mation.) It means that the /J-divergence is a generalized square of
the distance function. Thus the inequality T,,(\) means the compari-
son between the two “distance functions™”, the L2-Wasserstein distance
W, and the square root of the in-relative entropy H,,, not H,, itself.
Speaking in broad terms, —/,,(14|») is a differential of H,,(u|v) and
LS,,(A\) means the convexity of H,,.

The organization of this paper is as follows. We review some pre-
liminary materials in Section 2. We first introduce the generalized
logarithmic function and the generalized exponential function, then we
define the g-Gaussian measures. After reviewing the L2-Wasserstein ge-
ometry, we discuss the ¢g-Gaussian measures as the solutions to PME,, .
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(The details can be found in [17].) Section 3 is devoted to the as-
ymptotic behavior of the solution with the initial data in A (q,d) to
NFPE,,. Especially, we show Otto’s result (2)-(4) with elementally
calculations.
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2. PRELIMINARY

2.1. Generalized logarithmic function and Generalized expo-
nential function. We first introduce generalized logarithmic func-
tions and generalized exponential functions. See [11] and [12] for fur-
ther information.

We fix a positive, strictly increasing function ¢ on [0, 00). We define
a generalized logarithmic function In, by

g4 1
lnw(f.):/1 ',o(s)ds'

Since In,, is a strictly increasing function, In, has an inverse function,
called generalized exponential function exp,,-

If 1 is an absolutely continuous measure with respect to the Lebesgue
measure dxr, there exists a nonnegative Borel function f on R¢ such that

u[A] = /A fav

for all Borel sets A in R? The function f is called density of u and
denoted by du/dx.

For two absolutely continuous probability measures x and v in P2<,
we define a Bregman divergence by

_ du dv ) dv du  dv N
Dolulv) = /Rd ':F“J <d;r) —Fe <d;:z'> I (d;z‘) (d;r B dx)] dr,

where the function F, on [0, c0) is given by

L(7) = /1 Ing (t)dt.

We further assume that

F,(0) = lim F(7) < 400

7,0

in choosing . We note that the Bregman divergence satisfies the
Pythagorean relation (5). '
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In the special case of p(u) = u? (0 < ¢ < 2, ¢ # 1), In, and exp,, are
particularly called g-logarithmic function and g-exponential function,
denoted by In, and exp,, respectively:

t1-e — 1
lnq(t) = '—1—_—&—
1

_ i+ Q=g if14+(1-q)t>0
equ(t) { 0. otherwise.

They converge to the natural logarithmic function and the natural
exponential function when ¢ converges to 1. In this case, the corre-
sponding Bregman divergence is called the /3-divergence.

2.2. g-Gaussian. Let us summarize the definition of ¢g-Gaussian mea-
sures. Background information on Tsallis entropy and ¢-Gaussian mea-
sure is in Tsallis’ book [19].

Let Sym*(d,R) be the set of symmetric positive definite matrices
of size d. The maximum entropy principle for the Tsallis entropy E,
under the mean constraint v in R¢ and the covariance constraint V in

Sym™(d,R)
/ vp(x)dr = v
Rd

/ (r =) (x — O)p(x)dr =V
R4
yields the ¢-Gaussian measure N,(v. V)

dN,(v,V)

1 1
e (x) = Co(det V)" 2 exp, [—5(_71 (x — v,V ' (x —v))

Here vectors in R? are column and 'x stands for the transpose of x.
Moreover, Cy and () are the positive constants given by

NG — 1)\ ?
E"‘l)d ((q 1)61) | g1
Co=Colq.d) =4 LT~ 2\ 27
PTRETY MG+ ) r g0
1 ifo0<g<l1
') 2
-q
2

G =0d = s araa=9

and I'(+) is the I-function. For 0 < ¢ < (d+4)/(d + 2) and ¢ # 1, the
g-Gaussian measure is well-defined. As ¢ tends to 1, N,(v, V) tends to
the Gaussian measure N(v, V). We denote the densities dN,(v,V)/dx
and dN(v,V)/dx by N,(v.V)(-) and N(v.V)(-), respectively.



2.3. L>-Wasserstein space. We discuss the L?-Wasserstein geome-
try. It is a pair of the subset of probability measures on a complete,
separable metric space and a distance function W, derived from the
Monge-Kantorovich transport problem. The convergence in the sense
of W, is somewhat stronger than the weak convergence. For simplic-
ity, we consider only the case that the underlying metric space is the
standard Euclidean normed space (R [-]). See [20] and [21] for the
general theory.
The set of all Borel probability measures i on R¢ satisfying

|2 dp(r) < oo
R4

will be denoted by P,. A transport plan 7 between i and v in P, is a
Borel probability measure on R? x R? with marginals 1 and v, that is,

7[M x RY = u[M]. =M x RY = v[M]

for all measurable sets M in R%. The L2-Wasserstein distance between
w1 and v in P, is defined by

%
Walp,v) = (inf/ [x — ylzdw(a’,y)> ,
T JMxM

where the infimum is taken over all the transport plans © between i
and v. Then W, is a distance function on P,. We call the pair (P,, W,)
L?-Wasserstein space.

For a symmetric positive definite matrix X, we define a symmetric
positive definite matrix X'/? = /X so that X2 . X2 — X. The
author [17] showed that the L?-Wasserstein distance between N, (v, V)
and N,(u,U) is given by

Wa(Ny(v, V), Ny(u, U))2=|v — w4+ trV + trU — 2erV U2 VU2 (6)

2.4. g-Gaussian measure as solution to porous medium equa-
tion. It is well-known that the porous medium equation PME,, allows
for a self-similar solution of form

1 1
pn(, ) = (A4 — Ba [T = (A~ Blaf't2) T,
where the constant o and B are given by

! — ) _ (m. — 1)Cy
dm—-1)+2° B = B(m,d) = ‘

(7)

a=a(m,d) = o
m

The other constant A = A(in.d) is defined by the total mass of the
solution and we normalized it such that

/ P t)dr = 1.
er
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Precisely, A is given by

I +9) /B\?
L_L_)l (_> | it m > 1
AT = m—1 i 8
M) [-B\? . ®)
5 y . if m<1.
I_‘(l—m - 5) i

This solution was discovered by Barenblatt [5], Pattle [16] and called
Barenblatt-Pattle solution. When m tends to 1, we have the following
behaviors:

A—-1, B—-0. a—1/2,

Pm(x,t) — (47rt)“% exp (—’—2—) = N(0,2t1;)(x).

Namely, the Barenblatt—Pattle solution approaches the heat kernel.

The rest of this section is devoted to study the relation between the ¢-
Gaussian measures and the Barenblatt-Pattle solution. For simplicity,
we use the following notations for V' in Sym*(d.R) and ¢ in R:

lrlv = /{z,V-lz), O (V)= (detV)™ =9y, [t], = max{t,0}.
Let M(q, d) be the subset of P3¢ defined by

1

Pm (v, V)(z)=[A(det V)=201-9 — B|r — vl ] 7 v € R,

- [A _B|r ~-L»|§_)(V)L‘L_‘5((1et, O (V)% |V € Sym* (d,R)

where the constants A, B, a are defined in (7),(8) and m+¢ = 2. Then
pm(0,t14)(-) coincides with the Barenblatt—Pattle solution pp,(-,¢). The
assumption that

or equivalentl qg < d+4
d+ 2 & y 4 d+ 2

guarantees that M(q, d) is embedded into in P,. Actually, we obtain

P (0. V) () = Ny(v,CO (V) (),
where the constant C' = C'(¢.d) is given by
202 —-q)A
= : (9)
1+ 2a(1 —gq)
Therefore the set M(q.d) can be identified with the set (g, d) for any
g satisfying 0 < ¢ < (d+ 4)/(d + 2).

One of the remarkable properties of the Gaussian measures is that
N(d) is invariant under the heat equation. Namely, the solution to
the heat equation with the initial data N (v, V) stays in M(d) for all
future time. Because a solution to the heat equation is obtained by a
convolution of an initial data with the heat kernel. When the initial

m>1-—

Y
4
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data is a Gaussian measure, we additionally have the explicit expression
of the solution to the heat equation:
N(‘l.’, ‘/') * N(O\ Qtld) = N("U, V+ 2tld) € N(d)

Ohara~Wada [13, Proposition 5] demonstrated an analogy for the
porous medium equation PME,,,, which states that a solution to PME,,
with an initial data in M(q,d) belongs to M(q,d) for ¢ > 0. This
fact implies that the solution to PME,, can be explicitly solved ([13,
Remark 2]). We give the explicit expression of the solution to PME,,.

Theorem. We assume that m+q =2 and 0 < g < (d+4)/(d + 2).
For any pm(v,V) in M(q,d), we set a time dependent matriz V; as
O (V) =0 (V) + a(t) 1y,

d 1=m
;Eo(t) =2a(det® (V) 7 .

Then p,(v,V;) is a solution to the porous medium equation PME,,.

(10)

Remark . Note that © (V}) is regarded as ©; in the introduction.

Proof. Since V is a symmetric positive definite matrix, so are V; and
© (V;) for all time ¢t > 0. We set

©,=0(V), F(t,x)=[A-Blr—vl3,],, D(t)=det®,
then p,,(v, V) is expressed by
pm (v, Vi) () = F(t,x)= T D(t)"2.

Note that D(t) is positive for all ¢t > 0. In the case of m > 1, F(t,x) is
positive for all x in R? and ¢t > 0. Thus any power of F' is well-defined.
In the case of m < 1, F(¢,x) may become zero for some z in R? and
t > 0. However, all parameters which appear in the exponents of F' as
below are positive. Therefore we can justify the following calculations.

We first consider the differential of D(t¢). For any time dependent
invertible matrix X,;, we know the following result:

d , , 1 d
Jidet()\t) = (det ,\t)tr ("\t lax\t) .
Combining this fact with the assumption
d . 1-m
5O = 20D ()7 1,
we obtain
d 1 3 d

_1 -3 _m —
E{.D(t) 7 = —§D(t) zzﬁz)(t) = —aD~ 7 (t)tr (6;1).

We next compute the differential of F(t,x) with respect to t. The
following result concerning a time dependent invertible matrix X,

d _, _ L d ., L
a)&t L— —’\t ! (E,Xt> ‘Xt 1
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yields
0

Then we acquire

o (om0, V()

- 70% (Ft.)=7D(1)})
)

0 : -4 o7t L p(e)3
= (81 F(t,x)=T I)D(t) + F(t.2) 7 D(1)
1

= 1 (20BD () — vleg ) F(t.)™17 D(0)"

+ F(t,x)7T (—aD™ % (t)tr (071))
1 m 2B .
=aF#m17Y(t, x)D(t)" 2 , IJ — U|62 — F(t,z)tr (6;1) ).
By the direct computation, we have the gradient of F":
VF(t,r) = —2BO; '(x — v).

Therefore, the gradient of p,,(v.V;)™ is as follows:

W=

m

@ (om0 (@) = 9 (FL2)% D() %)

777 m .
= F(t,x)=17 D)2 VF(t,x).
— (t,r) (1) (¢, )

The Laplacian of p,,(v, V;)™ is obtained by taking the divergence of the

above equation:

A (pnl(va Vt)nl(;r))
= div ( m F(t,x)%—ln(t)%VF(t,x))

m—1

=<v< m F(t,xﬁ’f—fl).D(t)‘?wu,r)>

m —1

_+.

F(t,x)»17'D(t)"% divVF(¢t. z)
m— 1

m 1 oy o ,
= F ) m— ' F X
m—-—1m—1 (t.x)=T7°D(t)" 2 |[VF(t x)|

. 2Bm"_2 F(t,2)5 71 D(1)" 3 tr(©7 )
cipm (2B )
= aF(t, T) 171D(t) (m — 1|.-r - -v|3_)3 — F(t,r)tr(©; 1)) :

Hence we have

(V@) = & (om0, V(@)

5 F(t2)= B<.-r. 2 (;_1()_ ) (r — -v)>:2a"BDIT'"(t)Iaf— Vg
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proving that p,,(v, V}) is the solution to PME,,. O

3. OTTO’S CALCULATIONS

Since the previous theorem ensures that mean of the solution to
PME,, dose not depend on the time ¢, we fix mean v = 0 and denote
pm(0,X) by p,,(X) and N,(0,Y) by N,(Y). We define a time depen-
dent matrix V; as in (10), that is, p,,(V}) is a solution to PME,,. Due
to the rescaling given by (1),

1

ﬁ(lnt, ?1;;) = t%p,. (V) (z) = [A— Bl«'l’]?—),,]r_] (det @t)'%

1
Xz 2 m-—1
— (det t_za@t)_%
te t—200, +

ZP_B
is a solution to NFPE,,. Setting
U, = %Vt eV, Z=0(,) =0 Gw) — 7200, = 27O,
the solution to NFPE,, is expressed by
Flry) = [A= By )7 (det =)} = pu(Us)(1):
Relations of determinants and traces between =, and U, are as follows:

det Z; = (det U,)”, trZ, = (det U,)*0~™trU,.

Moreover, if p,,(U;), that is the density of N,(Z,), is the solution to
NFPE,,, then the time dependent matrix U, satisfies

{1]

1 = = : symmetric positive definite matrix,
d =
dr "

In what follow, let X be a symmetric positive matrix and Y = © (X).

When m > 1, the support of N,(CY) is R¢ and relations between

Otto’s notations (right hand sides) and ours (left hand sides) are given

as follows:

= —2aZ, + 2a(det Z,)" 7" .

N,(CE) = p;.,
No(CE)) = H(Ny(CY)|Ny(CE)),
— F(N,(CY)) = F(N,(CE)),
Ln(Ng(CY)|N,(CE)) = lgradFqu(cy)]z.
Otto [14] proved inequalities including LS,,()), Tm(A) and the weak-
ened version of HWI,,(K') for solutions to NFPE,, and then showed
the asymptotic results (2)—(4) using these inequalities. However, we
can show the asymptotic results without T,,()\), HWIL,,(K) when the
initial data of the solution to NFPE,, is the ¢g-Gaussian measure. More-

over, we prove these inequalities using only linear algebra when p, v are
g-Gaussian measures. In the rest of this paper, we assume m > 1.

Hin(Ng(CY)
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For the solution N,(CZ;) to NFPE,,, we set

Wa (1) = Wa(No(CZ7) . No(Cla)) = Wapm(Us). pm(14)).
]m( ) - Im(N ( /'—T)]N ((/Id)) = ]m(pm(U ),pm(ld))
Hm( ) H (N ((;':T)'N ((/]d)) - m(pm((]T)lpm(Id))

Applying (6), we get the value of W, (7):
— 1) ] — O tr(Es — 25? + ]d)

Wa(r)? = C- tr [ (2
2(det U,) *“7™UZ + 1.

= C - tr[(det U,)* =™, —
The definition of covariance matrix asserts that
(711 Zyx) Ny(CY)(dx) = Cte(Z,Y " Zy)

for any matrices Z; and Z,. By a direct computation, we have

m m l(lY)( ) — 1) = —Q'(det }") : 2’" )”_11'-

Ve;n(pm(X)(:T)) = v‘nl 1 (o~

Therefore we acquire the value of 1,,(7):

M= [ 19l (om(Un)0)) = oL

1—-m 2
= / a? !(det =) =i - .r' N,(C=;)(dx)
R4

[(det =)0 4 0, — 2d(det )

I pm(Us) () dx

= Ca? —]
= Ca®(det U,)*'=™ (trlU, + txU ! — 2d) .

We next consider H,,(7). By straightforward calculations, we get

VT dr

/ pm(X)(-Jf)d;r:/ (A — Blz[2]7

IRd Rd
= (det Y)]__Z_”"/ AmeT ':1 — §|;17|2:, m dr
R /4 ’

d
1—m 7 ,4 2 oo m
= (detY) 2 _-—1(——)/(1+r2)mrd"ldr
=8) s e

= (det Y)"2* Ammn 1 |_p|§ 12/ il
2N (Z7) T (%)

= (det Y) 7" Ca.



Hence we have H,,(7):

Ho(7) :Ad[enl(/)rn<(177)) —em(pm(1a)) "‘—"Im(l)m (1)) (pm(Usr) = pm(14))] dx

S /d[pm(U )P (1g)"+mBx|? (Ng(CZ1)—=Ny(Cly))] dx

m—1Jr
C(l 2 1—mn 2
= il E-, -t ‘57 - d
2 [m -1 (det =)™ + 4 (m —1 + )J

Ca 2 2
— T a(l-—m) 7 _ .
- [(det( ) ('m. — +trLT> (m— 7 +d)]

We give a brief sketch of the above calculations:
Ca 2 2

H _ -« ET tr= = - d ,
m(T) {m — 1(det ) + tr (m —3 + )}

2

Ca 2 2
J Yyx(1—-m) | 7 _
[(det( )" (m -1 trt T) (m -1 d)J ’

Ia(1) = [(det 2SS + 02, — 2d(det Z,) 2 ] :
= Ca?(det U,)*"™™ (trlU, + trlU7 ! — 2d)
Wy(r)? = C(trZ, + d — 2te=7),
= C[(det U)*O=™)trl/, 4+ d — 2(det U,)*® trU2]

We first prove that the inequalities LS,,,(\), T,,(A) and HWI,,(K) hold
when v = N,(Cl;), A=K =a >0 and p is a solution to NFPE,,. In
the proof, we use the characteristic of the ¢-Gaussian measures, not
the solutions to NFPE,,. Hence we extend the inequalities to the case
that u is a ¢-Gaussian measure.

Define a function ¢ on [0, 00) by

2 2 1
Ny . “ '—a(l—-m) _ ) — '—a(l—m) 5 2) )
plt) = —=—t (m_ — d) t d (¢4

Then the assumption that m < (d — 1)/d guarantees that ¢ takes a
maximum value ¢(1) = 0 at ¢ = 1. It implies that

Co 2 2
Hm — t (]T a(l—m) ]7- _
(1) 5 {(de ) (———~m —* trl ) (m — * d):’

C | 1
< SH(det U0 (d(det Uy)™F — 2d + el )

A

C :
< ——(det U )= (6l + trlU, — 2d)

= s n(),

proving LS,,()). Here the last inequality follows from the arithmetic
geometric mean inequality. That is to say, for a symmetric positive
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definite matrix X of size d, we obtain
d(det X)V¢ < trX.
Applying the arithmetic geometric mean inequality again we get
Wa(7)? = C[(det U,)*"™trl], + d — 2(det U,) ™ trUT]
< C[(det I,)*A=™txl/, + d — 2d(det (,/T)‘LT‘l*EE]
= C[(det U, )*=™trll, + 2d(1 — (det U,) ) — dJ. (11)

For any positive number «a, a function ¢(t) = a' is convex. Then the
assumption that 0 < (1 — m) < 1/d guarantees that

P(1-m)—1 (1 —m)—¢0) _(1/d)—4(0) _
1—-m N 1—-m = 1/d d(1/d) - 1).

Setting a = (det [/,)* and substituting it into (11), we obtain

(1 — (det U,)*~™) —4d

2
Wa(r)? < C | (det Ur)*=™trl, + <
—m

= %Hm(v’).

Thus we conclude T,, ().
We now prove HWI,,(K’). Setting symmetric matrices W and I as

i 1-m -1

] . -3
M/ = :7' - [( N ] = \:7g - ((let \:,1-) 2 —r 2,

we acquire the following relations:

¢ .
20 e (WY, I(7) = Cte(I7).

Wy(r)? =
Define G by
G(Z] N Zg) = tI'(ZlTZg)

for all square matrices Z; and Z, of size d, then (' is an inner product
on the space of all square matrices of size d. Then we obtain

(}a\/lm =G DG, )

> G(I.W)
1 —m —1

= trz, — tr=7 + (det E-)lz—(t,rET 2 —d)
l 7'L

> 12, — 127 4 (det Z,) T d((det Z,) "2 — 1)
1 ll E_, l—-m o

> tr=, — tr=f + u2—((det ET)“I—z— —1)

1—m
1 Q
— Hm Z W 2) .
—— (Han(r) + 5Wa(r)?).

proving HWI,,(K). We apply the Cauchy-Schwarz inequality in the
first inequality, and apply the arithmetic geometric mean inequality in
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the second inequality. The third inequality follows from the convexity
of the function ¢ (t) = a'.

We are now going to prove the asymptotic results (2)-(4). We have
the following inequalities, which prove (2).

(det Z,) "7 {d

" _‘]m 2r"]m

T

+(1=m)(det=)"™ [(trE; )2 — dtr=" 2]

1—m 2
= (d(1 —m) — 1)tr {(det, =) et - [d}

— 171 2
< (d(1 —m) — 1)tr[((let =) Id]
<0,
where we apply the Cauchy—Schwarz inequality in the first inequality.
The second inequality follows from the assumption m > (d — 1)/d and

the positivity of the inner product G.
We show (3) using LS,,()):

d Ca L\ lom - d - d_
E;Hm(’r) = [—(det =) tr <HT EHT) + tr <d7u7>}

= "Im(T)
< —2aH,, (7).

Finally, we prove (4). We have the following inequalities:

1 d , - 2
2Ca [dTWz(T) + 20W,y(7) }

= tr (57% — 1) [(det =)= =3 ]d]

et S 4 d— 0= (det Z,) S =t

= [(det' =)= (1 — (det 37)‘%”') + (1 — (det, 5)*)]
¢ (1 — et ETY?}E) ((det’ =) 77 — (det Ef)ﬁli) .

The inequality follows from the arithmetic geometric mean inequality.
The assumption —1/d < 0 < (1 —m) < 1/d implies that

1 1—m 1
l—qa 24 a2 — a2

is non-negative for a positive number a. Setting a= det =,, we have (4).
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