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Asymptotics of the free boundary of a Hele-Shaw
flow with multiple point sources
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1 Introduction

In this paper we study the asymptotic behavior of a Hele-Shaw flow produced by
the injection of fluid from a finite number of points at different injection speeds. We
prove that, as time tends to infinity, the boundary of the fluid domain approaches
the circle centered at the barvcenter of the injection points with weights proportional
to the injection rates. The distances from the barycenter to the boundary points are
estimated both from above and below.

Hele-Shaw flows are fluid flows in an experimental device which consists of two
closely-placed parallel plates. Since the gap hetween two plates is sufficiently narrow,
one can regard them as two-dimensional lows. We consider a Hele-Shaw flow produced
by the injection of incompressible viscous fluid into the device from multiple points.
Let the fluid initially occupy a bounded domain Q(0) ¢ Cand ¢y, ..., ¢ € Q2(0) be the
injection points. From each point c¢;, more flnid is injected at the rate a; > 0 per unit
time. The fluid domain at time ¢ > 0 is denoted by Q(t) and its boundary by 90Q(t).
We write n for the unit outer normal vector to 9§2(t). To formulate the mathematical
problem, we now introduce a function 7" which is defined by T(z) := inf{t > 0]z €
Q(t)} for each z € C. i.e., T(2) denotes the first time when the houndary 9Q(t)
touches z. Let p = p(z,t) be the pressure of the fluid at position 2 = z + iy € Q(t)
and time ¢ > 0, where i = /—1. DBy the theory of Hele-Shaw flows, p and T are
assumed to satisfy the following equation and boundary conditions:

1

—Ap = Zajdfz for z € Q(t), t > 0; (1.1)
j=1
p=20 for z € O0Q(t). t > 0: (1.2)
op 9T o,
% . % - — for z € dQ(t), t > 0, (13)

where A := 32/0z% + 8%/9y” is the Laplacian in R? and §, is the Dirac measure at c.
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From (1.1) and (1.2), for each time ¢ > () the function p can be represented hy

[
p(z,t) = Y a;Geau(z) for z € Q(t), (1.4)
=1

where G, o) is the Green’s function of €2(¢) for the Laplacian under the homogeneous
Dirichlet, boundary condition with pole at ¢;. By substituting (1.4) into (1.3), we
obtain

l a7 .
(Z O‘jM) . E)I = —1 for z € 0Q(t), t > 0. (1.5)
= on on
Thus the Hele-Shaw problem is to find a monotone increasing family of domains
{Q(t) }t>0 with smooth boundaries such that the corresponding function T is smooth
and satisfies (1.5). We call such a family {Q(t)};>o a classical solution of the Hele-
Shaw problem (see Sakai [11, Section 13]).

The problem has bheen investigated by many researchers with different methods.
Elliott and Janovsky (2] adopted a variational-inequality approach to the Hele-Shaw
problem and proved the existence and unigqueness of global weak solutions. Sakai
[11, 12] developed the theory of gquadrature domains and applied it to the Hele-Shaw
problem to obtain the existence and unigueness of weak solutions and several prop-
erties. By this approach, Sakai [14] was able to obtain an estimate for the distances
from a fixed point to the boundary points of Q(t), which is stated as follows: Let
Q(0) € D(e,r) and tzgzl a; + m (Q(0)) > 4mr?, where D(c,7) denotes the disk of
radius 7 with center ¢ and m two-dimensional Lebesgue measure. Then it holds that

! {
EZaj-Fm—rglz—clg 't—Z(lj+TL§’2(—())'l+T (1.6)
TS s m = T
for all z € 9Q(t), t > 0. As a matter of fact, Sakai proved this result as a more
general estimate on gquadrature domains which we will define in the next section. By
the estimate (1.6), we see that,

max |z —c¢/— min |z —¢ <27

zedN(t) z€a 1)

Another approach was taken by Escher and Simonett [3]. They converted the
problem into a nonlinear evolution equation on a fixed domain and constructed a
uniqgue classical soliution locally in time. Following this approach, in the case of a single
injection point, Vondenhoff [16] recently proved the existence of a classical solution
globally in time when the initial domain is sufficiently close to a disk centered at the
injection point. Also he obtained detailed information on the asymptotic hehavior of
the Hele-Shaw flow by means of spectral analysis.

However, the method of spectral analysis [3, 16] seems to need nontrivial refine-
ment in the case of multiple injection points to obtain the long time behavior of the
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solution, since it depends on the linearization of the evolution operator around an
explicit solution. For this reason, here we consider the asymptotic behavior of the
Hele-Shaw flow in the framework of weak solution in terms of quadrature domains. In
the weak formulation we do not need to impose any restriction on the initial domain.

The aim of this paper is to present a more precise estimate for the asymptotic
behavior of the interface of the Hele-Shaw flow in the case [ > 2, in terms of the
distances from a fixed point to the boundary points of Q(1). To state our main
theorem, we introduce the following important quantities:

!
Zj:l Q;C;

wy =, (1.7)
E;:l a;
ro = inf {r > 0 | Q(0) C D(c.r) for some c € C}, (1.8)

A= [|—— - min

] 1 2 k=1
. €6 g ;L.
PRSP T W (z :;T:] (1’0(_;')) > 521 Q)

l k-1 k-1
. Ao(k) 2jm1 Qo)) | 2ojmy Yo(NColi)
cowy| |+ (1.9)

where the minimum is taken over the symmetric group &, on the finite set {1, ...,
I}. Note that w; is the barycenter of the injection points cp, ..., ¢ with weights
proportional to the respective injection rates a, ..., a;, and ry is the smallest one
among the radii of all disks containing ©2(0). The following is the main result in this

paper.

Theorem 1.1. Let Q0). ¢;. a; be as in the above setting and define wy, ro, A by
(1.7), (1.8). (1.9), respectively. Suppose that {Q(t)}is0 is a classical solution of the
Hele-Shaw problem. Then, there exist non-negative functions e_(t), €, (t) such that
the imequality

(1.10)

2
e-(t) =AM+ 0O (7). ex(t)= [ A+ —

ast — 00.
By the estimates (1.10) and (1.11), we have

max |z —w|— min [z —w| <e () +e.-(1) =0 (t72 as t — 0o.
[z wl = min s - wil <60 +e () = O (1)

Therefore, for the Hele-Shaw flow with multiple injection points, we see that the
interface 9Q(t) of the fluid domain approaches the circle centered at the barycenter
wp as t — oo.
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2 Weak formulation and Quadrature domains

In this section we observe that a classical solution of the Hele-Shaw problem satisfies
an integral inequality for subharmonic functions. By the inequality, Q(t) can be
regarded as a gquadrature domain of a positive measure, so that we will be concerned
with the shape of quadrature domains in subsequent sections.

In the equation (1.5), the smoothness of the boundary 9Q(¢) and of the function
T are required. This is a difficulty in dealing with the equation (1.5). Following
Sakail [11], we generalize the notion of classical solution so that it does not require
any regularity of the boundary. Let {Q(¢) }1= be a classical solution of the Hele-Shaw
problem. Then, for any subharmonic function s defined in €2(¢) which is integrable
with respect to Lebesgue measure m, we see that

t
1
sdm:// S ———dodr
/ﬂ(t)\Q(O) 0 Joo(r) oT/dn

‘ G, a(r
— Zaj/ / S (———"’Q( )> do dt
=1 0 Ja(r) on
l t l
> Zaj‘[) s(c;)dr = tZajs(c])
j=1 j=1

Therefore, any classical solution {Q(t)};s¢ satisfies, for each t > 0,

!
/ sdm +t Z a;s(c;) < / sdm (2.1)
Q(0) = Q(t)

for all integrable subharmonic functions s defined in Q(¢). In particular, since the
constant functions s = £1 are integrable and subharmonic in Q(t), we have

m (§2(t)) = z‘z aj+m(£2(0)).

j=1

In general, for a given finite (positive Borel) measure v with compact support, a,
bounded open set, Q is called a quadrature domain of v for subharmonic functions if

v(C\ Q) =0 and
/sdzz < / sdm
0

holds for all integrable subharmonic functions s defined in Q. Quadrature domains

for harmonic functions and for analytic functions are defined in the same way, but

then we take equality instead of inequality in these .definitions. From (2.1), for a

classical solution {Q(t)};50 of the Hele-Shaw problem, each Q(t) can be interpreted as
. ' s i Ny ! S - . P .43

a quadrature domain of the measure xo() + ¢ ijl a;0.; for subharmonic functions,
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where \q(q) denotes the characteristic function of Q(0) and we regard it as the measure
XQ(0)Tt.
Here we summarize some elementary properties of quadrature domains (see Sakai

(11, Section 1-3]):

(a) A gquadrature domain for subharmonic functions is also one for harmonic func-
tions. A guadrature domain for harmonic functions is also one for analytic func-
tions.

(b) For any finite measure v which is singular with respect to m, there exists a
guadrature domain of v for subharmonic functions. Let v be a finite measure of
the form v = xq + u, where Q is a bounded domain and u is a finite measure
satisfying u(Q2) > 0 and u(C\ Q) = 0. Then there exists a quadrature domain of
v for subharmonic functions.

(¢) If a measure v satisfies one of the conditions in (b), then a quadrature domain of
v for subharmonic functions is uniquely determined up to a null set with respect
to m. Moreover, the minimum qguadrature domain Q(v) exists, i.e., Q(v) C
holds for all guadrature domains Q2 of v for subharmonic functions.

(d) If measures vy and vy satisfy one of the conditions in (b) and v; < 15, then

Q(I/l) - Q(VQ).

(e) For a > 0 and ¢ € C, a quadrature domain of the measure ad. for subharmonic
(also for harmonic and for analytic) functions is uniquely determined and is equal

to D(c, /a/7).

By the above properties of quadrature domains, we see that, for each t > 0, there
exists the minimmm quadrature domain of the measure xqy + t.zg:l a;0.; for sub-
harmonic functions. Sakai [11] defined a weak solution of the Hele-Shaw problem as
the family of the minimum quadrature domains {Q(xqw) +¢ Zé.:] ;0. )}¢>0. There is
another weak solution which is defined by using variational inequalities (see Gustafs-
son [4], and Elliott and Janovsky [2]). but it was proved by Sakai [12] that these two
weak solutions are equivalent. In the rest of the paper we work within the frame-
work of quadrature domains and estimate them to prove Theorem 1.1. One of the
advantages of dealing with quadrature domains is that we do not have to care about,
the smoothness of the free boundary 99Q(¢) or topological changes of the domains

{Q2(t) }i>o0-

3 The Schwarz function

To prove Theorem 1.1, as a first step, we construct an explicit representation of the
minimum guadrature domain of the measure 7(ad; + 30_;) for subharmonic functions,
where o, 3 > 0. It will be given as a univalent rational map from the unit disk onto the
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quadrature domain, and we estimate the distances from the barycenter (o —3)i/(a+3)
to the boundary points of the quadrature domain. The construction of this rational
map and its estimates will be discussed in the next section.

Let, us introduce the notion of the Schwarz function and show relations between
the Schwarz function and quadrature domains. We will see that the problem of finding
a certain quadrature domain can be reduced to the construction of a domain with the
corresponding Schwarz function.

The Schwarz function S = S(2) of a curve T is defined as a holomorphic function
on a neighborhood of T" which satisfies

S(z)=7% forzeTl,

where 7 is the complex conjugate of z. Note that the Schwarz function of I is uniquely
determined for a given curve I by its analyticity.

Let us explain how the Schwarz function relates to quadrature domains (see Davis
(1, Chapter 14] and Shapiro {15, Chapter 3]). Let Q C C be a bounded domain with
smooth boundary and f a function holomorphic in a neighborhood of Q, where Q
denotes the closure of 2. By the analvticity of f and Stokes' theorem, we see that

1
-/fdmf‘—f/ f(2)zd=,
Q 2i Joa

where 02 is positively oriented. Now assume that there exists the Schwarz function
S of 092 and it, can be extended to a holomorphic function in Q\ {¢;,..., ¢} such that
c; € 2 is a simple pole with residue ta; /7 for j = 1, ..., [. Then we have

l
JE)Edz = [ ()S()dz = 20t Y fley).
j=1

o0

Thus,
!
/ fdm — fZajf(cj) (3.1)
Q =

holds for all holomorphic functions f defined in a neighborhood of Q. From (3.1),
is expected to be a gquadrature domain of the measure tZ;:] a;0.; for subharmonic
functions.

To obtain such a candidate for the quadrature domain, we therefore find a domain
2 such that the Schwarz function of 9Q has simple poles at ¢y, ..., ¢, € Q with
respective residues tag /7, ..., ta;/7. As we will see later, the domain Q we found is
in fact a quadrature domain of the measure t.zlj'.:l a;d., for subharmonic functions.
In order to find such a domain Q. we assume that Q can be represented as the image
of the unit disk D(0,1) by a rational function ¢, ie.. Q = ©(D(0,1)), where ¢ is
holomorphic and injective in a neighborhood of D(0,1). Then, the Schwarz function
of 092 is given hy

S(z):= ¢ (1 /;,3‘](,-:)) for z in a neighborhood of 9. (3.2)
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Moreover, if ¢ has only the simple poles at w;. ... w; € (CU{o0})\ D(0,1), then S
can be meromorphically extended into  with simple poles at o(1/@7), ..., ¢(1/m).
Hence, our task is to choose a rational function ¢ appropriately so that ¢(1/@;) = ¢;

and that the residue of the corresponding function S at, ¢; is ta; /7.

However, in general it is quite difficult {o construct such a rational function .
In particular, for [ > 3, there are infinitely many possibilities of the disposition of
C1,....c. In the case [ = 2, as we will see later, hy using translation, rotation and
dilation we have only to consider the case where ¢; =7 and ¢ = —1.

4 Quadrature domains of two point masses

In this section, we deal with quadrature domains of the measure w(ad; + 39_;). Note
that the measure w(ad; + 36_;) corresponds to a Hele-Shaw flow with two injection
points. When the injection rates are the same, i.e.. @ = 3, Richardson [10] showed
that the interface of the Hele-Shaw flow is a curve formed by inverting an ellipse with
respect to the nnit circle. Such a curve is called an elliptic lemniscate of Booth, which
is named after the Reverend James Booth. Here we are also concerned with the case
a # 3.

In Shapiro [15, Chapter 3], the rational function @y(w) := 2Rw/(w? + R?), where
R > 1, is used to construct such a quadrature domain. To treat the case a # 3, we
introduce a new rational function ¢ defined by

aR(w —in) .
w Da. ) = ——=— + inR. 4.1
LP(U,) ¥ RTI(U’) u)z + Rg ”7 ( )
Here, the function ¢ = @u r, is parameterized by a > 0, R > 1 and € R. For
given a, 3 > 0, we choose a, R and n appropriately so that the domain Q(a, R,n) :=
Va.rn(D(0,1)) is a quadrature domain of the measure 7(ad; + 86_;).

4.1 Construction of a rational map

Lemma 4.1. Let a. 3 be positive numbers such that a4 3 is sufficiently large. Then,
by taking some a >0, R > 1 and n € R and defining o rational function o by (4.1),
the Schaarz function S of 9Qa, R.n). where Qa, R.n) := o(D(0, 1)), is meromorphic
in. a neighborhood of Q(a. R.n) having only simple poles at i. —1i with residues a, 3.
respectively.

We give the outline of the proof of Lemma 4.1. For the time being let us assume
that ¢ is holomorphic and injective in the disk D(0,2). Then the Schwarz function S
of the closed curve 9Q(a, R.n) is given by (3.2), as mentioned in the previous section.
Hence our task will be to choose a, R and n appropriately so that the Schwarz function
S has simple poles at £ with residues p; = a. py = 3. respectively.
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Since ¢ has two simple poles at. iR, the function S is meromorphic in Q2(a, R, n)
with only two simple poles at.

s _iaR*(£1 —nR)
Y\FiRr/)~ RY—1

+ inR.

Hence, we take a > 0 to be (R* — 1)/R? so that the poles of S are at 4i. Moreover,
some elementary computations show that

p1 = 2—;? (R5+R+‘2772R——77R4—77—‘277R2),
P2 = 5—;—%—3— . (R5 +RI2PR 4 nR +n + 217R2) .
Therefore we need to solve the following system of algebraic equations for R and #:
at+tB=p+p= }—;—— (R + 1+ 2n%), (4.2)
.B*GZPQ—M:E'(RQ +1)% (4.3)

In fact, we obtain a solution R and n with the following estimates:

n=@-a{

1 o
———+ O ((a + 3) 37 } as a + 3 — oo. 4.5)
\ /a + /,»"; ( . ) ) (

By taking a, R and 7 as above, we can show that ¢ is holomorphic and injective
in the disk D(0,2) when a + 3 is sufficiently large. This completes the proof.

By virtue of Lemma 4.1 and (3.1), we see that the domain Q(a, R,n) satisfies
/ fdm = raf(i) +n3f(—1)
Q(a.R.m)

for all holomorphic functions f defined in a neighborhood of Q(a, R,n). Now we
confirm that the domain Q(a, R,7) is indeed a guadrature domain for subharmonic
functions.

Lemma 4.2. Let a. 3 be positive numbers such that o+ 3 is sufficiently large. Then,
the domain Q(a, R,n) constructed in Lemma 4.1 is o unique quadrature domain of the
measure w(ad; + 36_;) for subharmonic functions.

To prove Lemma 4.2, we make use of the approximation theorem by Sakai [11,
Lemma 7.3], which states that any integrable harmonic function A defined in Q(a, R, n)
can be approximated in L'(Q(a, R, 7)) by linear combinations of Re(1/(-—¢)), Im(1/(-—



72

¢)) and log |- —¢| with ¢ € C\ Q(a. R.n). Combining the approximation theorem with
the fact that Q(a. R,n) 1s a smooth simply-connected domain, we see that

/ hdm = wah(i) + n3h(—1)
Qa.R7)

holds for all integrable harmonic functions h defined in Q(a, R,7n), i.e., Q(a, R,n) is a
quadrature domain of m(ad; + 36-;) for harmonic functions.

To finish the proof, we have to show that Q(a, R,n) is, in fact, a unique guadra-
ture domain for subharmonic functions. We have already seen that there exists the
minimum quadrature domain of 7(ad; + 3d_;) for subharmonic functions. Let us de-
note it by 4 and show that Q(a, R,n) = . Since Q is also a guadrature domain
for harmonic functions, it suffices to show the uniqueness of quadrature domains of
m(a@d; + 36.;) for harmonic functions. This uniqueness property is provided by an
adaptation of maximum principles. due to Sakai [11] (see also Shapiro [15, Propo-
sition 4.8 and Theorem 4.9] for the proof). Therefore, Q(a, R,n) = 4 and hence
Qa, R,n) is a unique quadrature domain of 7w(ad; + 36_;) for subharmonic functions.

4.2 Estimates of Quadrature domains

By Lemma 4.2, we see that a unique guadrature domain Q(a, 3) of the measure
m(ad; + 36_;) for subharmonic functions is represented as Q(a, 3) = @, r,(D(0,1)).
On the other hand, a > 0, R > 1 and n € R are estimated in the proof of Lemma
4.1. In the following theorem, we proceed to the calculation of the distance from the
point (a — 3)i/(a + 3) to a boundary point = € 9Q(a. 3). and obtain the asymptotics
of the quadrature domain Q(a, 3) when (a + 3) - min{a. 3} — oco. Note that

Via+3) - min{a. 3} <a+ 3.
Hence, (a + 3) - min{a, 3} — oo implies a + 3 — oc.

Theorem 4.3. For «, 3 > 0 such that o + 3 s sufficiently large, let Q(a, 3) be a
unique quadrature domain of the measure w(ad; + 39_;) for subharmonic functions.
Then. as (a + 3) - min{a, 3} — oo.

-3 F— 3)? R e
min |z — 2 il = ‘/av+;3——‘2+—.(—0:3)%4‘(a—,ﬁ)h.O((a+5)~:/2>’

2€90(0,3) a+ 3 (v

~

— 3 - — 3)? ¥3|la — /-
max |z — a “il=+a+3+2— ((“ 3)2/.) | Sajla — 3
a L F)RE

2€90(a,3) a+ 3 , (a + 3)*
+ (=37 0(at 37+ (a=38)-0((a+3)7®).
(4.7)
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In view of the representation 0Q(a. 3) = p(0D(0, 1)), where ¢ = @4 r, With a > 0,
R > 1 and n € R defined in the proof of Lemma 4.1, it is suflicient to calculate the
minimum and the maximum of the function

& — /3
o+ 3

d(w) := for w € 9D(0,1),

1

o(w) —

which is the distance from the point i(a — 3)/(a + 3) to a boundary point @(w) €
00(a, 3). By elementary calculations with the aid of the equations (4.2), (4.3) and
the estimates (4.4), (4.5), we can prove the estimates (4.6) and (427).

By an argument similar to the proof of Theorem 4.3, we estimate the distance
from the point —i to a boundary point of the quadrature domain Q(a, 3), and show
that the quadrature domain Q(a, 3) approaches the disk centered at —i when a > ()
is fixed and 8 — oo.

Theorem 4.4. Suppose that « is a fired positive number. For sufficiently large 3 > 0,
let Qa, 3) be a unique quadrature domain of the measure w(ad; + 36_;) for subhar-
monic functions. Then, as 3 — oo,

20 a?
in |24+ =B+ — 4 (da- = )81+ 0(37%),
L e Vi3 2f 3 *(“ 8>‘ (7).
2(1-' a?
a > — —_— 4oy — — :3—3/2 O 3_2 .
Bl il = El (a 8)' roE

5 Quadratue domains of multiple point masses

In this section, we apply Theorem 4.3 and give an estimate for quadrature domains
of a linear combination of the Dirac measures. Then, Theorem 1.1 is obtained as a
consequence of the estimate combined with Theorem 4.4, as we will see in the next
section. In what follows, we write () for the minimum quadrature domain of the
measure v for subharmonic functions. First we state the following two lemmas without
proof.

Lemma 5.1. Let 3y, 35 and k be positive numbers and ¢y, co € C. Then,
Q (f{?ﬁl(g,{c‘ + Rgﬁgrsm) ={r2e€ C|z € (810, + 320.,)}
holds.

By Lemima 5.1 and simple arguments concerning translation or rotation, we see
that the estimates for any quadrature domains of two point masses are reduced to the
estimates given by Theorem 4.3 and Theorem 4.4.

The next lemma shows that minimum guadrature domains possesses the semi-
group property. Gustafsson and Sakai [5] have already proved this property for more
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general measures, but it is established for saturated (or maximum) quadrature do-
mains (see (5, Theorem 2.2] for the detail). On the other hand, Sakai [11] proved the
property for the minimmm guadrature domains. We improve the result, [11, Proposi-
tion 3.10] as follows.

Lemma 5.2. Let p, v be finite measures with compact support such that there erist

the bounded minimum quadrature domains Q(u). Qp + v) and Qxa) + v) of the

measures [, L+ vV and xou) + v for subharmonic functions, respectively. In addition,
» X ; s Frrar — l _ o0 :

we assume that v is of the form v = f 1 3., a;6.,. where f € L*(C), a; > 0 and

c; € C. Then it holds that

Qu A v) = Q(xa@ + v) -

With the above lemmas and Theorem 4.3, we give the following estimate for the
distances from the barycenter w; defined by (1.7) to the houndary points of quadrature
domains of a linear combination of the Dirac measures.

Theorem 5.3. Let a;, ..., a; be positive numbers and ¢y, ..., ¢ € C unth 1l > 2.
and define wy, ..., wy by (1.7). Then, there erists a non-negative function g,(t) such

. l .
that for any quadrature domain Qa(1) of the measure tzjzl a;0; for subharmonic
functions the inequality

The proof is based on induction on {. The case | = 2 can be proved by combining
Theorem 4.3 and Lemma 5.1. In the case [ > 3, we apply Lemma 5.2 and reduce the
estimate for 24(¢) to the one for Q(¢ Zz'___], a;d.,). To see this, we note that

Qg(t) =0 (Xﬂ(tza;‘, 075‘)]_) + t(Iz(SC,)

C Q <XD(w,..| ‘

with an appropriate number &(t). Then, by the result of the case [ = 2 we can
estimate the domain Q(t&(t)d,, , + ta,d,,) and finally we obtain the desired estimate
from ahove. The estimate from below is similarly obtained.

(I‘)) { f.‘CI[(SCl) =0 (td(t)éwl_] + th(SCl)

tr! EI,=|| ajis
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6 Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1 by combining Theorem 5.3 with
Theorem 4.4.

It is sufficient to prove the estimate (1.10) for the minimum quadrature domain
Qt) = QUxao) +1t Zl L @0c). Let € (1) := g(t), where &(t) is obtained by Theorem

5.3. Then, by the inclusion relation Q tZ] L, ajoc;) C Q(t) we see that

!

t . .

- E aj —e_(t) <|z—wy| forall z€dQt), t>0. (6.1)
Jj=1

Next we estimate |z — wy| from above. In the definition (1.8) of r,, we can take
minimum instead of infimum. To show this, we take sequences {c®}, {r(*} such that
8 — 1y and Q(0) € D(c®),7®). Then, {c®} is bounded since {r¥} is bounded.
Hence, there exists a subsequence {c*»} of {c¢*)} which converges to a point ¢5 € C.
Therefore,

Q(0) C ﬂ D (c(k""), r“‘""”) C ﬂ D (CU. pkn) o |c(k”) — c()]) C D (cy, 79),

p=1

so that ©(0) C D(cp,79). By Lemma 5.2 and Theorem 5.3, observe that

l
Qt) C Q| XDeoro) + ¢ Zajdcj) =Q (XD(C(),TO) T Xo(es_, ajcs(.’,.))

o (6.2)
Q (XD(C(),TO) + ,-\(D(url.R(t))) =0 (7{7“02(56{) + '”R(t)zdwl) s
where R(t) := \/tw‘l Z 1 a; + &(t). Therefore, applying Theorem 4.4 to the right
hand side of (6.2) yields the estimate for |z — w;| from above as follows:
|z —wy] < i+ e, (t) forall z € 9Q(t), t > 0. (6.3)

Here €, (t) satisfies

—\;—_i+0(t_1)

as t — oo.
For any 0 € G, the above argument. to obtain the estimates (6.1) and (6.3) can be
applied to the case where j is replaced by o(j). Therefore, by taking the minima of
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c_(t) and g4 (t) over 0 € &, and writing them as £_({) and ¢, (t) again, we obtain the
desired estimate (1.10) with (1.11). since Q(t) is irrelevant to the way of numbering
the injection points. This completes the proof.
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