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Let Q C RN be a bounded domain with smooth boundary 90 with N > 3. We consider
the existence of multiple positive solutions of the following semilinear elliptic equations

—Au+ ku = uP + \f(r) in Q,
(1.1)
u=20 on 09,

where k € R, A > 0 are parameters, p is the critical Sobolev exponent p = (N+2)/(N—-2),
and f(x) is a non-homogeneous perturbation satisfying

(1.2) FEHQ). f>0.f#0 ae. inQ.

Since p is a critical Sobolev exponent for which the embedding W12(Q) c L*M(N=2(Q)
is not compact, we encounter serious difficulties in applying variational methods to the
problem (1.1).

Let us recall the results for the case f = 0;

—Au+ R = uP in Q,
(1.3)

wu=20 on Of).

In this case, by using the Pohozaev identity, it can be shown that (1.3) admits no nontrivial -
solutions for each x > 0, provided that €2 is star-shaped. On the other hand, Brezis and
Nirenberg [1] obtained the following results when ~ < 0: let x; be the first eigenvalue of
—A with zero Dirichlet condition on €2; then

(i) if N > 4, then for every s € (—k;,0), there exists a positive solution;

(ii) if N = 3 and Q is a ball, then there exists a positive solution if and only if x €
(—I'il, —K1/4).
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Let us consider the case where f satisfies (1.2). Tarantello [6] considered the problem
with xk = 0;

—QAu=uP+ A\f(r) in Q.
(1.4) {

u=20 on Of.

and showed that (1.4) has at least two positive solution if ) is small enough. The main

idea is to divide the Nehari manifold A = {u € H}(Q) : (I'(w),u) = 0} into three parts

A*, A~ and Ag, and to use the Ekeland principle to get one solution for A* and another

solution for A~. We note here that no positive solution exists if A is sufficiently large.
The existence of two nontrivial solutions for more general problem

—Au=uP~+ g(r.u)+ \f(r) in Q,
wu=20 on 0N,

where ¢g(x,u) is a suitable lower-order perturbation of u”, was proved by Cao and Zhou
[2]. These achievements have been extended to the p-Laplace equation by Chabrouski [3]
and Zhou [7], and to more general problems by Squassina [5].

In this paper we will consider the problem (1.1) with ~ € R in the case where f satisfies
(1.2), and show that, when s > 0, the situation is drastically different between the cases
N =3,4,5and N > 6.

We call a positive minimal solution wy of (1.1),, if u, satisfies u, < w in Q for any
positive solution u of (1.1),. Our main results are stated as following theorems.

Theorem 1. Assume that k. > —r;. Then there exists A € (0, oc) such that

(i) f 0 < A < X then the problem (1.1)5 has a positive minimal solution u, € H(92).
Furthermore, if 0 < A < XA < X then u, < us a.e. in §

(ii) if A > X then the problem (1.1) has no positive solution u € H3 ().

Remark. There is no positive solution of (1.1) with ~ < —x;. Assume to the contrary
that there exists a positive solution w« of (1.1) with x < —x;. Let ¢; be the eigenfucntion
of —A corresponding to k1 with ¢; > 0 on €. Then we have

0= / Vu- -V, — kiugrde > / Vi -V + rughrdr = / uPpy + Afprdr > 0.
JQ Q Q
This is a contradiction.

We consider the existence of the solutions of (1.1) at the extremal value A = ), so called
extremal solutions.
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Theorem 2. Let k > —ry. If A = X then the problem (1.1) has a unique positive
solution in H} ().

Next, let us consider the existence and nonexistence of second positive solutions to (1.1)
for 0 < A< .

Theorem 3. Assume that either (i) or (ii) holds.
(i) & € (—k1,0] and N > 3; (ii) k > 0 and N = 3,4, 5.
If0 < X < X then (1.1) has a positive solution iy € H) (D) satisfying ﬂA. > uy.

Theorem 4. Assume that k > 0 and N > 6.
(i) There exists \* = M*(k) € (0, ) such that if \* < A < X then the problem (1.1) has

a positive solution Ty € HJ(Q) satisfying W > uy.

(i) Let Q = {xr € RN : |x| < R} with some R > 0, and let f = f(|x]) be radially
symmetric about the origin. Assume that f € C([0, R]) with some 0 < o < 1, and
f(r) is nonincreasing in r € (0, R). Then there exists A\, € (0, A*) such that (1.1)x
has a unigue positive solution w, for A € (0. A,].

In the proof of Theorem 1, we will employ the bifurcation results and the comparison
argument for solutions of (1.1) to obtain the minimal solutions. We will prove Theorem
2 by establishing a priori bound for the solutions of (1.1) at A = .

In order to find a second positive solution of (1.1), we introduce the problem

(1.5) —Av + o = (v+u)? —ud inQ, ve HyN),

where u, is the minimal positive solution of (1.1) for A € (0, X) obtained in Theorem 1. In
fact, assume that (1.5) has a positive solution v, and put %y = v + w,. Then %) € H}(Q)
and solves (1.1) and satisfies @y > w, in Q. In the proof of Theorem 3, we will show the
existence of solutions of (1.5) by using a variational method. To this end we define the
corresponding variational functional of (1.5) by

I(v) = —;—/Q (IV'I-'\Q + h'.'l’Q) dxr — /RN G(v,uy)dr
for v € Hj(Q), where
G(t,s) = __1*({ + s)P+ — RS
' p+1- 7 p+1 T

It is easy to see that I, : H}(Q2) — R is C'! and the critical point vg € H}(Q) satisfies

A (Vg - Vi + regy + g{vg.uy)y) de = 0



94

for any ¢ € H}(Q2), where
g(t.s) = (4 + s)P — P,

Denote by S the best Sobolev constant of the embedding H}(Q2) C LPH(Q), which is

given by
/ |Vu|*dr
S = inf 2

u€HJ(V\{0} (/ l?rl”“d-r)y(pﬂ)'

We will obtain Theorem 3 as a consequence of the following two propositions.

Proposition 5. Let A € (0,)\*). Assume that there erists vg € Hj () with vg > 0,
vg # 0 such that

1
(1.6) sup L (tvg) < —= SN2,
>0 N

Then there exists a positive solution v € H} () of (1.5).
Proposition 6. Assume that either (i) or (ii) holds.
(i) k € (—K1.0] and N > 3: (ii) ~ > 0 and N = 3,4,5.
Then there ezists a positive function vy € H}(Q2) such that (1.6) holds.

In the proof of Proposition 5, we will derive some estimates to establish inequalities
relating certain minimizing sequences. In order to prove Proposition 6, for ¢ > 0, we will

set
D(r)
(c + [#2)(N-272°
where ¢ € CP(RY), 0 < ¢ < 1, is a cut off function, and will show that (1.6) holds with
vg = u, for sufficiently small ¢ > 0.

ue(r) =

In the proof of Theorem 4 (ii), we will verify the nonexistence of positive solutions of
(1.5) in the radial case by the Pohozaev type argument for the associated ODE. In fact,
by [4], the solution v of (1.5) must be radially symmetric, and v = v(r), r = |x|, satisfies
the problem of the following ordinary differential equation
{ (rM1u), — Ve + PN lg(ew) =0, 0< 7 < R,

(1.7)
v-(0) = ¢v(R) = 0.

For the solution v to (1.7), we will obtain the following Pohozaev type identity:

2
N =2

2K < ON-1,2. 1 N 2
+N—2/0 T u‘rlT~N_2f? v (R)“.

R
/0 rN‘l{ 2N G(u. uy) —!/(U«HA)“] dr +

R
N3 /0 N G(u. uy )urdr
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In the proofs of Theorems 2, 3 and 4, the results concerning the eigenvalue problems

to the linearized equations around the minimal solutions

—A¢+ ¢ = up(u,)" ' in Q. ¢e HHN).

play a crucial role.
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