Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

Yūki Naito^a and Tokushi Sato^b

^a Department of Mathematics, Ehime University, Matsuyama 790-8577, Japan
 ^b Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

Let $\Omega \subset \mathbf{R}^N$ be a bounded domain with smooth boundary $\partial\Omega$ with $N \geq 3$. We consider the existence of multiple positive solutions of the following semilinear elliptic equations

(1.1)
$$\begin{cases} -\Delta u + \kappa u = u^p + \lambda f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\kappa \in \mathbf{R}$, $\lambda > 0$ are parameters, p is the critical Sobolev exponent p = (N+2)/(N-2), and f(x) is a non-homogeneous perturbation satisfying

(1.2)
$$f \in H^{-1}(\Omega), \quad f \ge 0, \ f \not\equiv 0 \quad \text{a.e. in } \Omega.$$

Since p is a critical Sobolev exponent for which the embedding $W^{1,2}(\Omega) \subset L^{2N/(N-2)}(\Omega)$ is not compact, we encounter serious difficulties in applying variational methods to the problem (1.1).

Let us recall the results for the case $f \equiv 0$;

(1.3)
$$\begin{cases} -\Delta u + \kappa u = u^p & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

In this case, by using the Pohozaev identity, it can be shown that (1.3) admits no nontrivial solutions for each $\kappa \geq 0$, provided that Ω is star-shaped. On the other hand, Brezis and Nirenberg [1] obtained the following results when $\kappa < 0$: let κ_1 be the first eigenvalue of $-\Delta$ with zero Dirichlet condition on Ω ; then

- (i) if $N \geq 4$, then for every $\kappa \in (-\kappa_1, 0)$, there exists a positive solution;
- (ii) if N=3 and Ω is a ball, then there exists a positive solution if and only if $\kappa \in (-\kappa_1, -\kappa_1/4)$.

Let us consider the case where f satisfies (1.2). Tarantello [6] considered the problem with $\kappa = 0$;

(1.4)
$$\begin{cases} -\Delta u = u^p + \lambda f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

and showed that (1.4) has at least two positive solution if λ is small enough. The main idea is to divide the Nehari manifold $\Lambda = \{u \in H_0^1(\Omega) : \langle I'(u), u \rangle = 0\}$ into three parts Λ^+, Λ^- and Λ_0 , and to use the Ekeland principle to get one solution for Λ^+ and another solution for Λ^- . We note here that no positive solution exists if λ is sufficiently large.

The existence of two nontrivial solutions for more general problem

$$\begin{cases}
-\Delta u = u^p + g(x, u) + \lambda f(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

where g(x, u) is a suitable lower-order perturbation of u^p , was proved by Cao and Zhou [2]. These achievements have been extended to the p-Laplace equation by Chabrouski [3] and Zhou [7], and to more general problems by Squassina [5].

In this paper we will consider the problem (1.1) with $\kappa \in \mathbf{R}$ in the case where f satisfies (1.2), and show that, when $\kappa > 0$, the situation is drastically different between the cases N = 3, 4, 5 and $N \ge 6$.

We call a positive minimal solution \underline{u}_{λ} of $(1.1)_{\lambda}$, if \underline{u}_{λ} satisfies $\underline{u}_{\lambda} \leq u$ in Ω for any positive solution u of $(1.1)_{\lambda}$. Our main results are stated as following theorems.

Theorem 1. Assume that $\kappa > -\kappa_1$. Then there exists $\overline{\lambda} \in (0, \infty)$ such that

- (i) if $0 < \lambda < \overline{\lambda}$ then the problem $(1.1)_{\lambda}$ has a positive minimal solution $\underline{u}_{\lambda} \in H_0^1(\Omega)$. Furthermore, if $0 < \lambda < \overline{\lambda} < \overline{\lambda}$ then $\underline{u}_{\lambda} < \underline{u}_{\lambda}$ a.e. in Ω ;
- (ii) if $\lambda > \overline{\lambda}$ then the problem (1.1) has no positive solution $u \in H_0^1(\Omega)$.

Remark. There is no positive solution of (1.1) with $\kappa \leq -\kappa_1$. Assume to the contrary that there exists a positive solution u of (1.1) with $\kappa \leq -\kappa_1$. Let ϕ_1 be the eigenfunction of $-\Delta$ corresponding to κ_1 with $\phi_1 > 0$ on Ω . Then we have

$$0 = \int_{\Omega} \nabla u \cdot \nabla \phi_1 - \kappa_1 u \phi_1 dx \ge \int_{\Omega} \nabla u \cdot \nabla \phi_1 + \kappa u \phi_1 dx = \int_{\Omega} u^p \phi_1 + \lambda f \phi_1 dx > 0.$$

This is a contradiction.

We consider the existence of the solutions of (1.1) at the extremal value $\lambda = \overline{\lambda}$, so called extremal solutions.

Theorem 2. Let $\kappa > -\kappa_1$. If $\lambda = \overline{\lambda}$ then the problem (1.1) has a unique positive solution in $H_0^1(\Omega)$.

Next, let us consider the existence and nonexistence of second positive solutions to (1.1) for $0 < \lambda < \overline{\lambda}$.

Theorem 3. Assume that either (i) or (ii) holds.

(i)
$$\kappa \in (-\kappa_1, 0] \text{ and } N \ge 3$$
; (ii) $\kappa > 0 \text{ and } N = 3, 4, 5$.

If $0 < \lambda < \overline{\lambda}$ then (1.1) has a positive solution $\overline{u}_{\lambda} \in H_0^1(\Omega)$ satisfying $\overline{u}_{\lambda} > \underline{u}_{\lambda}$.

Theorem 4. Assume that $\kappa > 0$ and $N \geq 6$.

- (i) There exists $\lambda^* = \lambda^*(\kappa) \in (0, \overline{\lambda})$ such that if $\lambda^* < \lambda < \overline{\lambda}$ then the problem (1.1) has a positive solution $\overline{u}_{\lambda} \in H_0^1(\Omega)$ satisfying $\overline{u}_{\lambda} > \underline{u}_{\lambda}$.
- (i) Let $\Omega = \{x \in \mathbf{R}^N : |x| < R\}$ with some R > 0, and let f = f(|x|) be radially symmetric about the origin. Assume that $f \in C^{\alpha}([0,R])$ with some $0 < \alpha < 1$, and f(r) is nonincreasing in $r \in (0,R)$. Then there exists $\lambda_* \in (0,\lambda^*)$ such that $(1.1)_{\lambda}$ has a unique positive solution \underline{u}_{λ} for $\lambda \in (0,\lambda_*]$.

In the proof of Theorem 1, we will employ the bifurcation results and the comparison argument for solutions of (1.1) to obtain the minimal solutions. We will prove Theorem 2 by establishing a priori bound for the solutions of (1.1) at $\lambda = \overline{\lambda}$.

In order to find a second positive solution of (1.1), we introduce the problem

$$(1.5) -\Delta v + \kappa v = (v + \underline{u}_{\lambda})^p - \underline{u}_{\lambda}^p \quad \text{in } \Omega, \quad v \in H_0^1(\Omega),$$

where \underline{u}_{λ} is the minimal positive solution of (1.1) for $\lambda \in (0, \overline{\lambda})$ obtained in Theorem 1. In fact, assume that (1.5) has a positive solution v, and put $\overline{u}_{\lambda} = v + \underline{u}_{\lambda}$. Then $\overline{u}_{\lambda} \in H_0^1(\Omega)$ and solves (1.1) and satisfies $\overline{u}_{\lambda} > \underline{u}_{\lambda}$ in Ω . In the proof of Theorem 3, we will show the existence of solutions of (1.5) by using a variational method. To this end we define the corresponding variational functional of (1.5) by

$$I_{\kappa}(v) = \frac{1}{2} \int_{\Omega} \left(|\nabla v|^2 + \kappa v^2 \right) dx - \int_{\mathbf{R}^N} G(v, \underline{u}_{\lambda}) dx$$

for $v \in H_0^1(\Omega)$, where

$$G(t,s) = \frac{1}{p+1}(t_{+}+s)^{p+1} - \frac{1}{p+1}s^{p+1} - s^{p}t_{+}.$$

It is easy to see that $I_{\kappa}: H_0^1(\Omega) \to \mathbf{R}$ is C^1 and the critical point $v_0 \in H_0^1(\Omega)$ satisfies

$$\int_{\Omega} (\nabla v_0 \cdot \nabla \psi + \kappa v_0 \psi + g(v_0, \underline{u}_{\lambda}) \psi) \, dx = 0$$

for any $\psi \in H_0^1(\Omega)$, where

$$g(t,s) = (t_+ + s)^p - s^p$$
.

Denote by S the best Sobolev constant of the embedding $H_0^1(\Omega) \subset L^{p+1}(\Omega)$, which is given by

$$S = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\left(\int_{\Omega} |u|^{p+1} dx\right)^{2/(p+1)}}.$$

We will obtain Theorem 3 as a consequence of the following two propositions.

Proposition 5. Let $\lambda \in (0, \lambda^*)$. Assume that there exists $v_0 \in H_0^1(\Omega)$ with $v_0 \geq 0$, $v_0 \not\equiv 0$ such that

(1.6)
$$\sup_{t>0} I_{\kappa}(tv_0) < \frac{1}{N} S^{N/2}.$$

Then there exists a positive solution $v \in H_0^1(\Omega)$ of (1.5).

Proposition 6. Assume that either (i) or (ii) holds.

(i)
$$\kappa \in (-\kappa_1, 0] \text{ and } N \ge 3$$
; (ii) $\kappa > 0 \text{ and } N = 3, 4, 5$.

Then there exists a positive function $v_0 \in H_0^1(\Omega)$ such that (1.6) holds.

In the proof of Proposition 5, we will derive some estimates to establish inequalities relating certain minimizing sequences. In order to prove Proposition 6, for $\varepsilon > 0$, we will set

$$u_{\varepsilon}(x) = \frac{\phi(x)}{(\varepsilon + |x|^2)^{(N-2)/2}},$$

where $\phi \in C_0^{\infty}(\mathbf{R}^N)$, $0 \le \phi \le 1$, is a cut off function, and will show that (1.6) holds with $v_0 = u_{\varepsilon}$ for sufficiently small $\varepsilon > 0$.

In the proof of Theorem 4 (ii), we will verify the nonexistence of positive solutions of (1.5) in the radial case by the Pohozaev type argument for the associated ODE. In fact, by [4], the solution v of (1.5) must be radially symmetric, and v = v(r), r = |x|, satisfies the problem of the following ordinary differential equation

(1.7)
$$\begin{cases} (r^{N-1}v_r)_r - \kappa r^{N-1}v + r^{N-1}g(v,\underline{u}_{\lambda}) = 0, & 0 < r < R, \\ v_r(0) = v(R) = 0. \end{cases}$$

For the solution v to (1.7), we will obtain the following Pohozaev type identity:

$$\int_0^R r^{N-1} \left[\frac{2N}{N-2} G(u, \underline{u}_{\lambda}) - g(u, \underline{u}_{\lambda}) u \right] dr + \frac{2}{N-2} \int_0^R r^N G_s(u, \underline{u}_{\lambda}) \underline{u}_{\lambda}' dr$$
$$+ \frac{2\kappa}{N-2} \int_0^\infty r^{N-1} u^2 dr = \frac{1}{N-2} R^N v_r(R)^2.$$

In the proofs of Theorems 2, 3 and 4, the results concerning the eigenvalue problems to the linearized equations around the minimal solutions

$$-\Delta \phi + \phi = \mu p(\underline{u}_{\lambda})^{p-1} \phi$$
 in Ω , $\phi \in H_0^1(\Omega)$.

play a crucial role.

References

- [1] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983) 437–477.
- [2] D.-M. Cao and H.-S. Zhou, On the existence of multiple solutions of nonhomogeneous elliptic equations involving critical Sobolev exponents, Z. Angew. Math. Phys. 47 (1996) 89–96.
- [3] J. Chabrowski, On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent, Differential Integral Equations 8 (1995) 705–716.
- [4] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209–243.
- [5] M. Squassina, Two solutions for inhomogeneous nonlinear elliptic equations at critical growth, NoDEA Nonlinear Differential Equations Appl. 11 (2004) 53-71.
- [6] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéeaire 9 (1992) 281–304.
- [7] H. S. Zhou, Solutions for a quasilinear elliptic equation with critical sobolev exponent and perturbations on \mathbb{R}^n , Differential Integral Equations 13 (2000) 595–612.