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1 Introduction

This is an abbreviated version of the forthcoming paper [12].
In this paper, we consider the heat equation in the half space of R”" with a nonlinear
boundary condition,

ou = Au, r €N, t>0,
(1.1) o, u = uP, r e, t>0,
u(z,0) = ¢(x), =€,

where Q = {z = (z/,zy) € RY : 2y > 0}, N > 2, 9, = 0/0t, 0, = —0/0zn, and p > 1.
In this paper we assume that

(1.2) peX= {f e L=(Q) N L? (s‘z,c'r"“dax) . f>0in Q} ,
(1.3) 1+1/N<p. (N—=-2)p<N,

and give a classification of the large time behaviors of the nonnegative global solutions of
(1.1).

The nonlinear boundary value problem (1.1) can be physically interpreted as a nonlin-
ear radiation law, and has been studied in many papers (see [2], (4], [5], [7], [8], [12], [14],
[17], and references therein). However. for the large time behaviors of the solutions of
(1.1) in unbounded domains, there are only a few papers even if 2 = RY. Among others,
in [2], Deng, Fila, and Levine proved that. if 1 < p <1+ 1/N, then there does not exist
non-trivial global solutions of (1.1). Furthermore they proved that, if p > 14+ 1/N, then,
for some “small” initial data ¢, there exists a non-trivial global solution of (1.1) satisfying

fu(t) o> = O(t~1/2w=h) as t — oo.
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Recently, in [14], the second author of this paper proved that there exists a positive
constant 0 with the following property:

if H(bllLl(g)|l¢||g§c”(?;))"l < §, then there exists a global solution u of (1.1)

1.4 .
(1.4) such that ||u(t)]|pa) = Ot~ N/A1=1/9)) as t — oo for any g € [1,00].

Furthermore he proved that there exists the limit,

(1.5) c. =2lim [ u(z,t)dz =2 (/ u(z,0)dz +/ / u(a:,t)”dodt)
t=o0 Jao Ja o Jaa

such that N
lim ¢ 2079 [u(t) = c.g() o = 0
for any ¢ € [1,00], where g(z,t) = (4mt)~V/? exp(—|z|?/4t). (See also Proposition 2.1.)

On the other hand, for the Cauchy problem of the semilinear heat equation,
(1.6) du=Au+u” in RN x(0,00), u(z,0)=Ap in RV,

in [15], Kawanago gave a classification of the large time behaviors of the global solutions.
He proved that, if p > 1+ 2/N and (N — 2)p < N + 2, for any ¢ € X \ {0}, there exists
a positive constant A, such that

(a) if 0 < A < A, then the solution u of (1.6) exists globally in time and ||u(t)|| =@~y =<

N
t72 as t — ox;

it

(b) if A = A,, then the solution u of (1.6) exists globally in time and ||u(t)||,<®w)
1

t 71 ast — oo;

(¢) if A > A, then the solution u of (1.6) does not exist globally in time, and blows-up
in a finite time, that is, limsup, .7, ,_¢ [[w(t)|| <@~y = oo for some Ty > 0.

(See also [13].) Furthermore he proved that there exists a positive constant ¢’ > 0 with
the following property:

if |l pv-n2gyy < &', then there exists a global solution u of (1.6)

(1.7) such that ||u(t)||ze@q) = Ot~ N/P0-1/9DY) as t — oo for any ¢ € [1, 00].

The property (1.7) plays an important role of proving the existence of A,.

In this paper, by following the strategy in [13] and [15], we study the nonlinear bound-
ary problem (1.1) under the conditions (1.2) and (1.3), and give a classification of the
large time behaviors of the nonnegative global solutions. Furthermore we improve the
result of [14], and give an optimal estimate of the L(2) distance from the solution u to
its asymptotic profile (see Theorem 1.2-(i)). For our problem (1.1), it seems difficult to
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apply the arguments in [13] and [15] directly because of the nonlinearity on the boundary
O and the unboundedness of the boundary d€). In order to overcome this difficulty,
we first prove the Holder continuity of the solutions of the parabolic equations under a
Robin boundary condition. Next we construct approximate solutions to the problem (1.1),
and obtain uniform Holder estimates for the approximate solutions. Then we can obtain
Holder estimates of the solution w of (1.1). Furthermore, by using the standard regularity
theorems for parabolic equations, we can modify the argument in [6] and [15], and obtain
global bounds for the global solutions of (1.1) (see also Remark 3.1). Moreover, by using
the property (1.4), instead of (1.7). we can follow the strategy in [13] and [15], and obtain
the similar classification of the large time behaviors of the global solutions of (1.1) as in
[15] (see Theorem 1.1 and Theorem 1.2-(ii), (iii)).

Next we give the definition of the solution of (1.1).
Definition 1.1 Let 7 > 0 and v € C(Q x (0,7)) N L>(0,0 : L>(Q)) for all o € (0, 7).
Then the function u is a solution of (1.1) in Q x [0,7) if u satisfies

~t

u(z,t) = /2 Gz, y, t)b(y)dy + /

G(z,y,t — s)u(y, s)Pdo,ds
y Jon

for any (z,t) € Q x (0,7). Here do is the (N — 1) dimensional Lebesque measure on
00 = RY"! and G = G(z,y.t) is the Green function for the heat equation on Q with the
homogeneous Neumann boundary condition, that is,

— yl? . 2
(1.8) G(z,y,t) = (47rt)—%/' [exp (_h‘_ﬂy_]_) + exp (—%)], x,y € Q,t >0,

where y. = (v, —yn) fory = (¥, yn) € Q2.

Then, for any nonnegative initial data ¢ € L°°(€2). the problem (1.1) has a unique
classical solution (see Lemma 2.5). and

(1.9) Thrr (@) = sup {7 € (0,00) : u is a solution of (1.1) in 2 x (0,7)}

can be defined. In particular, if Ta/(¢) < oc, then limsup, 1, (g-o l[u(t)||Lq) = 00 (see
Lemma 2.5-(ii)), and we call Th;(¢) the blow-up time of the solution u. Furthermore,
under the conditions (1.2) and (1.3), we can define the following energy functional for the

solution u,
/ uPtldo
an

1 [ o 1
- I —
Flu)(t) 2[2|vu| dr = —

for any t € (0, Tr(¢)) (see Lemma 3.2).
We introduce some notation. Let

Il =M Neay, U= Hloe + 1 ll2qetr@raaz)
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where ¢ € [1,00]. Then, by (1.2), the set X is a closed cone of the Banach space with the
norm ||| - |||. We put

I(:{d)GXZT]\/[(Q‘)):OO}, BZJX’\A/:{¢€X:TA,I(¢)<m}’

and denote by Int K and K the interior and the boundary of K in X, respectively.

Now we are ready to state the main results of this paper.

Theorem 1.1 ([12]) Assume the condition (1.3). Then there holds the following:
(i) the set K is a unbounded closed convex set in X such that 0 € Int K,
(ii) for any v € X \ {0}, there exists a positive constant A, such that

Int K if Ae(0,X,),
Ap € ¢ K if A=A,
B if A> Ay

(iii) the unit sphere S in X and 0K are homeomorphic by the map S 3 ¢ — A\, € OK.

Theorem 1.2 ([12]) Let u be a solution of (1.1) under the condition (1.3). Then there
holds the following:
(i) if ¢ € Int K \ {0}, then

(1.10) lu@)l), < £ 709 as t— oo

for any q € [1,0]. Furthermore there exist the limit c, given in (1.5) and a constant C
such that

N
2

(1.11) 17D () — cg@)ll, < Ct 2+ C 2% 4> 1,
for any q € [1,00];

(i) if ¢ € OK, then ||[u(t)|loo < t71/2P~1) g5t — oo;

(iii) if ¢ € B, then lim,_1,,(¢)-0 Flu](t) = —oc.

Remark 1.1 (i) Consider the Cauchy problemn (1.6) under the conditions p > 1+2/N and
(N —=2)p < N+2. Then there holds the similar classification of the large time behaviors of
the global solutions as in Theorems 1.1 and 1.2 (see [15]). Furthermore, for the problem
(1.6), there also holds the similar estimate to (1.11) (see [11] and Proposition 20.13 in
17)).

(ii) In this paper we treat only the case N > 2. but can prove Theorems 1.1 and 1.2 for
the case N = 1 with minor modifications.

The rest of this paper is organized as follows: In Section 2 we consider the parabolic
equations with a Robin boundary condition, and give the Harnack inequality and the
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Holder continuity of the solutions. Furthermore we prove the existence and the uniqueness
of the solutions of (1.1), and give some properties of the solutions. In Section 3 we
introduce a rescaled function w = w(y,s) of u and its energy functional F[w](s), and
study the large time behavior of w. Furthermore we give a global bound for the function
w by using the Sobolev trace inequality, the Holder estimates given in Section 2, and the
regularity theorems for parabolic equations. The proofs of Theorems 1.1 and 1.2 are given
in Sections 4 and 5, respectively.

2 Preliminaries

In this section we consider parabolic equations with a Robin boundary condition, and
give the Harnack inequality and the Holder continuity of the solutions. Furthermore we
give some preliminary results on the problem (1.1).

2.1 Parabolic equations with a Robin boundary condition

Let @ = RY. We consider the following parabolic equation with a Robin boundary
condition,

2.1) { v = Av+b(z,t) - Vo+ V(z.t)v in D, x (=1,1),
O,v=I(z,t)v on &D, x(-1,1) if &D, #0.
Here D is a smooth domain in R" such that DN Q # @ and
D,=DnNnQ, d'D, = 9D, N oA, 0, = —-0/0zy.
In this subsection we assume that there exists a constant » > max{/N/2,1} such that
b= (by,...,bn) € L®(-1.1: L*"(D, : RY)),

2.2
(2:2) Ve L*(-1,1:L"(D,)). e L>~(-1,1: L>~Y8'D,)),
and put

®(b,V,T) = ||bl|p<(~1.1:227p, ') + WV llL>(=10:07 04y + T Lo (=1,0:27- 10D, ))-
We first give the definition of the solution of (2.1).

Definition 2.1 Let v € L*((—1,1) : L2(D,))NL*((—1,1) : HY(D,)). Then the function
v is said to be a solution of (2.1) if v satisfies

/ v(z,t)p(z,t)dz
D,

t=to t2
_ / / (e, )o(x, )z, t)dodt
t=t; J 1 5’D+

t2
+/ / { —voip+ Vo -V —b(r.t) Vop — V(:C,t)vcp] dzdt =0
t) D,
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forall o € C§°(D x (—1,1)) and almost all t1,t, € (—=1,1).

We first obtain the following lemma by using the Sobolev trace inequality (see Theorem
5.22 in [1]) and Lemma A.3 in [10].
Lemma 2.1 Let zo € Q and put D = B(xg,1) and Q = D, x (—1,1). Then, for any
B > 0, there exists a positive constant C' such that

/ / |F|g02dodt+// (1612 + |V |]p*dxdt < g// |V d:rdt+C’// *drdt
D,

for all p € L*((—1,1) : HY(D)). Here C depends only on N, r, and ®(b,V,T).

By Lemma 2.1, we can apply the arguments in [19] (see also Appendix of [10]) directly,
and obtain the following lemma on the Harnack inequality for the solutions of (2.1).

Lemma 2.2 Let g € Q and put D = B(xz,1). Let v be a nonnegative solution of (2.1)
in Q = D, x (—1,1) under the condition (2.2). Then there exists a positive constant C,
such that

supv < Cpinfw,

Q- Qt
where

o ~fora(e ]2 @ - praed)] (3D
Furthermore, let w be a nonnegative solution of
Ow = Aw+b(z,t) - Vw+ V(z,t)w+ f m Dy x(-1,1),
{ Ow=T(z,t)w+g on OD, x(-1,1) i 90D, #0,

where f € L=((—1,1) : L"(D,)) and g € L>=((—1,1) : L*~Y(@D,.)). Then there exists a
positive constant Cy such that

sup(w + E) < lnf(w + E),

o-
where E = || f||Lo((-1,1):L7(D4)) + N9llLx((=1.1):L2-1 (D, )). Here the constants Cy and C,
depend only on N, r, and ®(b, V,T').
By Lemma 2.2, we apply the same arguments as in [18] and [19] (see also [9]) to the

problem (2.1), and have the following lemma, which gives the Holder continuity of the
solutions of (2.1).

Lemma 2.3 Let o € Q2 and put D = B(xg,1). Assume (2.2). Let v be a solution of (2.1)
in Dy x (—=1,1) such that M = ||v||p~ (D, x(-1.1)) < 00. Then there exist positive constants
C and a € (0,1) such that

v

“(U”(,‘"-‘JW/Q(Q/) S C7

where @ = [N B(zg,1/2)] x (—1/4,1/4). Here the constants C and « depend only on
N, r, ®b,V,T"), and M.



134

2.2 Preliminary results for the problem (1.1)

In this subsection we give some preliminary results on the problem (1.1). We first give
the uniqueness of the solution of (1.1).

Lemma 2.4 Let i = 1,2, 7 > 0, and u; be a solution of (1.1) in Q x [0,7) with ¢ = ¢ €
L>(Q). Then, for any o € (0,7), there exists a constant C such that

sup |lur(t) — u2()lloo < Clld1 — P2lloo-

0<t<o
Here the constant C' depends on ||u1||L=(ax(0.0)) and ||uz]|L=@x(0.0))-

Next we obtain the following lemma by Lemmas 2.3, 2.4, the comparison principle,
the regularity estimates (see [16]), and approximate solutions to the problem (1.1).

Lemma 2.5 Let ¢ € L>(§2). Then there holds the following:
(1) there exists a unique solution of (1.1) in Q2 x [0, T) for some 7 > 0. In particular, there
ezists a constant 17y depending only on N. p, and ||¢||lo0, such that 0 < 19 < 7 and

sup [|u(t)ll < 2|9l

0<t<ty

(1) let u be a solution of (1.1) in  x [0.7) for some 7 > 0. Then u satisfies (1.1) in the
classical sense for all (z,t) € Q x (0,7). Furthermore, if

lim sup [Ju(t)]jee < o0,

t—71—0

then there ezists a solution U of (1.1) in Q x [0,7") for some 7" > 7 such that U(z,t) =
u(z,t) in Q x (0, 7).

Proof. See the proof of Lemma 2.6 in [12]. O
In what follows, we write
(S())(z) = ulz,t),  (x.t) € Qx(0,Ti(¢)),

for simplicity. Here Th;(¢) is the constant defined by (1.9). Then we have the following
two lemmas.

Lemma 2.6 Let ¢1, ¢ € L=°(2). Then. for any 0 < o0 < Tar(¢1) and € > 0, there exists
a positive constant § such that, if |1 — d2|lo < . then

Thi(¢2) > 0, sup [|S(t)¢1 — S(t)d2llec <€

O<t<o
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Lemma 2.7 Let ¢1, ¢ € L=(Q2) N LY(Q). Then, for any 0 < o < min{ T (1), Tr(P2)}
and € > 0, there exists a positive constant § such that, if ||¢p1 — ¢2||1 < 6, then

sup ||S(t)p1 — S(t) g2l < e.

0<t<o
Finally we recall the following proposition given in [14].

Proposition 2.1 (See Theorem 1.1 in [14].) Assume the conditions (1.2) and (1.3). Then
there exists a positive constant § with the following property: if the initial data ¢ satisfies

ol lleli® 7t <4,

then there ezists a solution u of (1.1) in © x (0,00) such that

1 N 1 N 1
(2.3) sug tiﬁ+7(1—3)||u(t)llm(ag) + su%))(l + t)?(l—a)“u(t)!]q < 00,
: t> t>

for any q € [1,00]. Furthermore there exists the limit c, given in (1.5) such that

(2.4) lim (¥ D u(t) - eg(®)ll, =0, g€ [1,00].

3 Upper estimates of the solutions

Let u = S(t)¢ be the solution of (1.1) under the conditions (1.2) and (1.3). Put
(3.1) w(y,s) = (1+ t)z(r’]—”u(w,t), y = (1 +;t)"%a:, s =log(1+1t).

We write w = §(s)¢. Then the function w satisfies

Ow=Lw+rw in Qx(0,Sy),
(3.2)

O,w=wP on 90 x(0,5y), w(y0) =de¢(y) in Q,
where Kk = 1/2(p — 1) and Sy; = log(1 + Ty,(¢)). Here

Lw = Aw+

Nl

1
-Vw = =div(pVw), ply) = el’/4,
p

In this section we give some upper estimates of the function w(s). In what follows, we
write || - || = || - || L2(2.pdy) for simplicity.

We first recall the following lemma on the eigenvalue problem for the operator L. (See
also [3] and [13].)
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Lemma 3.1 Consider the eigenvalue problem
(3.3) ~Lp=Xp in Q J,p=0 on 09 @€ H(Q,pdy).

Let {\;}52, be the eigenvalues of the problern (3.3) such that Ag < A\p < -+ < A\ < -+ -

Then .
. N +1

2

The eigenspace corresponding to Ao is spanned by po(y) = coe /4, and the eigenspace
corresponding to \; is spanned by v;(y) = cyie W4 (i =1,... N — 1), where ¢y and c;

A i=01,2....

are constants to be chosen such that ||poll = 1 and ||¢1]| = -+ = ||en-1l| = 1. Furthermore
N . 2 1
AO = _2_ = inf IVf' pd’y : f € H (Q,pdy) Hf” =1 )
Q
N+1 .
A= —5 = inf {/ |Vf|2/)dy c fe HI(Q,pdy), Ifll =1, (f,90) = 0},
Q
N+2 . :
Ap=—5— = mf{/nlvflzpdy  fe HY(Q,pdy), Ifll =1,

(f,pi) =0 for z'——-O,l,...,N——l}.

Next we have the following lemma by using the trace inequality in the space H!(Q, pdy)
(see Lemma 3.2 in [12]).

Lemma 3.2 Let u be the solution of (1.1) under the conditions (1.2) and (1.3) and w the
function defined by (3.1). Then, for any 0 < S; < Sy < Sus, there exists a constant C
such that

lw(s)II2 + (s — SOIVaw(s)2 + (s — 1) / w(s)™ pdo < Cllw(SIE S < s < Sy,

o)

Here C depends only on N, p, Sy — S1. and M’ = ||w||p=qx(s,,5,)) < 00.
By Lemma 3.2, we can define the energy functional E[w](s) of w,
(3.4) Ew](s) = / {EIVU)IQ — EIUIIQJ pdy — L wP*! pdo

al2 2 p+1 Jan

for all s € (0,Sa;). Then, by Lemma 3.1 and (3.2), we can apply the same arguments
as in Lemma 2.3 of [13], Proposition 3.1-(i). (ii), (iii), and (iv) of [13], and obtain the
following lemma.
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Lemma 3.3 Assume the same conditions as in Lemma 3.2. Then E[w](s) is a non-
increasing function in (0, Sy;) with the following properties:

(i) <f there exists so > 0 such that E{w](sq) < 0 and w(sg) # 0, then T (¢) < 0o;

(ii) if ¢ € K, then

(3.5) Elwl(s) > 0, s > 0.

Furthermore, for any s > 0, there exists a constant C' depending only on N, p, and
E[w](s) such that

T>S

sup [w(r)| + [ orw(r)ifdr +sup [ [Vuimldn < C

Next, by using Lemma 2.3, we modify the argument in [6], and obtain the following
lemma (see also Remark 3.1).

Lemma 3.4 Assume the same conditions as in Lemma 3.2 and ¢ € K. Furthermore
assume that

S
/ 10,w||?ds < 1 < oo,
0

s+1
(3.6) sup / IVw(r)||*dr <1’ < oo,
0<5<S s
1% Lo (8% (s9.5)) = ”wllLoc(anx(o,S)),

for some 0 < sqg < S and positive constants | and l'. Then there erists a constant A such
that ||w|| L=< @ax(0,s)) < A. Here the constant A depends only on N, p, sq, I, ', and {|¢||s
and is independent of w and S.

Remark 3.1 For the Cauchy problem (1.6), the similar result to Lemma 3.4 is given in
Lemma 3 in [15], without any conditions such as (3.6). The proof is based on the argument
in the proof of Lemma 1 in [15], and the details of the proof are omitted. However the
proof of Lemma 3 in [15] seems not to be clear. In our proof of Lemma 3.4, we obtain a
contradiction by using the condition (3.6). See the proof of Lemma 3.5 in [12].

By Lemmas 3.2-3.4, we can obtain a global bound for the global solutions of (1.1).

Lemma 3.5 Assume the condition (1.3). Let ¢ € K and u be a solution of (1.1).
Then there exists a constant C depending only on N, p, ||¢|l, and ||@||, such that
lwl Lo (@x(0,00)) < C-
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4 Behaviors of global solutions

In this section we study the large timne behaviors of global solutions of (1.1), and prove
Theorem 1.1. Put

H = {d) e K : supt%“‘%)HS(t)ngq < oo forall g € [l,oo]},
t>1
S = {fe L=(Q) N HY(Q, pdy) N C(Q) -
f satisfies Lf+xf=0in€Q, f>01in Q, 8,f = fP on BQ}.

Lemma 4.1 Assume the condition (1.3). Then

(i) K is a unbounded closed convez set;

(ii) H is an open set in X such that 0 € H C Int K;

(iii) Let ¢ € H and u = S(t)¢. Then there hold (2.3) and (2.4).
(iv) Let f, g € S such that f > g in Q. Then f = g in §Q.

Proof. We first prove Lemma 4.1-(i). By Lemma 3.5, we see that K is a closed set in X.
By Proposition 2.1, we see that K is a unbounded set in X such that 0 € Int H C Int K.
Furthermore the convexity of K is proved by the comparison principle and the convexity
of the nonlinear term u? on the boundary 92. and the proof of Lemma 4.1-(i) is complete.

Next we prove Lemma 4.1-(ii) and (iii). Let ¢ € H, ¢ € X, u = S(t)¢, and @ = S(t)¢.
Let § be the constant given in Proposition 2.1. By ¢ € H, we have

i () s u(6) |70 = 0.
So there exists a constant 7" such that
(D) (TP~ < 6/2.

Then, by Proposition 2.1, we have the statement of Lemma 4.1-(iii). Furthermore, by
Lemmas 2.6 and 2.7, there exists a positive constant € such that, if |||¢ — ||| < ¢, then

(T |7 < 6.

Therefore, by using Proposition 2.1 again. we have $€ H,and see H = Int H C Int K;
thus the proof of Lemma 4.1-(ii) is complete. _
Next we prove Lemma 4.1-(iv). Let f. g € S such that f > ¢g in 2. Then we have

f pVf-Vgdy — [ fPgpdo =K / fody,
Q Q

J o2

/ PV f - Vgdy - / " fpdo = K / fopdy.
Q J o2 Q
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These imply that _
[t =g pgpdo = o,
9!
that is, f = g on Q2. Therefore the function w = f — g satisfies
Lw+kw=0 in €, Jw=w=0 on Of.

This together with Lemma 3.1 implies that

N
/{/wzpdy—_—/IVprdy?_ —/wzpdy.
Q Q0 2 Jo

Then, since Kk = 1/2(p — 1) < N/2, we see that w = 0 in Q. Therefore we have f = g in
1, and obtain Lemma 4.1-(iv); thus the proof of Lemma 4.1 is complete. O

Lemma 4.2 Assume the condition (1.3). Let ¢ € K and u be a solution of (1.1). Then

the w-limit set of w in X, w(¢) = (oo {w(r) : 72 s}x, is a compact set in X such that
w(¢p) C SuU{0}.

Proof. By Lemmas 3.2 and 3.5, there exists a constant C; such that
(4.1) lw(s)|I* + [[Vw(s)|)* < C

for all s > 1. By Lemmas 2.3 and 3.5, there exists a constant a € (0,1) such that
lwllgoworz(cx (1,00 < 00 for any compact set K C Q. Furthermore, by Theorem 10.1 in
Chapter 4 of [16], we have

(4.2) Hw||c:2+~~1+n/'2()ox(2.00)) <0

for any compact set K’ € Q. Then, by Lemma 3.3, (4.1), and (4.2), we can apply the
same argument as in the proof of Proposition 5 in [15] to the function w, and obtain the
conclusion of Lemma 4.2. O

Lemma 4.3 Assume the condition (1.3). Let p € X and put Ax = sup{A >0 : Ay € K}.
Then Ak € (0,00) and Ap € K if and only if N < M.

Proof. By Lemma 4.1 and the comparison principle, it suffices to prove A\g < oo. The
proof is by contradiction. We assume that there exists a function ¢ € X \ {0} such that
Ap € K for all A > 0. By the positivity of the nontrivial nonnegative solutions of the
heat equation, there exists a function v € C><(Q)) \ {0} such that suppy C QN B(0,1),
infannp(0,1/2) ¥(x) > 0, and

0 < ¥(a) < / Gz Doly)dy,  z €.
Q
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Then, by the comparison principle, we have
SO 2 A [ Gy Del)dy = M), e
Q

and obtain
(4.3) [S(t + 1)(Ap)](x) = [S(t)(A)](z), z € (2.

On the other hand, by (3.4), there exists a constant A’ > 0 such that

2

A 1
E[Mp(s) < —/ VY| pdy — /\”“——/ Y lpdo, < 0
i) < 35 [ 199l [ v,

for all A > ). This together with (3.5) implies that X'+ ¢ K. Therefore, by (4.3), we
have My € K, which is a contradiction. Therefore we see Ag < oo, and the proof of
Lemma 4.3 is complete. O

Lemma 4.4 Assume the condition (1.3). Let ¢ € K\ H and w = S(s)¢. Thenw(¢p) C S
and liminf,_ ||w(s)||e > 0.

Proof. Let ¢ € K\ H, u(t) = S(t)¢, and w(s) = S(s)¢. Let & be the constant given in
Proposition 2.1. If ||u(t)||1]Ju(t)]|x? """ < 6 for some t > 0, then ¢ € H C Int K. So, by
¢ € H, we have

lu@hlu@®IE® " =6, t>0.

This implies that
o)l lwIEe D" =5 s> 0.

Therefore, by Lemma 4.2, we have w(¢) C S. Furthermore, if liminf,_ ||w(s)|le =
0, then we have 0 € w(¢) C S. which contradicts the definition of S. So we have
lim inf,_o ||w(s)]lec > 0, and the proof of Lemma 4.4 is complete. O

Lemma 4.5 Assume the condition (1.3). Let ¢ € X \ {0} and put Ay = sup{A > 0 :
Mp € H}. Then Ap € H if and only if A < Ay. Furthermore Ay = Ax and Int K = H.

Proof. By Lemma 4.1-(ii) and the comparison principle, we see that Ay € H if and only
if A < A\y. In particular, since H C K, by Lemina 4.1-(i), we have

(4.4) Ay, Akp € K\ H and A > Ay.

Then the function (Mg /Ag)S(s)(Any) is a subsolution of (3.2) with the initial data A,
and by the comparison principle, we have

(S(s)Aae)l(y) < (Ax/A)[S(8)Are)](y) < [S(8)(Akw)l(y)



141

for all (y,s) € Q x (0,00). Therefore, by Lemma 4.4 and (4.4), there exist functions
fewAny) C Sand g € w(Agyp) C S such that

0 < fy) < (Ax/Au)fly) < gly), y € .

Then, by Lemma 4.1-(iv), we have f = g in €2, and obtain Ax = Ag.

By Lemma 4.1-(ii), we have H C Int K. It remains to prove Int K C H. Let ¢ € Int K.
Then there exists a constant A > 1 such that Ap € K, that is, 1 < Ag. This together
with Ay = A implies 1 < Ay, and ¢ =1 -9 € H. So we have Int K C H, and the proof
of Lemma, 4.5 is complete. O

Proof of Theorem 1.1. By Lemma 4.1, we see that K is a unbounded closed convex
set in X such that 0 € Int K. By Lemmas 4.4 and 4.5, we obtain Theorem 1.1-(ii).
Furthermore, by the same argument as in [15], we see that the unit sphere S in X and
OK are homeomorphic, and the proof of Theorem 1.1 is complete. O

5 Proof of Theorem 1.2

Proof of Theorem 1.2-(ii) and (iii). By Theorem 1.1, we have 0K = K \ H, and
by Lemmas 3.5 and 4.4, if ¢ € 9K, then

0 < liminf ||w(s)|lec < limsup ||w(s)|/ec < 0.

This implies Theorem 1.2-(ii). Furthermore, by applying the similar arguments as in (6]
and Proposition 2 in [15] to the solution u and its energy F'[u](t), we can prove Theorem
1.2-(iii) (see also Lemma 3.3). O

Proof of Theorem 1.2-(i). Let ¢ € Int K\ {0}. By Lemma 4.5, we have ¢ € H, and
by Lemma 4.1-(iii), we obtain (1.10). It remains to prove (1.11). Put
z(y,s) = (1 + t)%u(;r,t), y=(1+ t)_%;r, s = log(1+1t).

Then z satisfies
N ,
Osz=Lz+ —=z in Q x (0,00),
(5.1) 2 ~
O,z=¢e%zP on 00 x (0.00), z(y,0)=¢(y) in £

where k = (N/2)(p—1-1/N) > 0. By (2.3), we have

(5.2) sup || 2(8) || <.00.

s>0

By Lemma 3.1, (5.1), (5.2), and the trace inequality in the space H!({, pdy), we have

(5.3) sup || z(s)]]* < oo.
s>0
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Furthermore, since w(s) = e**z(s) with o« = 1/2(p — 1) — N/2, by Lemma 3.2 and (5.3),
we have

(5.4) ‘ sup ||Vz(s)|| < oc.

s>1

Then, by (5.2)—(5.4) and the trace inequality in the space H!(£2, pdy), we have

(55  sup / +(y,5)°pdo < sup ||=(s) |2 / +(y,5)%pdo < 00, a > 2.
0N s2>1 o5

s>1
Let ¢; (i =0,1,..., N — 1) be functions given in Lemma 3.1. Put

N-1

(5.6) Ey.s) = 2(y,5) = D_a(s)pilv), >0,
where a;(s) = (z(s), ;) fori € {0,1,..., N — 1}. Then
(5.7) (2(s),w) = (2(s), Lywi) =0,  s>0,

for i € {0,1,..., N — 1}, and by Lemma 3.1. we have

- N +2 . .
(5.8) [ 192w opty = =2 [ (3(y,5)Pody
Q Q

Furthermore, by Lemma 3.1, (5.1). (5.3) (5.8). we have the following lemma.

Lemma 5.1 Assume the same conditions as in Theorem 1.2 and ¢ € Int K. Then

(i) there exists a constant C; such that ||Z(s)|] < Cie™** for all s > 0, where k' =
min{k, 1/2},

(ii) there exists a constant Cy such that ||VZ(s)]] < Cge‘ans for all s > 2, where k" =
min{k,1/4};

(iii) for anyi=1,...,N — 1. there hold

O(e™3) if k>1/2,
la;(s)], lajy(s)] = ¢ Of(se”2) if k=1/2,
O(e™*) if 0<k<1/2,
for all s > 1. Furthermore there holds

lag(s) — cocul. |ap(s)] = O(e™F), s>1.
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Now we are ready to complete the proof of the inequality (1.11). By Lemma 5.1-(i)
and (iil), there exists a constant C; such that

N-1
(5.9) 12(s) — cocepoll < 11Z(s)I| + lao(s) — ol + ) las(s)|
i=1
< Cre ™ + Cre™2 if k#1/2,
- Ci(1+s)e™ 2 if k=1/2,
for all s > 1. Then there exists a constant C5 such that

Cot™* + Cot™2  if k #1/2,

10 — G < 5
(5.10) lu(t) (g(t)“l—{ Colog(l + t)t=% if k=1/2,

forallt > e — 1.
On the other hand, by (1.1), we have

(5.11)  u(z,2t) — cug(z,2t)

2t
- [ v diutyt) oty + [ | Glay2t = s)uly.)doyds
Q o

t

for all x € Q and £ > 0. Then, by (1.8), (1.10) with ¢ = oo, and (5.11), there exist
constants C3 and Cy such that
. 2t
(5.12) t2 [u(2t) — cg@)llw < Cillu(t) — cug(®)]ln + Cst7/ (2t — s)" 2 ||lu(s)ll5.ds
t
< Csllu(t) = cug(B)lls + Cat™"

for all ¢t > 0. Therefore, by (5.10) and (5.12), for any ¢ € [1, o], we have

Cst™F+Cst™2  if k+#1/2,

N 1
t2 A= u(t) — cg(t)]], <
) = e.g®lly < Cslog(1+)t-% if k=1/2,

for all t > e — 1, where Cs is a constant independent of g. This together with (2.3) implies
the inequality (1.11) for the case k # 1/2. and the proof of Theorem 1.2-(i) for the case
k # 1/2 is complete.

It remains to prove the inequality (1.11) for the case k = 1/2. Let k = 1/2. Since

/a @h(y)pi(y)pdo = 0, 1e{l,...,N —1},
Q

by Lemma 5.1-(iii), (5.2), and (5.6), there exist constants C's and C7 such that

/ z(s)Ppipdo

a0

< C'G/ |2(s) — cocepollpilpdo < CG/ |Z(8)||@s|pdo + Crse™ 2
a0

(719

(5.13)

/i [:(S)p - (C*CU‘PO)p]‘PiPdO
N
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for all s > 0. Furthermore, by Lemuma 5.1-(i), (ii), the trace inequality in the space
H'Y(Q, pdy), and the Holder inequality. there exist constants Cg and Cy such that

) ] ) __ »
/ :z<s>n¢iipdos(/ Jz(s)lzpdo*> ( / lnp,-lzpdo) < CollZ(5) 12y < Coe=
on N o

for all s > 2. This together with (5.13) implies that

d 1 . 1
!Egai(s) + 5(1,7-(5) < Coe~ ko=

forall s >2andi=1,...,N — 1. Then we can improve the inequality (5.9), and have
I1z(s) — cocapollr < 0109_%, s > 2.

for some constant Cyg. Therefore, by the same argument as in the inequality (1.11) for
the case k # 1/2, we have the inequality (1.11) for the case k = 1/2, and the proof of
Theorem 1.2-(i) is complete: thus the proof of Theorem 1.2 is complete. O
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