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Existence of maximizers for
functionals of critical growth
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1 Introduction and main results

The classical Trudinger-Moser inequality asserts that, for a € (0, ay], there
exists By o > 0 which depends only on N (N > 2) and « satisfying

N
/e"‘“"" < By o9 (1)
Q

for all bounded 2 C R" and for v € W, (Q) with IVullp vy = 1, where

an := N|S¥-1 %= and |SV¥~| is the surface area of the (N —1)-dimensional
unit sphere, see [14, 11]. Let

N

» j(z e(ylulm

bn o = sup e

weW N Tul =1 €2

The existence of a maximizer associated with by, is shown by Carleson-
Chang in [5] when § is an N-dimensional ball and by Flucher [6] when € is
a general bounded domain in R2.

There is an extension of this inequality to unbounded domains. Let N >
2, a € (0,ay] and let
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It is known that there exists Dy, which only depends on N and « satisfying

[ ovaw®™) < Dy, @)
R

for all u € Wy (RV) with ||u|liy1.~g~) = 1. The inequality (2) with N = 2
is introduced by Cao [4]. Later B. Ruf proved in [13] that ay = 47 is a critical
exponent. The case V > 3 is also treated in a recent paper [10].

The purpose of this note is to show the attainability of the best constant
dn o(RY) associated with (2), where

dno(RY) = sup / Dy o (uT).
RN

ue WIN(RN), fluily1,n (RN)=1

In [10], Li-Ruf proved that dy, with N > 3 and with a = ay (critical
case) is attained. The method used in [10] is a blow-up technique and cannot
be applied to the N = 2 case. The two dimensional case with a = ap = 47 is
treated by Ruf in [13] and it is claimed that d3 4 is attained. In the present
note, we treat the subcritical case and the critical case in a unified way based
on the concentration-compactness type argument [8, 9, 3, 2]. Moreover, we
also obtain the nonexistence result of maximizers for dy o With small a.

Our main results read as follows.

Theorem 1.1 ]
Let N > 2 and let ay = N|SN=Y~=T, where |SN™1] is the surface area of
the (N — 1)-dimensional unit sphere. Also, let

B — sup 2l
¢¢f),q>eH1 1[V¢[]§[|¢|f§

if N = 2. Then dyo(RY) is attained for 0 < a < ay with N > 3 and for
2/By < a < g = 47 with N = 2.

(3)

The number B; is the best constant of the (two-dimensional) H'-Moser
inequality

el < BalIVollsllslls, ¢ € HY, ¢ #0.

It is known that the interval (2/B,, ap] is non-empty, see e.g. 15, 1].
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Theorem 1.2
Let N =2. If a < 1. then dy.(R?) is not attained.

For the variational problem associated with (2), it is enough to con-
sider radially symmetric nonnegative functions by virtue of symmetrization.
Hence, in the following, we only consider radially symmetric, nonnegative
functions.

Notation | - ||Lr() denotes the standard LP(§2)-norm. We occasionally
omit the subscript 2 and we also use the abbreviation || - ||,. The norm
of WhN(Q) is defined by [[ull{ys~ ) = IVUllIn gy + lull P~ ). Br denotes
the ball in RY with radius R centered at the origin and B§ its complement.
M(Q) is a set consists of Radon measures in €. W denotes the set consists
of radially symmetric W' -functions. |B"| and |SV~!| denote the volume of
the N-dimensional unit ball and the surface area of the (N — 1)-dimensional
unit sphere, respectively. Let ay = NISN‘llNl_-l. The constant C may vary
from line to line. We pass to subsequences freely.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 needs the study of the supremum of the value
N

J ®no(uqd™') with vanishing or concentrating sequence (u,). At first we

introduce the definition of a vanishing/concentrating sequence. Let us intro-
duce the following quantities which measure the lack of mass:

Jto = lim sup lim sup/ (1Vu, |V + |u, ™), (4)
R—oo n—oo Br
Hoo = limsup lim sup (1Vu, |V + Jua V), (5)
R—o0 n—oo B;‘,
N
vy = limsup lim sup / Dy luy ™), (6)
R—oc n—oo J By
N
Voo = limsuplim sup/ Dpo(un ™), (7)
R—oc H—0C [3}(

R—o0 n—oc R—oc n—oc

7o = limsup lim sup/ lun|™ . Mee = limsuplim sup/ lun Y. (8)
J Br B

c
R



Definition 2.1

Let (u,) C WYV be a sequence such that u, — u weakly in WV,
(a) It is said that (u,) is a normalized concentrating sequence ((NCS) in
short) if (u,) satisfies |uallwrv =1, u =0 and lim, oo [, [VUun |V +|u, [V =
o(1) for all p > 0. ’
(b) It is said that (u,) is a normalized vanishing sequence ((NVS) in short)
if (u,) satisfies ||un||lwiv =1, u =0 and vy = 0, where vy is defined by (6).

Next we introduce the obstacle values for the compactness of maximizing
sequences.

Definition 2.2
(a) A number

N
dna(N, a) = sup{c; there exists a (NCS) (u,) s.t. ¢ =lim sup/@N,a(u%v‘—‘)}

s called a normalized concentration limit.
(a) A number

N
dui (N, a) = sup{c; there exists a (NVS) (u,) s.t. ¢ =lim stlp/@N,a(u,i"")}.

n—oo

s called a normalized vanishing limat.
Ruf proved in [13] that
dna(2, ) = em. (9)
Moreover, we can show the following:

Proposition 2.1
Let N > 2. N
-1

(a) Let o € (0,an). Then there holds dpwi(N, ) = (aN——IT

(b) It holds that dy o > &5 for a € (0, an] if N > 3 and for a € (2/ By, as)
if N = 2, where By is the best constant of H'-Moser inequality defined by

(3)-
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Let N = 2. From Proposition 2.1 and (9), we see that
da oy > duv1(2, a2) = a9 = 41 > em = dpa(2, az).

From this relation, it is observed that the main obstacle to the compactness
of the maximizing sequences for d,,, is not the concentrating behavior but
the vanishing behavior. Hence the exclusion of the vanishing behavior of
maximizing sequences is crucial for the verification of a maximizer associated
with d, o, and this analysis is not given in [13].

Sketch of the proof of Theorem 1.1 Let a € (0,ay) if N > 3 and let
a € (2/B;,as) if N = 2. Also let (u,) be a maximizing sequence for dy 4.
By virtue of the radially symmetric rearrangement, we can assume that u,, is
a radially symimetric, nonnegative function which is decreasing in the radial
coordinate. Since |[un|lw:~» = 1, we can find u € W'¥ such that

u, — u weakly in W1V, (10)
Let ¢%, ¢ € C® be cut-off functions satisfying
0<¢% <1, ¢%=1inBg, &% =0Iin Bf,,, (11)
and
0<¢x <1, ¢ =0inBp, ¢¥=1in By, (12)

respectively. Alsolet u; p := u, ¢y, where x = 0, co. By direct computations,
we can show

1= o+ oo, 1210+ and dyo =y + Voo (13)

Moreover, the concentration-compactness type argument as in [2, 3, 7] yields
the following alternative.

Lemma 2.1
It holds either

(10, v0) = (1,dn o) and (piec, Voo) = (0,0) (14)

or

(1o, v0) = (0,0) and (ftoc. Voc) = (1, dN.a)- (15)



Now we can show that vanishing cannot occur for maximizing sequences:

Proposition 2.2
It holds that

(HO,VO) = (ladN.n') and (/"“oo,s Voo) = (07 0) (16)

Proof of Proposition 2.2.

We show that (15) cannot occur. Indeed, assume that (15) is true. Note
that in this case, (u,) is a normalized vanishing sequence. Therefore, by
Proposition 2.1 (a), we have '

aN—l

' N
dy o = Voo = limsup lim sup/B Pnolun ") S don = (N - 1)

R—oc n—oo %
which contradicts Proposition 2.1 (b). Consequently, the only possible case
is (14) and this completes the proof. 1

Proposition 2.3
It holds that u # 0.

Proof of Proposition 2.3.

We only treat the case N = 2 and o = aq, since the other case is rather
easy by virtue of the local compactness. Assume that the conclusion is not
true and that u = 0. We first show that, under this assumption, (u} y) is a
(NCS). To this end, it is enough to verify that

./ (|V“2,H 2+ lu{r)zv,]? 2)—0 (17)
Bj
'(LO .
asn — oo for any p > 0. Let w, g := Wu’”’RHQ. Since po, = 0 and uﬁR — 0
n.R ’

strongly in L? by the assumption, we see that

, 1
lim sup |Vu) gl > = (18)
k2

[\]

n—oo

for large R. Fix such R > 0. Note that u? p — 0 weakly in H'(R?). Thus
by the concentration-compactness lemma [8, 9], we obtain

|Vwn g|> = 6y weakly in M(R?), w, g — O strongly in L (19)
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as n — oo.
Let ¢, r be a smooth cut-off function satisfying 0 < ¢,g < 1 in R2,
¢pr =1in Bg\ B, and ¢,p = 0in B, U B ;. Then

(VU0 R + [u0 g[?) = /

B;ﬂBR

(1 g2 + [0 al?) + / (VU2 g2 + [u2 4[?).

B BsNB

By (18) and (19), we obtain

/ (V0 pl? + [l l?) < / (VG pl + [ 52 bt + o(1)
B;;ﬂBR

B;ﬂBR

< |V n2 / (VU al? + [6 ) bpm + 0(1) < Cl6n, Spr) + o(1)
B/‘;ﬂBR

= C¢, r(0) + o(1) = o(1)

as n — oo. This relation gives (17). Combining this fact with p., = 0, we
also see that (u,) is a (NCS). Then by using (9), we have

dy o, = lim /Qg,a(ui) < d,,d(Q,Rz) =em,

n—00

which contradicts Proposition 2.1 (b). Hence we have u # 0. 1

Now the verification of the fact that u is a maximizer is rather standard.

3 Proof of Theorem 1.2

In this section, we always assume that N = 2 and a < 4n. Let M := {u €
H'(R?); ||u|lnr g2y = 1}. For any v € M, we introduce the following family
of functions v, given by

v(x) = Viu(Vix),

where ¢t > 0 is a positive parameter. Let w; := v,/||v||g1(x2y. Then w, is a
curve in M passing through v, since ||w||g1(rey = 1 and wy = vy /||vi||gr =
v/||vllgr = v. Therefore, if v is a critical point of Jyq(u) = [po P2.4(u?),
then

d

— w = 0. 2
dtJZ.(y(ul) . ( O)
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Now we compute the left hand side of (20). By using the fact Hvtng =
t®P=2/2||v|[2 and ||V, ||} = t*||Vo[l3, we see that

= £ o]l

Joa(Wr) = Joa (nv,”,,l M) Z_ NVl + [jvll3)7

Hence, in view of ||v]|g:1 = 1, we have

d o t'j—QH’U“g; 2 : 2
(_iz‘]z,a'(wt) 1 g T tvaH% F H’U.“%)j“'—l (“t”V’U”z + (J - 1)”1}”2) B
< —olblBIVolE + 3 vl
— alol3Ivel? |- Z o Hvi:ljl”VvHJ (21)

Here we take any # € (a,4n). By using the Gagliardo-Sobolev-Nirenberg
inequality with the sharp asymptotics (see e.g.[12]), we have

ol _ o 0t
TelBIvel = =57

where Cj is a constant only depend on /3. From this relation, we see that

(21) < alvlizlivel;

~1+aCs) 3 7
Jj=2
< allvll3| Vo3 [-1 + aCsC], (22)
where C > 0 is a constant independent of «, 3. Consequently, we have

d

_JQ,O((U‘}t)

= = allolI Vol (=1 + aCuC) < 0

t=1

for < 1/(CsC). Hence, in view of (20), no v can be a critical point of Jz o
in M when o < 1/(C3C). This completes the proof of Theorem 1.2.
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