
STABLE ELEMENTS IN COHOMOLOGY ALGEBRAS

Sasaki, Hiroki
佐々木洋城

Shinshu University, School of General Education
信州大学全学教育機構

1 Introduction

Twenty years have past since the cohomology rings of block ideals of finite group algebras
over fields of prime characteristics. Although many properties have been revealed by several
authors, there still remain fundamental problems that should be settled. Among them here
we would like to revisit the definition of the block cohomology.

M. Linckelmann [6] defined the cohomology of a block ideal to be the subring of the
cohomology ring of its defect group consisting of stable elements with respect to the fusion
system of subpairs contained in a maximal subpair. He proved that the cohomology of block
is embedded into the subring of the Hochshild cohomology ring of the defect group which is
stable with respect to the source algebra of the block.

Our aim in this report is to show that the converse of this result does hold.

Here we fix notation. Let $R$ be a commutative ring. For $G$ a finite group let $\delta_{G}$ :
$H^{*}(G, R)arrow HH^{*}(RG)$ denote the diagonal embedding, where $HH^{*}(RG)$ is the Hochshild
cohomology ring of the group algebra $RG$ .

2 Stable elemens

First of all we recall the definition of stable elements in Hochshild cohomology rings.

In this section we let $R$ be a symmetric ring and $Iet$ $A$ and $B$ be finitely generated R-
algbras.

Throuout of this section we let $X$ be an $(A, B)$ -bimodule such that as left A-module $X$ is
finitely generated and projective and al right B-module $X$ is finitely generated and projective.

Associated with the $(A, B)$ -bimodule $X$ a map $t_{X}$ : $HH^{*}(B)arrow HH^{*}(A)$ is defined, which
is called the transfer map. The image $\pi_{X}=t_{X}(1_{B})\in HH^{0}(A)$ , which is isomorphic to $Z(A)$ ,
is called the relatively X-projective element. We should mention that the transfer map and
then the relatively X-projective elements depend on the symmetrizing forms of $R$ . See [6]
for the detail.

Definition 2.1. A pair $(\zeta, \theta)\in HH^{*}(A)\oplus HH^{*}(B)$ is said to be X-stable if the elements
$\zeta\otimes$ Id$X\in Ext_{A\otimes B^{op}}(X, X)$ and Id$X\otimes\theta\in Ext_{A\otimes B^{op}}(X, X)$ coincide. The element $\zeta\in$
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$HH^{*}(A)$ is said to be X-stable. The set of the X-stable elements in $HH^{*}(A)$ forms a subring,
which is called the X-stable subring and is denoted by $HH_{X}^{*}(A)$ .

If $(\zeta, \theta)\in HH^{*}(A)\oplus HH^{*}(B)$ is X-stable then $(\theta, \zeta)\in HH^{*}(B)\oplus HH^{*}(A)$ is $\chi*$ -stable.

Linceklmann [6, Corolloary 3.8] says that if relatively projective element $\pi_{X^{*}}\in Z(B)$ is
invertible then an $X\otimes_{B}X^{*}$ -stable element in $HH^{*}(A)$ is also X-stable. The following is the
converse to this fact.

Proposition 2.1. Suppose that the relatively projective element $\pi_{X^{*}}\in Z(B)$ is invertible.
Then the followin hold.

(i) If $\zeta\in HH^{n}(A)$ is $X$ stable then the pair $(\zeta, \zeta)\in HH^{n}(A)\oplus HH^{n}(A)$ is $X\otimes_{B}X^{*}$ -stable.
In particular we have $HH_{X}^{n}(A)\subset HH_{X\otimes_{B}X^{*}}^{n}(A)$ .

(ii) We have $HH_{X}^{*}(A)=HH_{X\otimes_{B}X^{*}}^{*}(A)$ ; if $\zeta\in HH^{*}(A)$ is $X\otimes_{B}X^{*}$ -stable then $(\zeta, \zeta)\in$

$HH^{n}(A)\oplus HH^{n}(A)$ is $X\otimes_{B}X^{*}$ -stable.

3 Cohomology rings of block ideals

M. Linckelmann defined for a block ideal $B$ of $kG$ the cohomology algebra $H^{*}(G, B;D_{\gamma})$

with respect to a defect pointed group $D_{\gamma}$ . It is a subring of the cohomology ring $H^{*}(D, k)$

of the defect group $D$ consisting of stable elements. Namely

Deflnition 3.1. Let $i\in\gamma$ be a source idempotent of the block $B$ and let $(D, b_{D})$ be a maximal
B-Brauer pair associated with $i$ . Then the cohomology ring of the block $B$ is defined as
follows.
$H^{*}(G, B;D_{\gamma})$

$=\{\zeta\in H^{*}(D, k)|res_{Q^{g}}\zeta=res_{Q}\zeta \forall Q\leq D, \forall g\in N_{G}(Q, b_{Q}), (Q, b_{Q})\leq(D, b_{D})\}$ .

One of his main theorems is that the diagonal embedding maps the cohomology of the
block into the ikGi-stable subring of the Hochshild cohomology of the group ring $kD$ .
Theorem 3.1. Itfollows that

$\delta_{D}(H^{*}(G, B;D_{\gamma}))\subset HH_{ikGi}^{*}(kD)$ ,

where $HH_{ikGi}^{*}(kD)$ is the subring ofthe Hochchild cohomology ring $HH^{*}(kD)$ consisting of
the ikGi-stable elements.

Note that $X=kGi$ is a source module of the block $B$ and $ikGi=X^{*}\otimes_{B}X$ is the source
algebra of $B$ .

Let us review the theory of the stable elements in cohomology rings of finite groups. Let
$H\leq G$ . An element $\zeta\in H^{*}(H, k)$ is said to be G-stable if

$res_{H\cap^{g}H}\zeta=res_{H\cap sH^{g}}\zeta$ $\forall g\in G$ .
Let us consider the stablity condition above through the diagonal embedding $\delta_{H}$ : $H^{*}(H, k)arrow$

$HH^{*}(kH)$ .
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We see by Linckelmann [6, Lemmas 5.3 and 3.3] and Proposition 2.1 for $\zeta\in H^{*}(H, k)$

and $g\in G$ that

$res_{H\cap^{g}H}\zeta=$ re$s_{H\cap^{g}H^{g}}\zeta\Leftrightarrow\delta_{H}\zeta\in HH^{*}(kH)$ is $k[HgH]$ -stable

Therefore we see that

Lemma 3.2. For $\zeta\in H^{*}(H, k)$

$\zeta$ is $G- stable\Leftrightarrow\delta_{H}\zeta\in HH^{*}(kH)$ is $kHkG_{kH}$ -stable.

In particular, if $P$ is a Sylow p-subgroup of $G$ , then we have for an element $\zeta\in H^{*}(P, k)$

that
$\zeta\in{\rm Im}$ re$s_{P}\simeq H^{*}(G, k)\Leftrightarrow\delta_{P}\zeta\in HH^{*}(kP)$ is $kPkGkP$ -stable.

Comparing Theorem 3.1 and the observation above, we expect that the converse of the
theorem would hold; the answer is yes.

Theorem 3.3. An element $\zeta\in H^{*}(D, k)$ belongs to the cohomology $H^{*}(G, B;D_{\gamma})$ if and
only if the embedding $\delta_{D}\zeta\in HH^{*}(kD)$ is ikGi-stable.

Proof. Suppose for $\zeta\in H^{*}(D, k)$ that $\delta_{D}\zeta\in HH_{ikGi}^{*}(kD)$ . Then we see from Proposition
2.1 that $(\delta_{D}\zeta, \delta_{D}\zeta)\in HH^{*}(kD)\oplus HH^{*}(kD)$ is ikGi-stable. Thus for an arbitrary direct
summand $Y\simeq k[DxD]$ , as $(kD, kD)$ -bimodule, of $ikGi$ the pair $(\delta_{D}\zeta. \delta_{D}\zeta)\in HH^{*}(kD)\oplus$

$HH^{*}(kD)$ is $k[DxD]$ -stable. Therefore we have by Linckelmann [6, Lemma 5.3] that

$res_{D\cap^{X}D^{X}}\zeta=res_{D\cap^{x}D}\zeta$ .

We would like to show that $\zeta\in H^{*}(G, B;D_{\gamma})$ . It suffices to show that the stablity
condition in Definition 3.1 holds for subpairs $(Q, b_{Q})$ belonging to a conjugation family
$\ovalbox{\tt\small REJECT}\subseteq\{(Q, b_{Q})|(Q, b_{Q})\leq(D, b_{D})\}$ .

Furthermore, the family
$\ovalbox{\tt\small REJECT}=$ { $(Q,$ $b_{Q})|(Q,$ $b_{Q})\leq(D,$ $b_{D})$ is extremal}

is a conjugation family; if $(Q, b_{Q})\leq(D, b_{D})$ is extremal, then $C_{D}(Q)$ is a defect group of
the block $b_{Q}$ of $kC_{G}(Q)$ . (Alperin-Brou\’e [1])

Linckelmann [5, Lemma 3.3 $(v)$] says for $a$ subpair $(Q, b_{Q})$ that if $C_{D}(Q)$ is $a$ defect
group of $b_{Q}$ , then for $g\in N_{G}(Q, b_{Q})$ , as a $(kQ, kQ)$ -bimodule, $k[gQ]$ is a direct summand
of $ikGi$ . Now as a $(kD, kD)$ -bimodule we can write $ikGi\simeq\oplus k[DxD]$ as $a$ direct sum of

$x\in/$

indecomposables and let us assume as $(kQ, kQ)$-bimodules that

$k[gQ]|k[DxD]$ .

As a $k[Q\cross Q^{op}]$ -module $k[gQ]$ has $a$ trivial source and vtx $k[gQ]=(g,1)\Delta Q$ :

$k[gQ]=k[Q\cross Q^{op}]\otimes_{k[\Delta Q]}(g.1)k$ .
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As a $k[D\cross D^{op}]$ -module, $k[DxD]$ has a trivial source and vtx $k[DxD]=(x|)\Delta(x^{-1}D\cap D)$ :

$k[DxD]=k[D\cross D^{op}]\otimes_{k[\Delta(D\cap D)]^{k}}(x.|)r^{-1}$ .

Therefore we see that

$k[Q\cross Q^{op}]\otimes_{k\mathfrak{c}\Delta Qj}(g.1)k|klQxQ^{\circ p}lk[D\cross D^{op}]\otimes_{k[\Delta(D\cap D)]^{k}}(x.|)x^{-1}$ .

Applying Mackey decomposition to the right hand side we have for an element $(a, b^{-1})\in$

$D\cross D^{op}$ that

$k[Q\cross Q^{op}]\otimes_{k[\Delta Q]}(g.1)k|k[Q\cross Q^{op}\rceil\otimes_{k[x^{-1}}Q\cross Q^{\circ p\cap t)(|)}a.b^{-1}\mathfrak{r}.\Delta(D\cap D)]^{k}$.

Thus we may assume by Green’s indecomposablity theorem that

$(g,1)\Delta Q=Q\cross Q\cap\Delta(x^{-1}D\cap D)$ .

From this equation we see for some element $y\in C_{G}(Q)$ that $g=axby$ . Notice moreover
that $bQ\leq x^{-1}D\cap D$ .

Recall that
re$s_{D\cap^{x}D}\zeta=$ re$s_{D\cap^{x}D^{X}}\zeta=X$ res. $-1D\cap D\zeta$ .

Using the decription that $g=axby$ and the equation above, we can verify that the stablity
condition does hold:

$res_{Q^{g}}\zeta=$ re$s_{Q}\zeta$ .
$\square$

4 Characteristic biset

Let $P$ be a p-group and let .9 be a fusion system on $P$ . Then the cohomology ring $H^{*}(\ovalbox{\tt\small REJECT})$

of $\ovalbox{\tt\small REJECT}$ is defined in a similar way to that of the cohomology ring of block ideals. $Broto-Le$vi-
Oliver [2] says that there exists a $(P, P)$ -biset $X$ , which induces a map

$t_{X}$ : $H^{*}(P, k)arrow H^{*}(P, k)$

with nice properties. In particul$ar$

$t_{X}(H^{*}(P, k))=H^{*}(\ovalbox{\tt\small REJECT})$ .

Such $a$ biset $X$ is called a characteristic biset.

If $P$ is $a$ Sylow p-subgroup of $G$ and $\ovalbox{\tt\small REJECT}_{P}(G)$ is the fusion system, then the map $t_{X}$ :
$H^{*}(P, k)arrow H^{*}(P, k)$ is the following: for $\zeta\in H^{*}(P, k)$

$t_{X}$ : $\zeta\mapsto$ re
$s_{P} tr^{G}\zeta=\sum_{PgP\in P\backslash G/P}$

tr $P_{res_{P\cap sp^{g}}\zeta}$ .
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Note that the following commute$s$ :

$H^{*}(P, k)arrow^{\delta_{P}}HH^{*}(kP)$

$tx\downarrow$ $Q$ $\downarrow t_{kp^{kG_{kp}}}$

$H^{*}(P, k)arrow_{\delta_{P}}HH^{*}(kP)$

The cohomology of the fusion system $\ovalbox{\tt\small REJECT}_{(D,b_{D})}(B)$ is $H^{*}(G, B;D_{\gamma})$ .
Let $X$ be a characteristic $(D, D)$-biset for $\iota\ovalbox{\tt\small REJECT}_{(D,,.b_{D})}(B)$ . Using the properties of the map

$t_{X}$ : $H^{*}(D, k)arrow H^{*}(D, k)$ , Linckelmann obtained the stratification theorem for block
varieties of modules.

However we would like to get the map $t_{X}$ more convenient to handle with. The reason is
as follows. Let $DC_{G}(D)\leq H\leq G$ and let $C$ be $a$ block ideal of $kH$ that corresponds to $B$

under Brauer correspondence and has defect group $D$ . Under some further conditions there
should exit maps

$r$ : $H^{*}(G, B)arrow H^{*}(H, C)$ ,

$t$ : $H^{*}(H, C)arrow H^{*}(G, B)$ .

These maps should have the properties similar to the restriction maps and corestriction map$s$

for cohomology rings of finite groups.

If $Y$ is a characteristic biset for the block $C$ , then we should have the following commuta-
tive diagram

To define the map $t$ : $H^{*}(H, C)arrow H^{*}(G, B)$ the maps $t_{X}$ and $t_{Y}$ must be easy to under-
stand.

Now let us consider the restriction $t$ : $H^{*}(D, k)arrow H^{*}(D, k)$ of the transfer map $t_{ikGi}$ :
$HH^{*}(kD)arrow HH^{*}(kD)$ defined by the $(kD, kD)$ -bimodule $ikGi$ :

$H^{*}(D, k)arrow^{\delta_{D}}HH^{*}(kD)$

$\prime I$ $Q$ $\downarrow t_{ikGi}$

$H^{*}(D, k)arrow HH^{*}(kD)\delta_{D}$

We hope that

$H^{*}(G, B;D_{\gamma})=t(H^{*}(D, k))$ .
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We note that

$H^{*}(G, B;D_{\gamma})=t(H^{*}(D, k))\Leftrightarrow\delta_{D}t(H^{*}(D, k))\subset HH_{ikGi}^{*}(kD)$.

If the inclusion above holds, then we have by our Theorem 3.3 for $\zeta\in H^{*}(G, B;D_{\gamma})$ that
$t(H^{*}(D, k))\subset H^{*}(G, B;D_{\gamma})$ and the following diagram commutes:

Since the relatively projective element $\pi_{ikGi}\in k$ does not vanish, the horizonta] map is an
isomorphism and thus we have $H^{*}(G, B;D_{\gamma})=t(H^{*}(D, k))$ .

If the defect group is abelian or normal in $G$ then the equality we want holds. However in
general cases we have no progress so far.
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