On the Glauberman-Watanabe correspondence for p-blocks of a p-nilpotent group with a cyclic defect group

千葉大学 (Chiba university) 田阪文規 (Fuminori Tasaka)

## 1

Let p be a prime. Let  $(\mathcal{K}, \mathcal{O}, k)$  be a p-modular system where  $\mathcal{O}$  is a complete discrete valuation ring having an algebraically closed residue field k of characteristic p and having a quotient field  $\mathcal{K}$  of characteristic zero which will be assumed to be large enough for any of finite groups we consider in this article. We use the notation  $\bar{}$  for the reduction modulo  $J(\mathcal{O})$ . Let  $\mathcal{R} \in \{\mathcal{K}, \mathcal{O}, k\}$ . Below, for groups  $H_1$  and  $H_2$ , an  $\mathcal{R}[H_1 \times H_2]$ -module X and an  $(\mathcal{R}H_1, \mathcal{R}H_2)$ -bimodule X will be identified in the usual way, namely  $(h_1, h_2) \cdot x = h_1 \cdot x \cdot h_2^{-1}$  where  $h_1 \in H_1$ ,  $h_2 \in H_2$  and  $x \in X$ . For a common subgroup D of  $H_1$  and  $H_2$ , denote by  $\Delta D = \{(u, u) \mid u \in D\}$  a diagonal subgroup of  $H_1 \times H_2$ . Let  $\mathcal{R}' \in \{\mathcal{O}, k\}$ . For a p-group P, an  $\mathcal{R}'$ -free  $\mathcal{R}'P$ -module T is called an endopermutation module if  $\operatorname{End}_{\mathcal{R}'}(T)$  has an P-invariant  $\mathcal{R}'$ -basis ([1]).

Let q be a prime such that  $q \neq p$ . Let  $S = \langle s \rangle$  be a cyclic group of order q. Let  $\mu \in \mathcal{O}$  be a fixed non-trivial q-th root of unity.

Let G be a finite group such that  $q \not| |G|$ . Assume that S acts on G. Then with this action, we can consider the semi-direct product of G and S, denoted by GS. Denote by  $G^S$  the centralizer  $C_G(S)$  of S in G. When G is odd, for G is G in G is a unique extension G is a unique character G is a unique character G is a unique sign G is a unique sign G is a unique sign G is a unique character G is a unique extension G is an G is a unique character G is a unique extension G is a unique character G is a unique extension G is an G is an a unique character G is a unique extension G is called that G is a unique extension of G is called the G is called the G is a unique extension of G is called that G is a unique extension of G is called that G is a unique extension of G is such that G is a unique extension of G is a unique extensi

Let b be an S-invariant (p-)block of G having an S-centralized defect group D. Denote by w(b) the Glauberman-Watanabe corresponding block of b, that is, the block of  $G^S$  with a defect group D such that  $Irr(w(b)) = \{\pi(G, S)(\theta) \mid \theta \in Irr(b) = Irr(b)^S\}$ . For  $t \in \mathbb{Z}$ , let  $\hat{b}_t$  be the block of GS such that  $Irr(\hat{b}_t) = \{\lambda^t \hat{\theta} \mid \theta \in Irr(b)\}$  (under appropriate choices of signs  $\epsilon_\theta$  when q = 2), and let  $e_t$  be the block of S corresponding to the representation of S determined by  $s \mapsto \mu^t$ . Let

$$b_r = \sum_{t=0}^{q-1} e_t \hat{b}_{t+r}$$
 for  $0 \le r \le q - 1$ . (1)

Then  $b = \sum_{r=0}^{q-1} b_r$  is an orthogonal idempotent decomposition of b in  $(\mathcal{O}Gb)^{G^S}$  and so  $b_r\mathcal{O}G$  is a direct summand of the  $\mathcal{O}[G^S \times G]$ -module  $\mathcal{O}Gb$ , and the following equation of the generalized characters of  $G^S \times G$  holds, see [6] and [7]:

$$\chi_{b_0\mathcal{O}G} - \chi_{b_l\mathcal{O}G} = \sum_{\theta \in \operatorname{Irr}(b)} \epsilon_{\theta} \pi(G, S)(\theta) \otimes_{\mathcal{K}} \check{\theta} \quad \text{for } 1 \leq l \leq q - 1,$$
 (2)

where  $\chi_{b_r\mathcal{O}G}$  is a character corresponding to a  $\mathcal{K}[G^S \times G]$ -module  $b_r\mathcal{K}G$  and  $\check{\theta}$  is a  $\mathcal{K}$ -dual of  $\theta$ . (Below, denote by  $\check{b}$  the block containing  $\check{\theta}$  for  $\theta \in \operatorname{Irr}(b)$ .) Equation (2) gives immediately the following Watanabe's result, see [9]:

The map determined by  $\theta \mapsto \epsilon_{\theta}\pi(G, S)(\theta)$  where  $\theta \in Irr(b)$ , induces a perfect isometry  $\mathbb{Z}Irr(b) \simeq \mathbb{Z}Irr(w(b))$  between the Glauberman-Watanabe corresponding blocks.

and, as noted by Okuyama in [6], raised the following question:

Is the left hand side of equation (2) is a "shadow" of a complex of  $(\mathcal{O}G^Sw(b), \mathcal{O}Gb)$ -bimodule which induces a derived equivalence between  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$ ?

In fact, we have the following:

**Theorem 1.1.** With the above notations, moreover assume that G is p-nilpotent and D is cyclic. Then there is a two term complex  $C^{\bullet}$  of  $(\mathcal{O}G^{S}w(b), \mathcal{O}Gb)$ -bimodule satisfying the following:

- (1)  $b_0\mathcal{O}G$  is in degree 0 and  $b_l\mathcal{O}G$  is in degree 1 or -1.
- (2)  $C^{\bullet}$  induces a derived equivalence between  $\mathcal{O}Gb$  and  $\mathcal{O}G^{S}w(b)$ .

Further,  $C^{\bullet}$  is quasi-isomorphic to a one term complex consisting of the bimodule M satisfying the following (M is in degree 0 if  $\epsilon_b = 1$  and M is in degree 1 or -1 if  $\epsilon_b = -1$  where  $\epsilon_b = \epsilon_\theta$  for  $\theta \in Irr(b)$ , which depends only on b):

- (a) M induces a Morita equivalence between  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$ .
- (b) M has a vertex  $\Delta D$  and an endo-permutation source.

 $C^{\bullet}$  in Theorem 1.1 induces above Watanabe's perfect isometry, see the condition in Theorem 1.1(1) and quation (2), and M in Theorem 1.1 induces the Glauberman correspondence of characters belonging to b and w(b). The existence of M as in Theorem 1.1 is a particular case of the result of Harris-Linckelman for p-solvable case and of Watanabe for p-nilpotent blocks, see [5] and [10]. See also [4] for the existence of a derived equivalence between blocks with cyclic defect groups inducing prescribed perfect isometry.

Below, with the assumptions in Section 1, G and b are such that:

Condition 2.1. G is a p-nilpotent group with an S-centralized cyclic Sylow p-subgroup P of order  $p^{\alpha}$ , that is,  $G = KP = K \rtimes P$  where  $K = O_{p'}(G)$ . b is a P-invariant block of K, hence a block of G with a defect group D = P.

In fact, by the Fong's first reduction as described in [5, Section 5] and Theorem 2.2 and 2.3 below, Theorem 1.1 above can be shown.

Denote by  $P_i$  the unique subgroup of P with the order  $p^i$  for i such that  $0 \le i \le \alpha$ . Recall that the image  $\operatorname{Br}_{P_i}(b)$  of the Brauer homomorphism  $\operatorname{Br}_{P_i}$  of b is primitive in  $Z(kC_K(P_i))$  and hence is a block of  $C_G(P_i) = C_K(P_i)P$ , and let  $\mathfrak{Br}_{P_i}(b)$  be the corresponding block over  $\mathcal{O}$ . Note that  $b = \mathfrak{Br}_{P_0}(b)$ . Idempotents  $\mathfrak{Br}_{P_i}(b)_r \in \left(\mathcal{O}C_G(P_i)\mathfrak{Br}_{P_i}(b)\right)^{C_GS(P_i)}$  (see (1) in Section 1) are defined similarly. Denote by  $M_j^j$  the unique trivial source  $\mathcal{O}[C_{GS}(P_i) \times C_G(P_i)]$ -module in  $w(\mathfrak{Br}_{P_i}(b)) \times \mathfrak{Br}_{P_i}(b)$  with vertex  $\Delta P_j$  for j such that  $0 \le j \le \alpha$ . Let  $M^j = M_0^j$ . Let  $\epsilon_{\mathfrak{Br}_{P_i}(b)} = \epsilon_{\chi_i}$  where  $\chi_i \in \operatorname{Irr}(C_G(P_i) \mid \mathfrak{Br}_{P_i}(b))$ . Note that  $\epsilon_{\mathfrak{Br}_{P_i}(b)}$  depends only on  $\mathfrak{Br}_{P_i}(b)$ .

**Theorem 2.2.** The following are equivalent for a fixed i where  $0 \le i \le \alpha$ :

- (1)  $\epsilon_{\mathfrak{Br}_{P_h}(b)} = \epsilon_{\mathfrak{Br}_P(b)}$  for any h such that  $i \leq h \leq \alpha$ .
- (2) The unique simple  $k(C_{K^S}(P_i) \times C_K(P_i)) \Delta P$ -module in  $w(Br_{P_i}(b)) \times Br_{P_i}(b)$  is a trivial source module.
- (3)  $M_i^{\alpha}$  is a unique indecomposable direct summand of  $\mathcal{O}C_G(P_i)\mathfrak{Br}_{P_i}(b)\downarrow_{C_GS(P_i)\times C_G(P_i)}$  with a multiplicity not divisible by q.
- (4) (a)  $\mathfrak{Br}_{P_i}(b)_0 \mathcal{O}C_G(P_i) \simeq M_i^{\alpha} \oplus \mathfrak{Br}_{P_i}(b)_l \mathcal{O}C_G(P_i)$  if  $\epsilon_{\mathfrak{Br}_P(b)} = 1$ . (b)  $\mathfrak{Br}_{P_i}(b)_l \mathcal{O}C_G(P_i) \simeq M_i^{\alpha} \oplus \mathfrak{Br}_{P_i}(b)_0 \mathcal{O}C_G(P_i)$  if  $\epsilon_{\mathfrak{Br}_P(b)} = -1$ .
- $(5)M_i^{\alpha}$  induces a Morita equivalence between  $\mathcal{O}C_G(P_i)\mathfrak{Br}_{P_i}(b)$  and  $\mathcal{O}C_{G^{\mathbf{c}}}(P_i)w(\mathfrak{Br}_{P_i}(b))$ .
- (6)  $\mathcal{O}C_G(P_i)\mathfrak{Br}_{P_i}(b)$  and  $\mathcal{O}C_{G^S}(P_i)w(\mathfrak{Br}_{P_i}(b))$  are Puig equivalent.

The conditions of Theorem 2.2 above always holds for  $i = \alpha$ . If the conditions of Theorem 2.2 holds for i = 0, that is,  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$  are Puig equivalent, then, by the conditions of Theorem 2.2(4) and (5), we can construct a desired two term complex  $C^{\bullet}$  as in Theorem 1.1 with  $M = M^{\alpha}$ .

Below, we consider the case where  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$  are not Puig equivalent. Then there is some  $\beta$  as in Theorem 2.3 below, see, for example, conditions of Theorem 2.2(1) and Thorem 2.3(1).

Since  $(K^S \times K)\Delta P$  is p-nilpotent, sources of simple  $k(K^S \times K)\Delta P$ -modules are endo-permutation modules (Dade [2]). Since  $\Delta P$  is cyclic, indecomposable endo-permutation  $k\Delta P$ -modules with vertex  $\Delta P$  are the modules of the following form (Dade [2]):

 $\Omega_{\Delta P}^{a_0} \operatorname{Inf}_{\Delta(P/P_1)}^{\Delta P} \Omega_{\Delta(P/P_1)}^{a_1} \operatorname{Inf}_{\Delta(P/P_2)}^{\Delta(P/P_1)} \cdots \operatorname{Inf}_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-3})} \Omega_{\Delta(P/P_{\alpha-2})}^{a_{\alpha-2}} \operatorname{Inf}_{\Delta(P/P_{\alpha-1})}^{\Delta(P/P_{\alpha-2})} \Omega_{\Delta(P/P_{\alpha-1})}^{a_{\alpha-1}}(k),$ where  $\Omega$  means Heller translate and  $a_i \in \{0, 1\}$ .

**Theorem 2.3.** Let  $\beta$  be such that  $0 \le \beta \le \alpha - 1$ . The following conditions on  $\beta$  are equivalent:

- (1)  $\epsilon_{\mathfrak{Br}_{P_{\beta}}(b)} \neq \epsilon_{\mathfrak{Br}_{P}(b)}$  and  $\epsilon_{\mathfrak{Br}_{P_{h}}(b)} = \epsilon_{\mathfrak{Br}_{P}(b)}$  for any h such that  $\beta + 1 \leq h \leq \alpha$ .
- (2)  $a_{\beta} = 1$  and  $a_h = 0$  for any h such that  $\beta + 1 \leq h \leq \alpha$  where  $a_i$ 's are 0 or 1 describing a source of the unique simple  $k(K^S \times K)\Delta P$ -module in  $w(\bar{b}) \times \check{b}$  as above (when p = 2, let  $a_{\alpha-1} = 0$ ).
- (3)  $\mathcal{O}C_G(P_\beta)\mathfrak{Br}_{P_\beta}(b)$  and  $\mathcal{O}C_{G^S}(P_\beta)w(\mathfrak{Br}_{P_\beta}(b))$  are not Puig equivalent and  $\mathcal{O}C_G(P_h)\mathfrak{Br}_{P_h}(b)$  and  $\mathcal{O}C_{G^S}(P_h)w(\mathfrak{Br}_{P_h}(b))$  are Puig equivalent for any h such that  $\beta + 1 \leq h \leq \alpha$ .
- (4) The multiplicity of  $M^{\beta}$  in  $\mathcal{O}Gb\downarrow_{G^S\times G}$  is not divisible by q.
- (5)  $M^{\alpha}$  and  $M^{\beta}$  are only indecomposable direct summands of  $\mathcal{O}Gb\downarrow_{G^{S}\times G}$  with multiplicities not divisible by q.
- (6) (a)  $b_l \mathcal{O}G \oplus M^{\alpha} \simeq b_0 \mathcal{O}G \oplus M^{\beta}$  if  $\epsilon_{\mathfrak{Br}_P(b)} = 1$ . (b)  $b_0 \mathcal{O}G \oplus M^{\alpha} \simeq b_l \mathcal{O}G \oplus M^{\beta}$  if  $\epsilon_{\mathfrak{Br}_P(b)} = -1$ .
- (7) (a) When  $\epsilon_b \epsilon_{\mathfrak{Br}_P(b)} = -1$ , there is an epimorphism  $\Phi : M^{\beta} \to M^{\alpha}$  such that  $N = \operatorname{Ker}\Phi$  induces a Morita equivalence between  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$ .
  - (b) When  $\epsilon_b \epsilon_{\mathfrak{Br}_P(b)} = 1$ , there is an epimorphism  $\Phi : M^{\alpha} \to M^{\beta}$  such that  $N = \operatorname{Ker}\Phi$  induces a Morita equivalence between  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$ .

If  $\mathcal{O}Gb$  and  $\mathcal{O}G^Sw(b)$  are not Puig equivalent, then, by the conditions of Thorem 2.3(6) and (7), we can construct a desired two term complex  $C^{\bullet}$  as in Theorem 1.1 with M=N. Note that a source of  $\overline{N}$  is a source of the unique simple  $k(K^S \times K)\Delta P$ -module in  $w(\overline{b}) \times \overline{b}$ , and an  $\mathcal{O}$ -lift of an endo-permutation module is an endo-permutation module.

In fact, a source of the module inducing the concerned Morita equivalence between  $kG\bar{b}$  and  $kG^Sw(\bar{b})$  and "signs of the local blocks"  $\epsilon_{\mathfrak{Br}_{P_i}(b)}$  are related as follows:

**Proposition 2.4.** The following conditions on  $\alpha$  numbers  $a_i \in \{0, 1\}$   $(0 \le i \le \alpha - 1)$  are equivalent when p is odd:

- (1) A source of the unique simple  $k(K^S \times K)\Delta P$ -module in  $w(\overline{b}) \times \dot{\overline{b}}$  has the following form:
- $\Omega^{a_0}_{\Delta P} \mathrm{Inf}_{\Delta(P/P_1)}^{\Delta P} \Omega^{a_1}_{\Delta(P/P_1)} \mathrm{Inf}_{\Delta(P/P_2)}^{\Delta(P/P_1)} \cdots \mathrm{Inf}_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-3})} \Omega^{a_{\alpha-2}}_{\Delta(P/P_{\alpha-2})} \mathrm{Inf}_{\Delta(P/P_{\alpha-1})}^{\Delta(P/P_{\alpha-2})} \Omega^{a_{\alpha-1}}_{\Delta(P/P_{\alpha-1})}(k).$ 
  - (2)  $\epsilon_{\mathfrak{Br}_{P_i}(b)} = (-1)^{a_i} \epsilon_{\mathfrak{Br}_{P_{i+1}}(b)}$  for any i such that  $0 \leq i \leq \alpha 1$ .

**Proposition 2.5.** The following conditions on  $\alpha - 1$  numbers  $a_i \in \{0, 1\}$   $(0 \le i \le \alpha - 2)$  are equivalent when p = 2:

(1) A source of the unique simple  $k(K^S \times K)\Delta P$ -module in  $w(\overline{b}) \times \dot{\overline{b}}$  has the following form:

$$\Omega_{\Delta P}^{a_0} \operatorname{Inf}_{\Delta(P/P_1)}^{\Delta P} \Omega_{\Delta(P/P_1)}^{a_1} \operatorname{Inf}_{\Delta(P/P_2)}^{\Delta(P/P_1)} \cdots \operatorname{Inf}_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-3})} \Omega_{\Delta(P/P_{\alpha-2})}^{a_{\alpha-2}}(k).$$

(2)  $\epsilon_{\mathfrak{Br}_{P_i}(b)} = (-1)^{a_i} \epsilon_{\mathfrak{Br}_{P_{i+1}}(b)}$  for any i such that  $0 \leq i \leq \alpha - 2$ .

## References

- [1] E. C. Dade: Endo-permutation modules over p-groups I, Ann. of Math. 107 (1978), 459-494.
- [2] E. C. Dade: Endo-permutation modules over p-groups II, Ann. of Math. 108 (1978), 317–346
- [3] G. Glauberman: Correspondence of characters for relatively prime operator groups, Canad. J. Math. **20** (1968), 1465–1488.
- [4] N. Kunugi: A Remark on derived equivalences and perfect isometries, 京都大学数理解析研究所講究録 1466 (2006), 80-83.
- [5] M. E. Harris, M. Linckelmann: On the Glauberman and Watanabe correspondences for blocks of finite p-solvable groups, Trans. Amer. Math. Soc. **354** (2002), 3435–3453.
- [6] T. Okuyama: A talk at a Seminar in Ochanomizu University on 5 November, 2005.
- [7] F. Tasaka: On the isotypy induced by the Glauberman-Dade correspondence between blocks of finite groups, J. Algebra 319 (2008), 2451–2470.
- [8] F. Tasaka: On the Glauberman-Watanabe correspondence of p-blocks of a p-nilpotent group with a cyclic Sylow p-subgroup, preprint.
- [9] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548-565.
- [10] A. Watanabe: The Glauberman correspondent of a nilpotent block of a finite group, Osaka J. Math 45 (2008), 869-875.