A SHORT PROOF OF THE EXISTENCE OF THE ROST COHOMOLOGICAL INVARIANT

茨城大学教育 柳田 伸顕(NOBUAKI YAGITA) FACULTY OF EDUCATION, IBARAKI UNIVERSITY

1. INTRODUCTION

Let G_k be a split linear algebraic group over a field k. The cohomological invariant $Inv^*(G_k; \mathbb{Z}/p)$ is (roughly speaking) the ring of natural maps $H^1(F; G_k) \to H^*(F; \mathbb{Z}/p)$ for finitely generated field F over k. For each simple simply connected group, Rost defined the invariant $R(G_k) \in Inv^3(G_k; \mathbb{Z}/p)$, which is nonzero whenever the corresponding complex Lie group G has p-torsion.

In this paper, we give a short proof of the existence of the Rost invariant for an algebraic closed field k in \mathbb{C} , by using motivic cohomology and the affirmative answer of the Bloch-Kato conjecture by Voevodsky.

2. MOTIVIC COHOMOLOGY

Recall that $H^1(k; G_k)$ is the first non abelian Galois cohomology set of G_k , which represents the set of G_k -torsors over k. The cohomology invariant is defined by

$$Inv^{i}(G_{k}, \mathbb{Z}/p) = Func(H^{1}(F; G_{k}) \to H^{i}(F; \mathbb{Z}/p))$$

where Func means natural functions for each fields F over k. (For accurate definition or properties, see the books [Ga-Me-Se], [Ga].)

Let BG_k be the classifying space ([To]) of G. Totaro proved [Ga-Me-Se] the following theorem in the letter to Serre.

Theorem 2.1. (Totaro) $Inv^*(G_k; \mathbb{Z}/p) \cong H^0(BG_k; H^*_{\mathbb{Z}/p}).$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11E72, 12G05, 55P35; Secondary 55T25,57T05.

Key words and phrases. Rost invariant, cohomological invariant, motivic cohomology.

Here $H^*(X; H^{*'}_{\mathbb{Z}/p})$ is the cohomology of the Zarisky sheaf induced from the presheaf $H^*_{et}(V; \mathbb{Z}/p)$ for open subsets V of X. This sheaf cohomology is also the E_2 -term

$$E_2^{*,*'} \cong H^*(BG_k; H_{\mathbb{Z}/p}^{*'}) \Longrightarrow H^*(BG_k; \mathbb{Z}/p)$$

of the coniveau spectral sequence by Bloch-Ogus [Bl-Og].

Next we recall the motivic cohomology. Let X be a smooth (quasi projective) variety over a field $k \subset \mathbb{C}$. Let $H^{*,*'}(X; \mathbb{Z}/p)$ be the mod(p) motivic cohomology defined by Voevodsky and Suslin ([Vo1-3]). Recall that the Belinson-Lichtenbaum conjecture holds if

$$H^{m,n}(X; \mathbb{Z}/p) \cong H^m_{et}(X; \mu_p^{\otimes n}) \quad for \ all \ m \le n.$$

Recently M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) proved the Bloch-Kato conjecture. The Bloch-Kato conjecture implies the Beilinson-Lichtenbaum conjecture.

In this paper, we assume that k contains a primitive p-th root of unity. Then there is the isomorphism $H^m_{et}(X; \mu_p^{\otimes n}) \cong H^m_{et}(X; \mathbb{Z}/p)$. Let τ be a generator of $H^{0,1}(Spec(k); \mathbb{Z}/p) \cong \mathbb{Z}/p$, so that

$$colim_i\tau^i H^{*,*'}(X;\mathbb{Z}/p) \cong H^*_{et}(X;\mathbb{Z}/p).$$

The Beilinson and Lichtenbaum conjecture also implies the exact sequences of cohomology theories

Theorem 2.2. ([Or-Vi-Vo], [Vo5]) There is the long exact sequence

 $\to H^{m,n-1}(X;\mathbb{Z}/p) \xrightarrow{\times \tau} H^{m,n}(X;\mathbb{Z}/p)$

 $\to H^{m-n}(X; H^n_{\mathbb{Z}/p}) \to H^{m+1,n-1}(X; \mathbb{Z}/p) \xrightarrow{\times \tau}$.

In particular, we have

Corollary 2.3. The graded ring $grH^{m-n}_{Zar}(X; H^n_{\mathbb{Z}/p})$ is isomorphic to

$$H^{m,n}(X;\mathbb{Z}/p)/(\tau) \oplus Ker(\tau)|H^{m+1,n-1}(X;\mathbb{Z}/p)$$

where $H^{m,n}(X; \mathbb{Z}/p)/(\tau) = H^{m,n}(X; \mathbb{Z}/p)/(\tau H^{m,n-1}(X; \mathbb{Z}/p)).$

Corollary 2.4. The map $\times \tau : H^{m,m-1}(X;\mathbb{Z}/p) \to H^{m,m}(X;\mathbb{Z}/p)$ is injective.

3. LIE GROUPS

In this section, we assume that k is an algebraic closed field in \mathbb{C} . Let G be the complex Lie group corresponding to G_k for fields k. Suppose

that G is a simple simply connected Lie group having p-torsion in $H^*(G)$, namely

$$(G,p) = \begin{cases} G_2, F_4, E_6, E_7, E_8, Spin_n \ (n \ge 7) & for \ p = 2\\ F_4, E_6, E_7, E_8 & for \ p = 3,\\ E_8 & for \ p = 5. \end{cases}$$

It is known that G is 2-connected and there is an element $x_3(G) \in H^3(G; \mathbb{Z}/p) \cong \mathbb{Z}/p$ with $Q_1x_3(G) \neq 0$ for the Milnor operation Q_1 . Note that for each inclusion $i: G \subset G'$ for above groups, we know $i^*(x_3(G')) = x_3(G)$. Consider the classifying space BG and its cohomology. Denote by $x_4(G)$ the transgression of $x_3(G)$ in $H^4(BG; \mathbb{Z}/p)$, namely, $x_4(G)$ generates $H^4(BG; \mathbb{Z}/p) \cong \mathbb{Z}/p$ and $Q_1(x_4(G)) \neq 0$. We will write the integral lift of $x_4(G)$ also by the same letter $x_4(G)$.

Lemma 3.1. The element $px_4(G) \in H^4(BG)_{(p)}$ is represented by the Chern class $c_2(\xi)$ of some complex representation $\xi : G \to U(N)$.

Proof. We only need to prove for $G = Spin_n, p = 2$ and $G = E_8$ for odd primes. Because when p = 2, there is the inclusion $i : G \subset Spin_N$ for some N so that $i^*(x_4(Spin_N)) = x_4(G)$. For odd prime cases, there is the inlusion $i : G \subset E_8$, such that $i^*(x_4(E_8)) = x_4(G)$.

The complex representation ring is known for N = 2n + 1

$$R(Spin_N) \cong \mathbb{Z}[\lambda_1, ..., \lambda_{n-1}, \Delta_{\mathbb{C}}],$$

where λ_i is the *i*-th elementary symmetric function in variables $z_1^2 + z_1^{-2}, \ldots, z_n^2 + z_n^{-2}$ in $R(T) \cong \mathbb{Z}[z_1, z_1^{-1}, \ldots, z_n, z_n^{-1}]$ for the maximal torus T in $Spin_N$. Let T^1 be the first factor of T and $\eta : T^1 \subset Spin_N$. Then it is proved (page 1052 in [Sc-Ya]) that

$$\eta^* c_2(\lambda_1) = 4u, \quad \eta^* x_4(Spin_N) = 2u$$

where u is the generator of $H^2(BT^1; \mathbb{Z}) = \mathbb{Z}$. This implies $2x_4(Spin_N) = c_2(\lambda_1)$.

Let $\alpha: E_8 \to SO(248)$ be the adjoint representation of E_8 . By the construction of the exceptional Lie group E_8 in [Ad], there exists a homomorphism β : Spin(16) $\to E_8$ such that the induced representation of $\alpha \circ \beta$ is the direct sum of λ_{16}^2 : Spin(16) $\to SO(120)$ and Δ_{16}^+ : Spin(16) $\to SO(128)$. Let T^8 be the maximal torus of Spin(16). Let T^1 be the first factor of T^8 and $\eta: T^1 \to \text{Spin}(16)$ the inclusion of T^1 into Spin(16). Then it is proved ([Ka-Ya]) that the total Chern class of the complexification of $\alpha \circ \beta \circ \eta$ is

$$1 - 120u^2 + \dots \in \mathbb{Z}[u] \cong H^*(BT^1; \mathbb{Z}).$$

Since $120 = 2^3 \cdot 3 \cdot 5$, the Chern class $c_2(\alpha)$ represents $\gamma px_4(E_8)$ for p = 3, 5 in $H^4(BE_8; \mathbb{Z}_{(p)})$, where γ is a unit in $\mathbb{Z}_{(p)}$.

Let $t_{\mathbb{C}} : H^{*,*'}(X; \mathbb{Z}/p) \to H^*(X(\mathbb{C}); \mathbb{Z}/p)$ be the realization map ([Vo1]) for the inclusion $k \subset \mathbb{C}$. Voevodsky defines the Milnor operation Q_i also in the mod p motivic cohomology

$$Q_i: H^{*,*'}(-; \mathbb{Z}/p) \to H^{*+2p^i-1,*'+p^i-1}(-; \mathbb{Z}/p)$$

which are compatible with the usual (topological) cohomology operations by the realization map $t_{\mathbb{C}}$. For smooth X, the oparation

 $Q_i: H^{2*,*}(X; \mathbb{Z}/p) = CH^*(X)/p \to H^{2*+2p^i - 1, *+p^i - 1}(X; \mathbb{Z}/p) = 0$

is zero since $2(* + p^i - 1) - (2* + 2p^i - 1) = -1 < 0$.

Theorem 3.2. There is the nonzero element $y_3(G_k) \in Inv^3(G_k; \mathbb{Z}/p)$ which is natural for the embedding $G_k \subset G'_k$ of the groups.

Proof. From Corollary 2.3, we see

$$Ker(\tau)|H^{4,2}(BG_k;\mathbb{Z}/p)\subset H^0(BG_k;H^3_{\mathbb{Z}/p})\cong Inv^3(G_k;\mathbb{Z}/p).$$

Hence we only need to see the existence of a nonzero element $c \in H^{4,2}(BG_k; \mathbb{Z}/p)$ with $\tau c = 0$.

Since $Q_1(x_4(G)) \neq 0$, there is no element x in $H^{4,2}(BG_k; \mathbb{Z}/p)$ such that $t_{\mathbb{C}}(x) = x_4(G)$, while there exists in $H^{4,4}(BG_k; \mathbb{Z}/p)$ from the Beilinson-Lichtenbaum conjecture.

On the other hand, $c_2(\xi) \in CH^2(BG_k)$, in fact Chow rings have Chern classes. Since $t_{\mathbb{C}}(c_2(\xi)) = px_4(G)$, we see that $c_2(\xi)$ is an additive generator of $H^{4,2}(BG_k)_{(p)}$, so is nonzero in $H^{4,2}(BG_k; \mathbb{Z}/p)$.

Consider the element

$$\tau^2(c_2(\xi)) = px = 0 \in H^{4,4}(BG_k; \mathbb{Z}/p) \cong H^4(BG; \mathbb{Z}/p) \cong \mathbb{Z}/p.$$

From Corollary 2.4, the map $\times \tau : H^{4,3}(BG_k; \mathbb{Z}/p) \to H^{4,4}(BG_k; \mathbb{Z}/p)$ is injective. Hence $\tau c_2(\xi) = 0$ in $H^{4,3}(BG_k; \mathbb{Z}/p)$.

References

- [Ad] J. F. Adams. Lectures on exceptional Lie groups, Univ. Chicago Press, Chicago, IL, 1996.
- [Bl-Og] S.Bloch and A.Ogus. Gersten's conjecture and the homology of schemes. Ann.Scient.Éc.Norm.Sup. 7 (1974) 181-202.
- [Ga] S.Garibaldi. Cohomological invariants : exceptional groups and Spin groups (wth an appendix by D.Hoffmann). to appear in Memor. Amer. Math. Soc.
- [Ga-Me-Se] S.Garibaldi, A.Merkurjev and J.P.Serre. Cohomological invariants in Galois cohomology. University lect. series vol(28) AMS (2003).

- [Ka-Ya] M.Kameko and N.Yagita. Chern subrings. to appear in Proc. of Amer. Math. Soc.
- [Or-Vi-Vo] D.Orlov, A.Vishik and V.Voevodsky. An exact sequence for Milnor's Ktheory with applications to quadric forms. Ann. of Math. 165 (2007) 1-13.
- [Sc-Ya] B. Schuster and N. Yagita, Transfers of Chern classes in BPcohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1039–1054 (electronic).
- [Su-Jo] A.Suslin and S.Joukhovistski. Norm Variety. J.Pure and Appl. Algebra 206 (2006) 245-276.
- [To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 248-281.
- [Vo1] V. Voevodsky. The Milnor conjecture. www.math.uiuc.edu/Ktheory/0170 (1996).
- [Vo2] V. Voevodsky. Motivic cohomology with Z/2 coefficient. Publ. Math. IHES 98 (2003), 59-104.
- [Vo3] V. Voevodsky (Noted by Weibel). Voevodsky's Seattle lectures : K-theory and motivic cohomology Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 283-303.
- [Vo4] V.Voevodsky. Reduced power operations in motivic cohomology. Publ.Math. IHES 98 (2003),1-57.
- [Vo5] V.Voevodsky. On motivic cohomology with Z/l-coefficients. www.math.uiuc.edu/K-theory/0631 (2003).

Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

E-mail address: yagita@mx.ibaraki.ac.jp,