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An application of Uno correspondences in p-solvable groups
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Let (K, O, k) be a sufficiently large p-modular system such that k is algebraically closed.
Weset R = O or k. Let G be a finite group. For an indecomposable RG-module M and an
RG-module N, m(M, N) denotes the multiplicity of M as an indecomposable component
of N. RG-modules which we consider are finitely generated right modules. We use same
notations for characters too. For a p-subgroup @ of G, we denote by Ind (RG|Q) the set
of isomorphism classes of indecomposable RG-modules with vertex Q. For an RG-module
V, [V] denotes the isomorphism class containing V.

Hypothesis 1 A finite group A acts on a finite group G via group automorphisms and
(A, |G]) = 1. Moreover C = Cg(A).

K. Uno extended the Glauberman-Isaacs correspondences between Irr(G)# and Irr(C)
to a correspondence between IBr(G)# and IBr(C) when G is p-solvable ([5]), Theorem).
We prove the following by using the Uno correspondence.

Theorem 1 Assume Hypothesis 1 and that G is p-solvable. Let Q < C be a p-subgroup.
There exists a bijection

(G, A; Q) : Ind(RG|Q)* — Ind(RC|Q)

which satisfies the following (i) and (ii). For[V] € Ind(RG|Q)4, set [V'] = n(G, A; Q)([V]).

(i) If B < A, then n(G, 4 Q) = n(Cc(B), A/ B; Q)m(G, B; Q).

(ii) Assume A is an r-group where r is a prime. Then V is a unique A-invariant
indecomposable component of V' 1C with verter Q and with the multiplicity prime to r.
Moreover V' is a unique indecomposable component of V |c with the multiplicity prime
to v and with vertex Q, and we have also m(V',V |¢) = m(V, V' 1) (mod r).

In particular, if A is solvable then m(G, A; Q) is uniquely determined.

Let G be an R-algebra which is finitely generated as an R-module. We denote by
P(G) the set of points of G. For € € P(G), we denote by P. a corresponding projective
indecomposable G-module. If a group A acts on G via R-algebra automorphisms, then
A acts on P(G).

1  Correspondences for principal indecomposable modules

Assume Hypothesis 1. Then A acts on RG via R-algebra automorphisms. Let H < G
and L be an RH-module. For a € A, L® = {I% | |l € L} can be regarded as an R-module
isomorphic to L by the map [+ [®. Moreover L* becomes an R H®-module by the action

1°h® = (Ih)* (L€ L, h e H).
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For a,b € A, we have
(L*)® = L% (a,b€ A).

Thus if H is A-invariant, then A acts on the R H-modules.
Hypothesis 2 With Hypothesis 1, G is p-solvable.

Theorem 2 (Uno [5]) Assume Hypothesis 2. There exists a bijection
p(G, A) : IBr(G)* — IBr(C)

which satisfies the following (i) and (ii). For 3 € IBr(G)4, set B’ = p(G, A)(B).

(i) If B < A, then p(G, A) = p(Cc(B), A/ B)p(G, B).

(ii) If A is an r-group for a prime r, §'is a unique irreducible constituent of 8 |c with
the multiplicity prime to r. Moreover [3 is a unique A-invariant irreducible constituent
of B/ 1€ with the multiplicity prime to r, and we have also m(G, 16y = m(4,8 |
C) (mod r).

Proof. (i) is already shown. (ii) Assume A is an r-group. In general if x is a character of
G, then the restriction of x to the p-regular elements is denoted by x*. By the arguments
in [5], there is an element x € Irr(G)” such that 8 = x*, 3 = (x')*, where x’ is the
Glauberman correspondent of x. Here note 8’ 1¢= (x’ 1¢)*. Now we can set

s t
X 1%=mx+ ) mixi+ Y, mixg
i=1 j=s+1
where x; (1 < i < s) are A-invariant irreducible characters of G different from x and
xj (s+1 < j < t) are not A-invariant. Then r{m and 7 | m;. We note if x; and
xj ( j,7 = s+ 1) are A-conjugate, then m; = mj .. Then, for any v € IBr(G)4, the
decomposition numbers dy;, and alxj,.y are equal. Hence, since A is an r-group, 0 is a

unique A-invariant irreducible constituent of 8’ 1¢ with the multiplicity prime to r, and
m(B3,6 1¢) = m (mod r). On the other hand m = m(x/,x lc) = m(8,8 l¢) (mod r)
because x Jc= mYx + r{ where ¢ = 0 or ( is a character of C. This completes the proof.
[

Let M, be an irreducible kG-module corresponding to € € P(kG). We have (P;)* = Pea
and (M.)* = M. for any a € A. Hence by the above theorem and the Frobenius-
Nakayama’s reciprocity theorem we have the following.

Proposition 1 Assume Hypothesis 2. There exists a bijection
7(G, A) : P(kG)A — P(kC)

which satisfies the following (i) and (ii). For e € P(kG)4, set € = 7(G, A)(e).

(1) If B < A, then 7(G, A) = #(Cg(B), A/B)7(G, B).

(ii) Assume A is r-group for a prime r. Then € is a unique element of P(kG)? such that
r f m(P., Ps 19). Moreover € is a unique element of P(kC) such that v f m(Pe, P |c),
and we have also m(Py, P. |¢) = m(P,, P+ 1) (mod r).

Remark 1 In the above proposition,

m(P., P. 1¢) # 0.
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Proof. Since X’ is a constituent of x ¢, # is a constituent of 3 | ¢ where 3 € IBr(G)".

Hypothesis 3 With Hypothesis 1, k.G is a twisted group algebra of G over k with a basis
{uz | z € G} and with a factor set a. Moreover A acts on k.G via k-algebra automorphims
and the following holds:

(kuz)® = kuga (Vz € G,Va € A).

Proposition 2 Assume Hypothesis 3. There is a central extension of G which satisfies
(i) - (iii).
1-z-6La-1

(i) 12| = (IGlp)?, ) )

(ii) The action of A on G is extended to G, that is, f(y*) = f(y)* (Vy € G,Va € A).
Moreover f~1(C) = Ca(A),

(iii) There are an idempotent e of kZ and a k-algebra isomorphism f : e(kG) — k.G
compatible with the action of A.

Proof. We may assume a satisfies
a(z, ) =1, a(z,1)=a(l,z) =1 (Vz,7’ € G).

Then wu; is the identity element of k,G. Set V = {3 € k* | 8ISl =1} = {B € k* | Bl =
1}. By the assumption, for each a € A and x € G, we can write

(uz)® = cla, r)uze (c(a, ) € k*).
From (ugzuz)® = (uz)®(ug)®
(1) a(z,z’)c(a, zx') = c(a, x)c(a, T )a(z®, £'*).

Therefore c(a, )c(a, z')c(a, zz’)~! € V foreacha € Aand z,z’ € G. Hence c(a, z)/%" = 1,
and hence c(a, m)(lclv’)2 = 1. Since (uz)® = ((uz)?)?

(2) c(ab, z) = c(a, x)c(b, x%).

Moreover we have ¢(a,1) = 1. Set H = {8 € k> | gl)* = 1}. (We will construct
a central extension of G using the method in [3], 3.5.15, and [6], (10.4)) We define the
multiplication in G = H x G as follows :

(h,z)(K,2') = (hW o(z, 2'), zz').

Then G forms a group with the identity element (1,1). Also Z = H x 1 is a central
subgroup of G. The map ¢ : Z — H((h,1) — h) is an isomorphism, in particular Z is a
p'-group. Moreover (|Z],|A|) = 1. Therefore if

f:G -G ((hz)— 1)

then X
1—>Z-—>G—{+G—>1



91

is a central extension of G which satisfies (i).
By using (1) and (2)

(h,z)* = (he(a, x),2%) (V(h,z) € G, Ya € A)

defines an action of A on G via group automorphisms. We note A centralizes Z and
f@®) = f(y)* (y € G). Moreover Cs(A) C f7H(C). Let c € f71(C) and a € A. We have
¢® = zc for some z € Z. Since 2°d =1, z = 1, so ¢ € Cx(A). Thus (ii) holds.
For any z € G, set & = (1,z). We have &z/ = (a(:r,a:’),l):;a\:’, (h,z) = (h,1)Z
(Vh € H). Moreover
€= IZI Z o(z71

2E€EZ

is an idempotent of kZ and for any z € Z, and we have ze = t(z)e. Therefore e(kG) =
D, k(ex), (ex)(ex') = a(z,z’)(exz’). This implies

f:e(kG) = k.G (Z cz(ex) — Z Czliz)

zeG zeG

is an isomorphism of k-algebras. Moreover if a € A, then

F((e2)*) = cla, )uge = f(ed)® (Vz € G).
Thus (iii) holds. W

Remark 2 With Hypothesis 3, A centralizes k.C.
Proof. Our proof is the same as the proof of [2], 7.6. From (1) and (2)

c(a, zy) = c(a, z)c(a, y),
c(ab,z) = c(a,z)c(b,z) (Va,be A, Vz,y € C).
The fact that (|A4],|C|) = 1 implies c(a, z) = 1.

Proposition 3 Assume Hypotheses 2 and 8. There exists a bijection
(G, A) : P(k,G)* — P(k.C)

which satisfies the following (i) and (ii). For e € P(k.G)?4, set € = m. (G, A)(e).

(i) If B Q A, then (G, A) = m.(Cg(B),A/B)7n.(G, B).

(i) Assume A is an r-group for a prime r. Then € is a unique element of P(k.G)4
such that v} m(Pe, Po Qk,c k«G). Moreover € is a unique element of P(k.C) such that
rf m(Py, P lk,c), and we have also m(Py, P; |g.c) = m(Pe, Py Qk,c k+G) (mod 7).

Proof. We will use Proposition 1. At first we note that G is p-solvable. For a subgroup
U of G, set U = f~1(U). Then the k- algebras e(kU ) and k,U are isomorphic by the
isomorphism f| (kiny- For o€ Pk U), we set 6 = f~1(6) € P(e(kU)). Note that when
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U is A-invariant, § is A-invariant if and only if & is A-invariant. For § € P(k.U) and
€ € P(k«G), we have

(3) m(Pe, Ps 8k.v kuG) = m(P:, P; 1), m(Ps, P, Li.v) = m(Ps, P: 1)

Since Z is a central subgroup of G, a point of kG is a point of the k-algebra e(ké)
or a point of (1 — e)(kG). If {1 is a point of e(kC), then (P2 19)(1 — ) = 0. Hence the
bijection 7(G, A) in Proposition 1 induces a bijection from P(e(kG))” onto P(e(kC)) by
Remark 1. Here we can define the bijection m,(G, A) : P(k.G)* — P(k.C) as follows

FH (G, A)(0) = 7(G, A)(#).

From Proposition 1, (i), 7.(G, A) satisfies (i). (ii) follows from Proposition 1, (ii), the
definition of m,(G, A) and (3).

2 The endomorphism ring of an induced module

Let Q < G and let S be an RQ-module. Let H ‘be a subgroup of G containing Q. The
RH-module S TH can be embedded in S 1€. Set H = H/Q and

Eg = Endgry(S 7).

We can regard the R-algebra Eg as a subalgebra of E5. For § € P(Eg), Vs be an an
indecomposable component of the RH-module S 1 corresponding to § ([3], Theorem
1.5.4). We may assume P5 = dEg and Vs = d(S 1) for some d € 6. We have

Vs = P5(S).

Proposition 4 Suppose that Q < H < G, and let § € P(Eg). For d € §, we have an
tsomorphism of RG-modules

(d(s 1)) 192 4(s 19).
In particular

(4) Vs 192 @ m(P, Ps 1)V,
E€'P(E(;)

where Py TG= Ps ®E§- Eé.

Proof. This is clear. In fact, suppose that G = ULSIH'H z;. We have

|G:H|
(d(S 1)) 19= P d(S 1¥) ®n =,
1=1
|G:H|
d($1%) = @ d($ %)
1=1

Therefore
|G:H| |G:H|

> w®z € (d(S 1) 19 3wz € d(S1°)

=1 =1
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is an isomorphism. W

Pid(Eg) ———— Pid(Eg)

induction

o o

Comp(S 1H) ———— Comp(S 1)

induction

From now, assume that S is G-invariant, that is, for any r € G, S® z = S as R@Q-
modules. For o € G, let x, be an element of 0. We have

§16= P s e
oG

We set
E,={¢€Exs|9Y(S®1)C SRz}

By the assumption E, contains an invertible element 1,. We have

E,E, = E,; (Vo,7€G), Eg=PE, (Q<H<QG).
ocH

That is, Eg is a crossed product of H over Ej.
Let a subgroup H be fixed. Set

ls = m(Vs, S 17) = m(Ps, Ef) (V6 € P(Eg)).

We also set G = Uﬁ}HlyiH and ; = 1y,o. Since 1); is invertible, we have the following

|G:H| |G:H]|

(5) Es= P viEr= P (P vibs)
i=1

8€P(FEg) =1
as Eg-modules. Hence
U Eg®p, (S17) = S19 (@ (s®h) = (s @ b))

is an isomorphism of R H-modules (cf. Theorem A in [1]). Let

Es=EPP
s

be a decomposition of Ex into indecomposable Ez-modules, wherev = |G : H| Y seP(Eg) Lo

The isomorphism ¥ induces a decomposition of S 1¢ into R H-modules:

S19= P P.(S 1), P.®g, S 17=P(S17).

s=1

We note that if P; and P; are isomorphic, then it is clear that Ps®g, S 1H>~ p, ®Epg S 1H,
and hence Ps(S 1) = P,(S 1#). Moreover, if P; = ; P5, then Ps(S TH) = V;. Hence we
have the following.
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Proposition 5 For any e € P(Eg),

(6) Viln 2 @ m(Ps, P leg)Va

Pid(Eg) 2r<fon,  pid(Eg)

o o

Comp(S TG) restriction Comp(S TH)

3 A correspondence between Comp(S 1¢)4 and Comp(S T¢)

In this section we assume Hypothesis 1 and let 2 and S be as in the previous section.
Moreover we assume Q < C. Then A acts on G. Since (|4],|Q|) = 1, Cz(A) = C. Since
Q C C, the induced module S 1C is A-invariant, in fact, S T¢ becomes an R(G x A)-
module by the following action of A on S 1¢ :

(7) (s®z)a=s5®z(s€ S, x€G, ac A).

And we have

(8) (mz)a = (ma)z® (m e S1°, z€G,ac A).

Moreover, A acts on Ex via R-algebra automorphisms as follows :
¥*(m) = ¥(ma Ya (¥ € E5, me S 1, a € A).

If v € E,, then
Y(s®1)=yY(s®1l)a € S®(z,)%,

where z, € o. Therefore B
(Ey)® = Eze (0 € G, a€ A).

Lemma 1 Fore € P(Eg) and a € A, we have
(Ve)* = Vee.
In particular ¢ is A-invariant if and only if V. is A-invariant.

Proof. We can set V., = e(S 1) ( e € ¢). From the action of A on Eg, for a € A,
e?(S 1) = e(S 1%)a = (V,.)a. Therefore

v® € (Vo)* - va € (Vi)a
is an isomorphism of RG-modules (see (8)). B

From now on we assume S is indecomposable. Let @ < H < G. Then J(E\))Eg =
EgJ(E() is an ideal of Eg. We set

Eg =Eg/J(Eq)Eg,
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E, = (E, + J(Eq)Eg)/J(Eqy)Es (Vo € G).

We can regard Ep as a k-subalgebra of Es. Since k is algebraically closed, Eg; is a
twisted group algebra of G over k. As Ej, is A-invariant, A acts on Eg via k-algebra
automorphisms. Moreover we have

(E,)* = E,a (0 €G, a€ A).
Therefore G, A and E; satisfies Hypothesis 2.

Lemma 2 With the above notations, assume G is p-solvable. There exists a bijection
m(Eg, A) : P(Eg)* — P(Eg)

which satisfies the following (i) and (ii). For e € P(Eg)4, set € = n(Eg, A)(e).

(i) If B < A, then n(Eg, A) = n(Ecys), A/ B)r(Eg, B).

(ii) Assume A is an r-group for a prime r. Then € is a unique element of P(Es)
such that rf m(Py, P |gs). Moreover € is a unique element of P(Eg)" such that
mf m(P, P ®p, Eg), and we have also m(Py, P. |g,) = m(P, Ps ®E, Eg) (mod r).

Proof. In our proof we will use lifting of idempotents ([6], Theorem 3.2) repeatedly. Let
Q < U < G. Since J(Eqy)Ey is contained in J(Ep), the canonical homomorphism from
Ey onto Ey induces a bijection between P(Ey) and P(Ey). For 6 € P(Ey), we denote
by b the corresponding point of Epy. When U is A-invariant, § is A-invariant if and only if
4 is A-invariant. Therefore by using the bijection 7,.(Es, A) obtained in Proposition 3 for
the twisted group algebra Ez, we can define the bijection m(Eg, A) : P(Eg)4 — P(Eg)
as follows

m(Eg, A)(€) = m(Eg, A)(€).
From Proposition 3, (i), m7(Eg, A) satisfies (i). Now it is easy to see that

m(Pts)PE lE(j) = m(Péa PE lEﬁ)a

m(Pe, Ps®g, Eg) = m(Pe, Pj Rz, Eg)

because P;Qp, Es = (Ps ®ey Fa)/(Ps®Ee,; Eg)J(E@y). Hence from Proposition 3, (ii),
(ii) holds. &

Let @ < U < G with U A-invariant. We denote by Comp(S 1Y) the isomorphism
classes of indecomposable components of S V. From (4), (6), Lemmas 1 and 2, the
following holds.

Proposition 6 With the above notations, assume G is p-solvable. There exists a bijection
7(G, A; §) : Comp(S 1¢)4 — Comp(S 1°)

which satisfies the following (i) and (ii). For[V] € Comp(S 19)4, set [V'] = n(G, A; S)([V]).
(i) If B 9 A, then n(G,Q; S) = m(Ca(B), A/B; S)n(G, B; S).
(ii) Assume A is an r-group for a prime r. Then V' is a unique indecomposable
component of V | ¢ with the multiplicity prime to r. Moreover V is a unique A-invariant

indecomposable component of V' 1€ with the multiplicity prime to r, and we have also
m(V',V |c) = m(V, V' 19) (mod r).
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m(Eg,A)
—_—

P(Eg)A P(Es
lle Tl:l
P(Ee)A  ZEed, p(g)

] Tia

Comp(S 16)4

7(G,A;S)

4 Proof of Theorem 1

We assume Hypothesis 2. Let K < G and X be an RK-module. We have

1

xea TGg (X TG)a (la Rpa T — (l QL % )a).

Therefore if an indecomposable RG-module X has a vertex D, then X? has a vertex D°.

Let Q < C. If an indecomposable RG-module V has a vertex Q, then V? has a
vertex ). We denote by gy, (@) the Green correspondence from Ind(RNg(Q)|Q) onto
Ind (RG|Q). If V' is the Green correspondent of an indecomposable RG-module V,
V'@ is the Green correspondent of V2. In particular V is A-invariant if and only if Vv’
is A-invariant. Let S be an indecomposable RQ-module and set T' = Ng(Q,S), the
stabilizer of S in Ng(Q). Then there is a natural bijection compatible with the action of
A between Comp(S 17) and Ind(S 1V6(@)) ([3], Corollary 4.6.8). Assume Q is a vertex
of §. We denote by Ind(RG]||S) the set of isomorphism classes of indecomposable RG-
modules with a QQ-source S. Hence there is a natural bijection compatible with the action
of A between Ind(RG||S) and Comp(RT}|S) by Green correspondence. Now suppose that
Q < H < G. For M € Comp(S 17) and L € Comp(S 1T"H), set V = gn () (M 1V6(Q)

and W = gn,, o) (L TNH(Q)), By a property of Green correspondence we can see

(9) m(V, W 19) = m(M, L 17),

(10) m(W,V |g) =m(L,M |gnr).

Proof. At first we give a remark. By Hypothesis 1, if ¢ € Ng(Q), then x = cy
(c € Nc(Q),y € Cz(Q)) by a theorem of Schur-Zassenhaus. Therefore if RQ-modules S
and Sy are Ng(Q)-conjugate, then those are N¢(Q)-conjugate.

Now let [V] € Ind(RG|Q)? and S be a Q-source of V. Set T = Ng(Q,S). By
a property of Green correspondence there is a unique M € Comp(S 17)4 such that
V is a component of M 1€, that is, V is the Green correspondent of M 1V6(Q) et
[M'] = n(T. A : S)([M]) and V' = gy, @) (M 17Nc(@) where T = T/Q. By the above
remark, the map

[V] € Ind(RG|Q)4 — [V'] € Ind(RC|Q)

is a bijection. We denote it by 7(G, 4; Q). By Proposition, (i), (i) holds.
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Ind(RG||S)A — Ind(RC||S)

Green MT [Gmn

Ind(RNg(Q) —~ [d(RNc(@)]5)

z’nductz’onT Tinduction
Comp(S 17)4 s Com(s 171

Now assume A is an r group. Then the above M is an A-invariant unique indecompos-
able component of M’ 17 with the multiplicity prime to r by Proposition 6, (ii). Therefore,
from (9), wee see V is a unique A-invariant indecomposable component of V' TG with the
multiplicity prime to r and with vertex Q. (In fact we have m(V, V' 1¢) = m(M, M’ 17T))
On the other hand m(V’,V |5) = m(M', M |on~r) from (10). Hence m(V, V' 1€) =
m(V’,V |¢) (mod r) by Proposition 6, (ii). Now suppose that

vx(V) =c Q, r/m(V,V |5)

for an indecomposable RC-module V. Moreover let S be a Q-source of V. Then by
Mackey decomposition, S and S are Ng(Q)-conjugate, and hence we may assume S=38.
By Proposition 6, (ii) again, we see [V] = [V’]. This completes the proof. B

Question: Assume A is solvable. Let 3 € IBr(G)# and # be the Uno correspondent
of 8. Suppose vx(8) = Q < C. Then vx(8') = Q by [4], Theorem. Let V3 be a kG-module
with Brauer character 8. When is (G, A; Q)(Vg) = Vi ?
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