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Abstract

We show that the consistency strength of the Fodor-type Reflection Principle for the second uncountable
cardinal is exactly that of a Mahlo cardinal.

Introduction

The Fodor-type Reflection Principles for various uncountable cardinals A, denoted by FRP()), are
introduced in [F]. We are interested in the consistency strength of FRP(w2) in this note. Let us recall the
following two reflection principles, where S2 = {a < ws | cf(a) = w} and S% = {a < wy | cf(a) = w1 }.

(1) For all stationary S C [w2], there exists v € S% such that SN [y]“ is stationary in [y]*.
(2) For all stationary S C S2, there exists v € S? such that SN+~ is stationary in 1.

It is known that FRP(w;) fits in between these two by [F]. Namely, (1) implies FRP(w;). And FRP(w;)
implies (2). The consistency strength of (1) is that of a weakly compact cardinal by [V]. And the consistency
strength of (2) is that of a Mahlo cardinal by [H-S]. We follow [S] (pp.576-581) to show that the consistency
strength of FRP(ws) is that of a Mahlo cardinal.

§1. Main Theorem

Definition. A map (Cs | § € E) is a ladder system, if E C S? is stationary in w, and each Cj is a
cofinal subset of § such that the order-type of Cs is w. Let v € S?. We say a sequence (X; | i < w)) is a
filtration on +, if it is continuously C-increasing countable subsets of v with [J{X; | i <w1} =1.

The following is equivalent to the FRP(w2) of [F] and we take this as our definition of FRP(w.).

Definition. The Fodor-type Reflection Principle for the second uncountable cardinal, denoted by
FRP(w,), holds, if for any ladder system (Cs | § € E), there exists v € SZ and a filtration (X; | ¢ <w;) on
7 such that T = {i < w | sup(X;) € E and Cyyp(x,) € Xi} is stationary in wy.

Definition. Let x be a strongly inaccessible cardinal. The Levy collapse which makes k = wy by
the countable conditions is denoted by Lv(k,w;). Hence p € Lv(k,w1), if p is a function whose domain is
a countable subset of [we,x) X w; such that for all (£,4) in the domain of p, we demand p(§,1) < €. For
p,q € Lv(k,w), we define ¢ < p, if ¢ D p.

Theorem. Let x be a Mahlo cardinal and assume GCH in the ground model V. Let G. be any
Lv(k,w )-generic filter over V. Then we have k = wy and (k*)Y = w3 in the generic extension V[G]. Now
in V[G,], we may construct a < wp-support ws-stage iterated forcing (Pi. | o* < ws) such that for each

a* < ws, P}. is we-Baire and has a dense subset of size wy and that FRP(wz) holds in the generic extensions
V[G.]Fes.

§2. An Idea of Proof

Let x be a Mahlo cardinal and assume GCH in the ground model V. Let G, be a fixed Lv(k, w; )-generic
filter over V. We work in the generic extension V[G.] where k = wy and GCH holds.

Definition. A ladder system (C; | § € E) is reflected, if there exist v € S? and a filtration (X; | i < w)
on v such that T' = {i < w; | sup(X;) € E and Cyyp(x,) € Xi} is stationary. We also say that a ladder
system is non-reflecting, if it is not reflected. Let (Cs | § € E) be non-reflecting. Then we may associate
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a p.o.set ) which shoots a club off E. By this we mean that @ forces a club C in x such that for any
accumulation point « of C| namely « is a limit ordinal and 'N« is cofinal in a € C, we have a ¢ E. The
conditions in @) are the possible initial segments of C.

We argue in V[G,]. Let (Cs | 6 € E) be a non-reflecting ladder system and Q be the associated p.o.set.
Since there is no restrictions to put any new point above any condition in @, it is clear that Q adds a cofinal
and closed subset of . It is also clear that Q is of size (2<%)VICxl = (241)VIGx] = xx = w;/[c"]. However it
is not at all clear that @ is x-Baire. Namely, @ does not add any new sequences of ordinals of length < &.

Before we start iterating, we present the following.

Observation. Let (Cs | § € E) be non-reflecting in V[G,] and let Q be the associated p.o.set in V[G,]
which shoots a club off E over V[G.]. Now we go back in V for a while. Let 6 be a sufficiently large
regular cardinal in V' and N be an elementary substructure in V of (Hg)Y such that Kk € N, NNk = A
is a strongly inaccessible cardinal in V, <N € N in V and |[N| = X in V. We further assume that
(Cs | 0 € E),Q € N[Gy] in V[G]. Let M be the transitive collapse of N by the collapse 7 in V. Since
Lv(k,w1) has the s-c.c, every condition in Lv(k,w;) is (Lv(k,w), N)-generic. Hence 7 gets extended to =
(same notation in use) collapsing N{G,| onto M[G,], where G = G, NLv(\,w;) is Lv(),w; )-generic over
V. Notice that we may view M|[G)] as a generic extension of M via Lv(A,w;) over the transitive set model
M. We also have that VN <*M C M and V[G,] N <*M[G,] C M[G). Since (Cs5 | § € E) € N[G,], it
gets collapsed to (Cs | 6 € ENA) € M[G,]. We claim that E N X is a non-stationary subset of A = wV[G"]
in V[G,]. This is because, if E N\ were stationary in V[G,]). Then it is easy to see by genericity of f
that for a (any) filtration (X; | i < wi) on A in V[Gag1] = V[Ga][f], where f : w; — X onto, we have
T ={i <w |sup(X;) € ENXand Cyypx,) C X;} is stationary in V[Gr41]. This T remains stationary in
V[Gk] = V[Gr41)[Gr+1x], where Gay1x is Lv([A + 1, k), w1 )-generic over V[Gx+1). Hence the ladder system
(Cs | 6 € E) gets reflected. This would be a contradiction. Hence there is a club C of A in V[G,] such
that C N (ENA) = 0. Now by making use of this C and the fact V[G\] N <*M[G,] C M[G,], we may
construct a (m(Q), M[G,])-generic sequence (gx | k < A) in V[G,]. Now take point-wise preimages of the
gk Namely let py € Q N N[Gk] such that m(px) = gx. Then it is routine to show that (px | k < A) is a
(Q, N[Gx})-generic sequence in V([G,]. Hence sup(U{pk | k < A}) = N[Gu]Nk=Nnk=A¢E C SZ
Hence ¢ = (U{pk | k < A}) U{A} € Q decides ONN[G,][O] = ONNI[G] = {p € QNNI[G,] | p > p& for
some k < A} € V[G,], where O are the Q-generic filters over V[G,] with ¢ € O. Hence Q is -Baire.

With this in mind, we are interested in the following class of preorders P in V[G,].

Definition. A preorder P is reasonable, if P has a dense subset of size k and is x-Baire.

Proposition. Let P be reasonable in V[G]. Then P preserves every cofinality, every cardinality and
GCH.

Typically we will consider a < k-support iterated forcing P = Pi, € (H.++)VICx with o* < (k1)Y =
(kT)VIGx] = w;/ [6%] We intend to denote some of the ob jects in V[G,| with * in this note.

B* < o) (together with (Q%. | B* < ), ((Cj.5 | 6 € E;;.)'| B* < a*)
and enumerations of names of the ladder systems from the intermediate stages ((a1,a2) — (C5*** | § €
EMe) | oy < o ag < k) € V[G,]) is our iteration, if

Definition. A sequence (Pj.

o (P5. | B* < o) is a < k-support iterated forcing with * < (k*)Y such that Pi,1 = B« QZ,. for
each 0* < o*.

e The support of p* € Pj. is defined by supp(p*) = {¢£ < B*| p*(£) # 0 (as names)}. And so supp(p*) is
of size < k.

e For each * < a*, Pj. is reasonable and ||—V[G"] “(C'ﬁ. | 6 € Eﬂ.) is a non-reflecting ladder system”
and |}—V[G"] “the associated Qﬁ’ shoots a club off E3..
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We would like to consider that the last preorder P}, has just finished its construction and waits to be

explored its reasonability and more. Hence our iteration is known to be reasonable possibly except the last
preorder.

We are interested in reasonable preorders and iterations in (H,++)" (G,

Proposition. (Successor) Let T = (P;. | v* < * + 1) be our iteration. If (P. | v* < B°) €
(Hy++)V(C<) then Pg. ) € (Hys+)V1Cx]

Proof. Since Pj. is reasonable, Pj, has a dense subset D of size x and Pj. is k-Baire. Since
1 |}—g‘[f"] “QB. C ([k]<*)VIC=]", we may represent each p € Pj. ., as p[* € P;. and p(8*) : [x]<* — P(D).
Hence |p(8*)| <  and p(8*) C [k]<" x P(D) C (Hy++)VIC<l. Hence p(8*) € (He++)VICl and so

p € (Her+)V1G<) Hence P, C (Her+)VIC and |Ps., | < P3| x |"P(D)| < «*. Hence
Pieyy € (Hyes) V19,

Proposition. (Limit) Let Z = (PJ. | v* < 8*) be our iteration with limit §*. If for all y* < §*, we
have PJ. € (H,<++)V[G"], then Pj. € (H,¢++)V[G"].

Proof. For p € Pj. and v* < 8*, we have p[y* € (H,<++)V[G"]. Hence p C (Ho++)V(Cxl. But |p| < k.
Hence p € (Hy++)V[Cl. Hence Pj. C (Hy+)VIOx],

Now if cf(8*) < &, then | P3. | < |(k*)<"| < x*. Hence Pj. € (Hors)V(G),

Next if cf(5*) = &, then | P§. | <k x 5+ = x*. Hence Pj. € (Hyr+)V167).

Corollary. For every our iteration (Pj. | 8* < o), we have (P5. | 8* < a’) € (Hr+ )V (G,

Definition. For any reasonable P € (H,++)" (G, if 1 H—Z[G"] “CF | 6 € EF) is a non-reflecting ladder
system” for some (Cf | § € EF) € (H~++?V[G"], then we associate one of them to P. Let ® denote this
association. We see that ® C (Ho++)V(Cx € (Hyr++)V1Ox]. Hence ® € (Her+4)VIG = (Ho444)V (Gl
Therefore we may fix a name ® € (H +++)Y. :

We think of ® as a name of a specific choice function. We may need to fix other names of choice
functions - -- € (He+++)Y as we go along.

Definition. In V, let us fix h: k¥ — (k) x (k%) for book-keeping. Let N consists of N such that

N is an elementary substructure of (H+++)".

Kk, h,®,---€N.

e NNk =A<k and ) is a strongly inaccessible cardinal.
<AN C N.

IN|=A\

Since k is Mahlo, there are many elements in /. We aim at the following.

Target. Let N € N with P:. € N[G«]. Then for any p € P%. N N[G,], there exists a (Py., N[Gx])-

generic sequence (p} | k < A) such that (m(p}) | k < A) € V[G,], where 7 is the transitive collapse of N[Gx]
onto M[G,].

Definition. Our iteration Z = (Pj. | 8* < a*) is wonderful, if for any N € N with T € N(G,] (by this
we mean that the other associated sequences of objects with our iteration are also assumed to be in N[G]
and we may simply denote this as P2. € N[G,]), any p* € P%. N N[G], there exists a (P}., N[G])-generic
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sequence (p; | k < A) below p* such that (m(p}) | k < \) € V[G,], where A = N Nk and 7 is the transitive
collapse of N[G,] onto M[G,].

Proposition. If (P§. | * < a*) is wonderful, then the last preorder P?. is reasonable.

Proof. Fix any p* € P;.. Since x is Mahlo, we may pick N € A such that P}. € N[G,] and p* € N[G,].
Let A = NN k. By assumption, we may pick a (P}., N[G,])-generic sequence (p} | k < \) € V[G,] below

p.
Claim. There exist ¢* € P;. and (s}.

B* € N[G¢]Nna* = NNa*) such that
e For all k < A, we have ¢* < p;.
e supp(g*) = NNa*.

Each sj. is a cofinal and closed subset of A with sup(sj.) = A.
If B* € NNna*, then
* * VGI'C € % * * »
¢ [6* I-ps " (8%) = s5. LAY
Since ¢* gets classified by the (sj- | B* € NNa*) and there are at most x-many such sequences, we
conclude that P;. is reasonable.

Proof. For each 8* € NNa*, let sy = U{s | Ik < AU A> 1>k p}[B* IFZ,}?"] “pL(B*) = s"}.

We construct ¢*[(* by recursion on 8* < o* in V[G,]. Suppose 8* < a* and for all £ < A, we have
q*[B* < pp[B*. We want to specify ¢*(3*).

We first assume 8* ¢ N. Then let ¢*(8*) = 0. Since each p}, € N[G,], we have supp(p}) C N[Gx]Nax =
N Na*. Hence for all k < A, we have p;(8*) =0 and so ¢*[(8* + 1) < p;[(8* +1).

We next assume §* € N. By assumption P}, is x-Baire and (p}[3* | k < A) is an induced (P}., N[G.])-
generic sequence. Hence for any k < A, there exists | such that k < I < X and p}[3* decides the value of
Pk(B") to be some s. Let Op. be any Pj.-generic filter over V[G,] with ¢*[3* € Op.. Since ¢*[S* is below
every pi[(*, we have in V[G,][Op-] that (p}(8*) | k < A) is a (QZ,.,N [G«][Op-])-generic sequence. Hence we
conclude sj, is a cofinal and closed subset of N[G,]{Og+]Nk = N[Gc]Nk = NNk = . Since A € (52)VIG+],
we have ¢*[8* anl “(Upr(B*) | E < ADU{A} = s5.U{A} € Q3.”. Let g*[B" ||-$f~1 “q* (") = 5. U{A}.
Then for all k < A, we have ¢*[(6* +1) < p;[(8* +1). Since (p} | k < A) is a (PZ., N[G])-generic sequence,
we have that for any 8* € N[Gc]Na* = N Na*, there exists £ < A such that p}[3* ||—g§"l“p,";(ﬂ‘) #0.

Hence supp(q*) = N[G<] Na* = NNa* holds.

Notice that we did not make use of (r(p}) | k < A) € V[G,] in the above.

Notation. Let N € N. Let 7 : N[G<] — M|G,] be the transitive collapse. The images of ordinals

a*, preorders P* and P*-names Q* etc under 7 will be denoted as o = m(a*), P = n(P*) and Q = n(Q*).

We prove the following two lemmas later in this note. We assume these two for the rest of this section
to finish our proof of theorem.

Lemma. (Successor) Let Z = (P;. | 8* < a* + 1) be our iteration. If (P3. | B* < a*) is wonderful,

then so is Z.

Lemma. (Limit) Let Z = (P;. | f* < ') be our iteration with limit o*. If for all 4* < o,
B* < «*) are wonderful, then so is Z.

(P3.

Corollary. Every our iteration Z is wonderful.

Proof. Since P; = {0}, it is trivial that (P}) is wonderful. Hence by recursion we may conclude Z is
wonderful.

0
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Assuming that we have done with these two, we may finish our proof.

Proof of theorem. We argue in two cases.

Case 1. There exist our iteration I = (Pj. | * < a’) and p € P;. such that pl}—ﬁcj"] “FRP(ws)"

(e
holds. Now think of doing trivial iteration to satisfy the statement of the theorem. Hence we are done.

Case 2. For any our iteration 7 = (Pj. | 8* < a*), we have 1 H—g[.(.;"] “FRP(w2) fails”:

In this case, recall we have a fixed map & = (P — (CF | 6 € EF) | P € (Hg++)"[ is a relevant
reasonable preorder), where 1 |}—V[G"] “the ladder system (Cf | § € E¥) is non-reflecting”.

Now we begin to construct a < s-support iterated forcing (Pz. | a* < (k+)VIG+l) by recursion on o*
Suppose o* < k* and that we have constructed Z = (Pj. | 8* < a") which is our iteration. Since the last
preorder P, is reasonable, we may fix an enumeration of names ((Cg‘.“’ | 6 € BE¥"®) | oy < k) of the
ladder systems in V[G,]Pa* in addition to the fixed enumeration of suitable names of the ladder systems
((a1,02) = (C122 | 6 € EX®2) | ) < a*, a9 < k*) € V[G,] in every intermediate stage V[G.]F1 with
o < a'.

It suffices to specify a non-reflecting ladder system (CZ.; | § € EL.) in V[Gi]Far = V[Gk][Oa-] as
follows;

Let h(a*) = (@1, az). Hence ) < @* and a3 < k™. Take a look at (Cf*** | § € E*1%2) in the current
universe V[Gx|[Oa-]. If (C§*** | § € E®192) happens to be a non-reflecting ladder system in V[Gy][Oq-),
then let (C%.5 |6 € Ex.) = (C3* | § € E«193). If (C5*°* | § € E®1°2) does not happen to be non-reflecting
in V[G][Oa-], then we switch to ®(F;.) and let (Ct.5| 6 € E%.) = ®(P2.). In either case this specifies a
non-reflecting ladder system (Cy-5 | 6 € E%.). Now let us associate Q%. which shoots a club off EZ..

Claim. 1 I}—gl.f"]“FRP(wg)” holds.

a*

Proof. Let O+ be any P, -generic filter over V[G,]. Let us suppose on the contrary that (Cs | 0 € E)
were a non-reflecting ladder system in V[G][O,+]. Since P’, has the k*-c.c, we have a; < k% such that
(C5| 6 € E) € V[Gg][Oq,], where On, = O+ [a;. Let a2 < k* be such that (Cs | § € E) is the interpretation
of (C1%2 | § € E*12) by O,,. Take a* < k* such that h(a*) = (a1, a2). Then (Cs | § € E) is non-reflecting
in the intermidiate V[G,][Oa-]. Hence Q. shoots a club off E. This contradicts to E being stationary in
the final stage V[G}[O.+]. Hence every ladder system must reflect in V[G|[Og+].

(]

§3. Proof part one

Proof of lemma (Successor) We have our iteration (Fj.
wonderful. We want to show that (P, | 8" < o* +1) is wonderful

Now let N € N with P}.,, € N[G’,c] Let p* € P‘.+1 N N{G.]. We want a (P}.,,, N[G.])-generic
sequence (p; | k < A) € V[G,] below p* such that (w(p;) | K < A) € V[G,]. Since P;. € N[G] and
p*la* € P;. N N[G,], we have a (P}., N|G,])-generic sequence (g; | k < A) € V[G,] below p*[a* such that
(m(gx) | kK < A) € V[Gy].

We denote p = n(p*), gx = n(qf), @ = 7(a*), (Pg | f < a+1) = w((Pﬁ. g* < a* +1)) and
gk | k<A) ={y € P, | 3k y > gk in Py}. Then in V[G,], it is routine to show that (gx | k < A) is a
(Pa, M[G,])-generic sequence and so {gx | kK < A\) € V[G,] is a Py-generic filter over M[G,] with p[a in it.

We have seen that there exists g* € P2. below the g’s. Hence ¢* is (P}., N[G])-generic.

Let O,- be any P:.-generic filter over V[G,] with ¢* € Oqe. Let Q%. be the interpretation of Q%. b
Oq-. Let (Cs | 6 € E) be (omitting a* and *) the interpretation of (C%.5 | § € E%.). Then (Cs | 6 € E) is
a non-reflecting ladder system and the associated Q%. shoots a club off E over V[GK][OQ-]. Note we have

we € N[Gi][Oq-] and (C5 | 6 € E) € N[G][Oa-]-

Then in the generic extension V|[G.][O4-], the collapse n : N[G.] — M]G,] gets extended to 7 :
N[G(][Oa+] — M[G:){{gk | k < A)]. This is because {m(z) | z € On» N NG} = {n(z) | z € N[G,],3k <
Ax>qrin P} ={yeP,|dk<Ay>qkin Pa}.

< a® + 1) such that (P,

g* < a*)is
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We denote (Qg | 8 < a) = 7r(( . | B* < a")). Let Qq be the interpretation of Qq by (g | k < A).
Then we have (Cs | 6 € ENX) = 7r((05 | 6 € E)) and Qo = 7(Q%.). Hence (C5 | § € EN)) €
M([G\][(gk | kK < A)] is a non-reflecting ladder system and Q,, is the associated p.o.set shooting a club off
ENXover M[Gy][(gx | k < N)].

Claim. EN ) is not stationary in V[G,].

Proof. Suppose not. Then (Cs | 6 € EN A) is a ladder system in the intermidiate V[G,]. Hence it gets
a filtration (X; [ 1 <wi) on X in V[Ga41]. Then due to this filtration the original ladder system (Cs | § € E)
gets reflected in V[G,][Oq+]. This would be a contradiction.

a

Let C € V[G,] be a closed cofinal subset of A such that CN(ENA) = CNE = . By making use
of this C, we construct a (P,+1, M[G)])-generic sequence (I a, () | L < A) below p € Pyyy in the
intermidiate V[G,]. We first see that this suffices. Let p; € P}, be the preimage of 9k, (1) € Pa1 under

m: N[Gc] — M[G,\] Then it is routine to show that this (p} ) € VI[Gi] isa (P .H,N[G,..,]) -generic
sequence below p*.

Now we begin to construct g (n) for | < X in V[G]. Let (D, | | < A) enumerate the dense open subsets
D of P4y with D € M[G,]. The crutial fact is that V[Ga] N <*M[G,] C M[G,]. This means that the
initial segments constructed are all in M([G,]. Hence we may make use of the initial segments as sequences
of conditions in M[G] and so may give rise to conditions in P,4+; € M[Gy).

(1 =0): Since go < p[a in Py, let 70 = p(@). Then g5 (7o) < p in Paty. Let ko = 0.

(l — 1 +1): Suppose we have constructed G, (1) € Poy1. Pick qi < gk, so that gp decides the value
of 7; to be s. This is possible as P, is A-Baire in M[G)‘] and the gx’s form a (P,, M[G,])-generic sequence.
Pick e € C with sup(s) < e < A. Then ¢ (s U {€}) € Py41. Since {a € Py | a < z[a for some z € D; with
z < qi7 (sU{e}) or (a is incompatible with g in Py)} is dense open subset of P, and belongs to M[G,], we
may pick i, (n41) € Dy such that T (1) S g (sU {e}) < g0 (m) in Paya.

(Limit !): Suppose we have constructed (g, (me) | U < ). Pick gx, so that for all I' < I, we have
9k, < gk, Then g, decides the value of sup(|J{mr | I < (}) to be some limit ¢’ < A. Then ¢’ € C and so
¢’ ¢ ENA. Remember EN A is the relevant non-reflecting ladder system here in M[G1][(gx | k£ < A)]. Hence
we may further assume g ((U{v | I' <1}) U {€}) € Pay1. Let g, |}—M[G'\] “n=U{m | <})u{e}.
Then for all I' <, we have gi; (1) < 9, ().

This completes the construction.

§4. Proof part two

Proof of lemma (Limit). Let (P3. < o*) be our iteration such that ¢* is limit and for all v* < a*,
we assume that (Pj. | 8* < «4*) are wonderful. We want to show that (P3. | B* < a*) is wonderful. We
have seen that P2, € (H++)VIGxl. Let N € N such that P, € N[G,]. Let p* € P2 N N[Gq].

We denote p = 7(p*), a = m(a*), {Pg |8 < a) = ({P;. 16" <o), @A <a)= (@5 | B* < ")),

([Cg,s]| §€Eg) | B <a)= w(((Cﬂ 5 10€ Eﬂ.) | B* <.a*)). We want a (P,, M[G,])-generic sequence in
V[Gx

For the rest of this section, we argue in the intermidiate V[G,]. Recall that (w;)V[6¥ = wY and
(wo)VIGAl = ),

Claim. We have {(S?) in V[G,].

Proof. Suppose that A = (A)g, C A and (C)e, isaclubin X. In V, we may represent A as (Aq | & < A)
such that A, is an anti-chain in Lv(),w;) and so | Aq | < A. We assume o € A iff A, NGy # 0.
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InV,let C = {£ < A |Va < € Ay C Lv(€,w1)}. Then this C is a club. Now in V[G,], pick € € (C)g,NC
with cf(€) = w). Then ANE € P(€)NV[Ge] and | P(§) N V[Ge]| < wi. Hence (P(E)NVI[Ge) | € € S}) isa
O (S?)-sequence.

0

In view of | M[G]| = A and P, U {P,} C M[G,}, we may fix (i — ((gi; | j < 14),D(:)) | i € S?) such
that

e (gi; | j < 1i) is a descending sequence of elements of P.
o D(i) C P, for some & < a and D(i) € M[G,].

e For any descending sequence (p; | i < A) of elements of P, and any D C P for some { < a with
D € M[G,], the following

{i €S| (g |3 <) =(p;j|j<i)and D(i) = D}
is stationary.

We make use of this form of guessing to construct a (Py, M[G)))-generic sequence below p. We first take
the greatest lower bound of (g;; | j < i) as much as possible (i.e. ¢7). Hence sort of ¢) = {(gi;[a(i) | j < 3
and no more. Then we hit the possible dense open subset D(i) below the lower bound in advance (i.e. ¢}).
Hence g} < ¢? in P,(;y and if D(3) is dense open in P, with some &; < a(i), then g [¢; € D(3). Therefore as

long as guessing succeed, we would have taken care of every relevant dense open subset. This way we cover
shortages of steps compared to the number of relevent dense open subsets (i.e. w, w; vs. wa).

Definition. We associate (i — (¢¥,q},a(4)) | i € S?) such that
e a(i) < cand g, g} € Pyiy-
e For any j <4 and any 7 < a(i), we have ¢?[ < g;;[n in P, and ¢?[n forces (over M[G,]) the following;

) = Haii(n) |5 < i},

where 5 denotes the closure of s. Therefore, ¢?[n forces the disjunction of the following (1) or (2);
(1) 3j < gsi(n) # 0 and sup(U{gss(n) | 5 < i}) & Ey and

= (g () 15 < ih)u {sup(( {ass(m) 1 5 <))}

(2) ¥j <1 gi;(n) =0 and
¢ (n) = 0.
o If a(i) < a, then ¢? fails to force the disjunction of (1) or (2) as above.

o If D(i) is a dense open subset of P, with some & < «f(3), then ¢}[& € D(i) and ¢} < ¢? in P,).
Otherwise, ¢ = ¢?.

Note that we have (g;; | 7 < i) € M[G,] and supp(g?) C U{supp(gi;) | < 1} and so of size < A.

Definition. Let ¢(§, (p; | ¢ < A), C,a) stands for the following;
o (<L
e (pi | i <)) is a descending sequence of elements in P; below a € P; and C is a club in A.
e For any i € CNS? and any 7 < ¢, p;i[7n forces (over M[G,]) the following;

U{PJ | j <i}.
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o Forany i€ CNSEif (pj | j <1i) = (g:5[€ | 7 < 1), then we have
pit1 < gi[€ in P,

where (p; | j <) = (gi;[€ | j < ©) means Vj < 35" <1 gy [€ < p; in P and conversely V5 < i35’ <
i pj < gi;[€ in Pe. Hence these two sequences are not required to be literally equal but share the same
strength.

We may abbreviate the third condition in the above as p; = (p; | j <1).

Proposition. If ¢(¢, (p; | i < A),C,w), i € CNSE and (p; | j < i) = (g;;[€ | 5 < i), then € < (i) and -
— 0
pi=¢q[¢

Proof. It is routine to show p;[n = ¢?[n by induction on < ¢.
o

Note that we did not make use of the 4th condition of ¢(£, (p; | i < A}, C,w) in the proof. And by this
proposition, the 4th condition makes sense.

Proposition. If ¢(£, (p; | i < A),C,w), then (p; | i < A) is a (P, M[G,])-generic sequence below w.

Proof. Let D be any dense open subset of P; with D € M[G,]. By assumption on (((g;; | j <
i), D(4)) | i € S}), we may pick i € C N S} such that D = D(i) and (p;°1 | j < 4) = (gi; | j < i). Hence
(pj | § < i) = (@i;[€ | § < %) and D(3) is dense open in P;. Hence p;+1 < g}[€ and ¢} [¢ € D(i). Hence
pi+1 € D(i) = D.

o
Definition. Let ¢(n, (p] | i < A),C",a) and ¢(¢, (8% | i < A),C¥,b). We write

(m (0] |3 <A),C"a) R(E, (5 | i < A),CE,b),
if

e <& CTDCE and a = b[n.
o Vi <A3j >ipin=pl.
e There exists a club Cpe in A such that

(1) C”If cen nCe.

(2) Vi € Cog N 82 p} = p}[n.

Proposition. R is transitive.

Proof. (m, (p} | i < A),C1,a1) R (2, (p? | i < A),Ca2,a2) R (ns, (p? | i < A),Cs,a3) implies (m, (p} | i <
/\),Cl,al)R(m,(p? | 1< )\),Cs,ag).

O

Work in V[G,]. By induction on £ < a = m(a*), we show the following IH(¢);

VN < EV(T | i < A)VC"VYw € B, if ¢(n, (BT | i < A),C",w[n), then there exists ((pf | i < A),C¢) such
that
o 96k | <A),C8w).
o (n,(p] 1< X),CTwln) R(E, (pf | i < X),C%,w).
In particular, let n = 0, £ = @ and w = p = n(p*) € P,. Since ¢(0,(d | i < A), A\, w[0) holds, we have

((p¢ | i < X),C*) such that ¢(a, (p¥ | i < A),C%,p). Hence (p* | i < ) € V[G,] is a (Pa, M[G)])-generic
sequence below p. This completes the proof of lemma (Limit).
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§5. Proof part three

Proof of TH() by induction.
IH(0): IH(0) is vacuously true.
We have two remaining cases.

TH(€) implies [H(¢ 4 1): Since R is transitive, we may assume that n = £. Suppose ¢(¢, (pf |1 <

A),C¢ w€) and w € Peyy. We want (p+! |4 < \) and C4*1 such that ¢(€ +1, (057! | i < A),CE+!, w) and
(6465 14 2),CE Wl R(E+1, 05 1< ), CFHu).

Remember that we have the transitive collapse 7 : N[Gx] — M(G,]. Let n(£*) = € and = (p}) = p¢ for
each 7 < A. Hence m(P(.) = P;. Since (pf | i < A) is a (Pg, M[G,])-generic sequence, its pointwise preimages
(p; | i < A) € V[Gy] is a (P, N[G])-generic sequence with cf(X) = w; in V[G«]. We know that there exists
a lower bound ¢ € Py. of the p;’s. This ¢" is (P;., N[Gx])-generic.

Let Og. be Py.-generic over V[G,] with ¢’ € O¢-. Then in the generic extension V[G][Og-], we have

the extension 7 : N[G,][O¢-] — M[G,][(p% | i < M)
Let (Cs | 6 € E) be the interpretation of (Cf.; | § € E.) by Og.. Then (Cs | 6 € E) € N[G][O¢-] and
7((Cs | 6 € E)) = (Cs | 6 € ENA) holds. Since (05 |6 € E) is non-reflecting in V[G,]{O¢-], it must hold that
EN A is not stationary in V{G,]. This is because if EN A were stationary in V[Gy]. Then (Cs5 | § € ENA)
gets a filtration on A which reflets (Cs | 6 € ENA) in V[Gy41). This filtration remains up V[G,] and further
up V[Gk][O¢-]. This contradicts that (Cs | & € E) is non-reflecting in this last V[G][O¢.].
Since EN A is not stationary in V[G,], we may pick a club C € V[G)] such that CN(ENA) = 0. Let
E¢ = w(EE‘) Then this E¢ is a P;-name in M[G)] such that EN\ is the interpretation of E¢ by (pf | i< A).

We work in V[G,]. The crutial point was V[GA]N <*M[G,] C M[G,] and Pgy1 € M[G,]. We construct
(pfk (Tk) | K < A) by recursion on k < .

Case (k =0): Let pfoA(T()) <win Pgy;.

Case (k to k + 1): Suppose we have constructed pka(Tk) € Pey1. Want pf-HlA(TkH) € Peq.

M[GA] «

Subcase 1. k is either 0 or successor: Pick a large ix4; < A and 74, such that p“c+1 |}— max(7g) <

e <max(Tk4+1)” for some e € C.
Subcase 2. k is limit: We have two cases.

Subsubcase 2.1. & = k € C¢ NS and (pf (&) | K < k) = (qkk/ [(€+1) | ¥ < k): Then
we have £ +1 < a(k) and pi a[¢. By subcase 2 below, we have p; |}—M[G*] “e. = (U{mw | ¥ <

k})u {sup U{ka | k' <k})} = § ,qi < qk in Py and p,c+l <gqi [§ holds. Let us take Tre+1 = qi ().
Then p,,  (7k+1) < gh[(€ + ) (7). Let ik41 =k + 1. Hence pf, |~ (k1) =i,y (Tes1).

~~

Subsubcase 2.2. Otherwise: Take p$k+1A<Tk+1> < pf-k (Tk) as in Subcase 1.

Case (k is limit): We have constructed pfk,’\('rk/) for all k' < k. We want pi/\('rk).

)

Subcase 1. cf(k) = w: Pick iy < Asothat forall k' < k, ixr < ix. Then for all k' < k, we have p”c < pzk,
Since ENA = {v <A |3l < A p} |}—M[G"] “v € E¢"}, we may assume that pf |}—P€[ A]“sup(U{'rk: | k' <k}) ¢
E¢”, where E¢ = W(Ef.) Hence we may pick 7 so that pf ||——M[G*] « (U{Tkl | k" < k}PU{sup(U{me | k' <
k})} e Qg”, where QE = Tf(Qf.). For all k' < k, we have pl <Tk) < pE (Tir).

!
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Subcase 2. cf(k) = wy: Let ix = sup{ip | k' < k}. Then for all k¥’ < k, we have pfk <pt and

s

iy |}~M[G*]“sup(U{Tk/ | £/ < k}) € 5?7, Hence may take 7 to be such that pfk ||—}A.i[c*]“rk =(U{m | K <
k}) U {sup(IU{me | k' < k})} € Q¢

This completes the construction of (pf-k/\('rk) Lk <A).
Let ¢+t = C¢N {k < A | VK’ <k ix < k}. Then this C¢*! € V[G,] is a club in \.

Claim. If k € C¢t1 N S2) then 4, = k holds.
Proof. Since (ix | k < A) is strictly increasing, we have k < ix. Since ixr < k for all ¥’ < k and
cf(k) = w1, we have i, =sup{ix | k' < k} < k. Hence ix = k.
o

Now for each k < A, let us set

+1 -
ptt =08 (m).

We want to show ¢(6 + 1, (i | k < A),C¢+1 w) and (€, (pf | k < N),CEw[€) R(E+1, 5T | k <
A), CE*1 ),

By construction we have that (;Di+1 | k <)) is descending below w in P41 and that C¢*! is a club in
A '

Let k € C¢*1 N SZ. Then we have k = ix. It is routine to check that for any n < £ + 1, pﬁ“[n forces
the following;

pit ) =i () | K < k).
(details) Let n < €. Then p§**[n = pt[n which forces the disjunction of (1) or (2);

(1) 3 <kpi (n) =i, () # 0, sup(U{pg"" (n) | K < k}) = sup(U{pk (n) | ¥’ < k}) & B and p5 (n) =
pi(m = (Ufpk (n) | K < kU {sup(Ufp (n) | ¥ < k})} = (U{B5,, (m) | &' < k})Ufsup(ULpS, (n) | K <
KDY = (UpE () | K < k}) U {sup(U{pi™ (n) | ' < E})}.

(2) VK <kpp(n) =p, (n) = 0 and p™ (n) = pi(n) = 0.

Next let n = €. Then pEJrl [€ = p,c which forces the following (1);

(1) 3 <k pif () = 7 # 0, sup(U{pg" (6) | K < k}) = sup(Ufmw | K < k}) & By and pf(€) = 7 =

Ulre | ¥ < b)) U fsup(Ufrw | K < k1) = (UG | ¥ < k) U {sup(ULe (€) | ¥ < k).

Next suppose k € C¢+1 N S? and that (pif' | k' < k) (qkk: [(€+1)| k' <k). Theniy=ke C¢NS3E
and (p " () | K < k) = (qew [(+1) | K < k). Hence pit] =pf,,  (7ks1) < gb[(€+1), as k+1 =ixq1.
Therefore we have ¢(€ + 1, (B! | k < ), C6+1,w).

Lastly, (£, (0} | i < A\),C5,w[€) R(E+1, BT | k < A),C¢+1 w) holds.
(details) € < £+ 1, C¢ D C&FY w(¢ = wl¢.
Vk < AJix > k pf, =pi e

Let Ceeq1 = CE+1. Then for k € Cgeqr N S?, we have pf = pfk = piti[¢, as k € C¢t1 N S? implies
ir = k.

This completes TH(¢) implies TH(¢ + 1).

§6. Proof part four

7 limit, (V€ < y IH(€)) implies IH(v): We still work in V[G,]. Let v < o and «y be limit. We show that
(V€ < v TH(€)) implies IH(7y). We have two cases according to cf(y) = w,w; and to cf(y) = wa.
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Case. cf(y) = w,wy: Let n <7, w € P, and ¢(n, (p] | i < A),C", w[n). We want (p] | i < A) and C”
such that ¢(v, (p] | ¢ < A),C7,w) and (n, (p] | i < A),C",w[n) R(7y, (] | i < A),C",w).

To this end let (yx | K < cf(y)) be a strictly <-increasing continuous sequence of ordinals such that
Yo = 1 and Yei(4) = 7. It suffices construct (p)* {7 < A) and C* by recursion on k < cf(y) such that

Ok, (p* | © < A),C7, wlvk) and for all | < k, we have (v, (p} | i < A, C wlv) R (v, % | i <
A, C7 wlyk).

k=0 Let (p)° |i<A) = (p! | i< A and C™ = C".

k to k + 1: Suppose we have constructed (p* | i < A) and C™ such that ¢(vk, (p]* | i < A), C™*, wlvk).
By IH(yk+1), we have (p/**' | i < A) and C7+1 such that ¢(yks1, (p7**" | i < A),C™+', w[yx41) and
(7’:» (sz I 1< A)!CWk’w['yk) R(’Y’H'l? (sz“ | 1< A>101k+17w[’7k+1)'

k limit: Let
C™0 = (N Coym | L <m < k}
and for each 1 € S2 N C™Y, et
i = Ul 1< k)
Then p]*° € P,,, as V[Gy] N <*M[G,] C M[G,) and | supp(p*°) | < w;.
Let f: A — SZ N C™P be the €-isomorphism and let C(f) = {i <A | Vj <1 f(j) < i}. Let
C =C™0nC(f)

and for each i < A, let

— k0
pl* =Py

Note that if i € S2N C7, then f(i) = 1 holds.
Claim. We have that ¢(vk, (p/* | 1 < A),C",w[~x) and for all | < k, we have
(n, (07" 1< A),C™ wlm) R (v, (p]* | < A),C™, wlw).
Proof. Some details. (p]* are descending): Let 4; < i. Then pJ* = p}'ztol) > p}"zg) P
(Fori € SN C™, pl* = (p]* | j <4)): Let i € SENC™. Let p < v¢. Want that p}*[p forces the

following;
)= (p) 17 <i}.

To see this, pick | < k such that p < ;. By ¢(m, @} | k' < X),C",w[v) and i € S2NC™, we have that
f@) =14, pT*[v = p*°[n = p}* and for all j < i, p*m = p}'(‘;’) [ = p}{;)- Hence we have p/*[p = p]*[p
and p]' [p forces the following;

= o1 0) |4 < i}.
But p* (p) = p}'(p) and U{p;' (p) 15 < i} = U{pJ;y(p) 15 < i} = U{p]*(p) |5 <1}, as f(5) = i € C().

Hence we are done.
(i € $2NC and (p}* | j < 1) = (gi[v | § <) implies pJ¥; < g} [k):
Let i € SN C” and (P)* 15 <4) ={gij[v | j <9). Let | < k. It suffices to show pJ§, [v < gf [
But (p]' | j < i) = (p};) 17 <19) = }'(‘;))f’nlj<t) P [ <i) = {gi[n |7 <i)andie SINC™.
Hence plt, [v = pf;41) < PI < i [ and 3 < a(d).

(For all | < k, we have (y, (p]"' | i < A),C™, w[v) R (7, (p]* | i < A),C7,w[y)): For each i < A, we
have p}* [y, = p}) [ = P, and f(i) > i holds.

Next let ¢ € SN C™. Then p)* = p}'(‘?) P:"‘O Hence p* [ = p}".
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Case. cf(y) = A = w;_/[G*]: Let n <y and w € P,. We may assume, by increasing 7, that supp(w) C 7.
Let (v | K < A) be a sequence of ordinals which is continuously <-increasing, o = 7, cofinal in y and for
each i € S2, we make sure that

supp(g; [min{y, a(i)}) C Yit1.

Hence if v < (1), then supp(g}[y) C 7i41. If a(i) < v, then supp(g}) C vi+1. This is possible as the
supports are of size at most w;.
We construct (p]* | 1 < A) and C7 by recusion on k < .

k=0:Let (p° |t <A =(p]|i<A) and let C™ = C". Then we have ¢(o, (p}° | ¢ < A),C™,1).

k to k + 1: Suppose we have S(ve, (p7* | i < A),C%,1). Want ¢(yes1, (9, | i < A),C7%+1,1) such
that (ye, (p7* | 1 < A),C7%,1) R (w41, (' | i < A),C"+1,1). We just make sure to take care of the
following situation. If cf(k) = w1, ¥ < a(k) and p%, < gi[7x, then consider

SO PR 10 <E+ DT [ E+1<i<A),C™* N (k+w,\),w),
where w’ = pf* | " i [[7k, Ye41) € Py, Let ((p/**' | 1 < A),C7*+1) be such that

¢('Yk+1) (p;'mﬂ | 1 < ,\)’C‘qu)w’)

and
(Y, (5, 10 < <k+ )7 (0 [ k+1<i<A),C™N(k+w,A),pi%,) R (vhe1, (07 | 4 < A),CT+, ).
We have that
po" < @ik
and that
(%, (7% | $< A),C™,1) Rk, (7 | £ < A),C™ 41, 1).

k limit: We have cf(k) < A = w;/ (62 Hence there exists (pf* | i < A) and C™ such that ¢(y, (p7* |1 <

A),C",1) and that for all I < k, (v, (p' | 4 < A),C", 1) R (7, (p]* | i < A),C%,1).

This completes the construction of ((p]* |« < A),C"). Now we begin a sort of diagonal construction.
Let
C"={k<A\|kE€ECy, foralll <m < k}.

For each 1 € 2N C"°, let
P’ = (U 1<) 1€ Py

Let f: A — S2NC" be the €-isomorphism. Let
CY =C"NnC(f)

and for each ¢ < A, let
Y — 70
Pi = Psiiy

Want ¢(v, (p] | i < A),C7,w) and that (n, (p | i < A),C™",wln) R(v,(p] | i< N),C",w).
Some details.

(p] is descending): j < 4 implies f(j) < f(i). Hence for any | < f(j), we have p] [y = P}‘(f) < P}l(j) =
p} [ Hence p] [17;) < p][74(;) and so p] < p].
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(1 € SN CY implies p] = <p;7 | 7 <)) Let p <. We first assume that p < ;. Then for any [ < ¢
such that p <y, we have p]{p = p]*[p and p]*[p forces the following;

Pl (p) = | J{p) (o) | 5 <4},

But p(p) = p1*(0) and (p1(6) |3 < i) = (T, (0) |1 < J3), 7 < i) = 9] (6) | < i), s [(3) = € C(J).
Hence p] [p forces the following;

Pl (p) = {p](0) | 5 < i}.

We next assume y; < p. Then for all j < 4, we have p](p) = 0.

(i€ SfNCY and (p] | j <) = (gi;[7 | j < i) implies p],, < g}[7): Let i € SN C7 and (p]1j<i)=
(@ij[v]j <i). Let ! beany withl <. Then (p)' | j <1) = Ty 13 <) =@ nli<i)=(g;nli<i).
Since i € S§ N C™, we have plt; < g![y. Hence pJ} [y = pYt < plt, < g}y for some m > i + 1.
Hence we conclude p}}, < ¢}[vi and v < a(i). By construction, we have i + 1 < f(i + 1) € S? and so
Pl [risr = P}l(fil) < pgt' < g [vis1. But supp(gf[v) C vi+1. Hence pl1 < gl

((n, (P | 4 <A CTwln) R(y, (p] | i <A,C7,w)): C"DC.

p{[n=p][v =P}, and i < f(1).

For i € $2N C7, we have p] [n = p, as f(i) = i.

(]
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