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Lefschetz elements of Artinian Gorenstein
algebras and Hessians of homogeneous
polynomials
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This article is based on my joint work with Junzo Watanabe [8]. The Lef-
schetz property is a ring-theoretic abstraction of the Hard Lefschetz Theorem
for compact Kahler manifolds. The following are fundamental problems on
the study of the Lefschetz property for Artinian graded algebras:

Problem 0.1. For a given graded Artinian algebra A, decide whether or not
A has the strong (or weak) Lefschetz property.

Problem 0.2. When a graded Artinian algebra A has the strong Lefschetz
property, determine the set of Lefschetz elements in the part A; of degree
one.

In this work, we give a characterization of the Lefschetz elements in Ar-
tinian Gorenstein rings over a field k of characteristic zero in terms of the
higher Hessians. As an application, we give new examples of Artinian Goren-
stein rings which do not have the strong Lefschetz property.

1 Lefschetz properties

Definition 1.1. Let A = ®L_,Aq4, Ap # 0, be a graded Artinian algebra.
(1) We say that A has the strong Lefschetz property if there exits an element
L € A, such that the multiplication map

XLd : Ai — Ai-{-d
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is of full rank (i.e. injective or surjective) forall0 <7 < Dand0 < d < D—i.
We call L € A; with this property a strong Lefschetz element.
(2) If we assume the existence of L € A, such that

x L : Ad - Ad+1

is of full rank for d = 0,...,D — 1, we say that A has the weak Lefschetz
property.

In the following sections, we mainly investigate the strong Lefschetz prop-
erty for Artinian Gorenstein algebras.

2 Artinian Gorenstein algebra

Definition 2.1. (See [10, Chapter 5, 6.5].) A finite-dimensional graded k-
algebra A = @®L_,A, is called the Poincaré duality algebra if dimy Ap =1
and the bilinear pairing

AdXAD_d—AADg/C
is non-degenerate for d = 0,...,[D/2].

We will need two characterizations of the Artinian Gorenstein algebra
in order to show our main theorem in the next section. The proofs of the
following propositions also can be found in [8].

Proposition 2.1. (See [3].) A graded Artinian k-algebra A is a Poincaré
duality algebra if and only if A is Gorenstein.

Proposition 2.2. (See [1],[2],[4].) Let I be an ideal of Q = k[X1,..., Xq]
and A = Q/I the quotient algebra. Denote by m the mazimal ideal (X1, ... , Xn)
of Q. Then VI = m and the k-algebra A is Gorenstein if and only if there
exists a polynomial FF € R = k[zy,... ,z,] such that I = AnngF.

3 Characterization of Lefschetz elements

In this section we discuss the set of the Lefschetz elements for graded Artinian
Gorenstein rings A = k[X4, ..., X,]/AnngF with the standard grading.
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Definition 3.1. Let G be a polynomial in k[z,...,z,]. When a family
B; = {agd)}i of homogeneous polynomials of degree d > 0 is given, we call
the polynomial

det ((a§d>(X)a§d)(X)G(x))#Bd) € klz1, ..., zn]

1,7=1

the d-th Hessian of G with respect to B4, and denote it by Hessng. We
denote the d-th Hessian simply by Hess(¥G if the choice of By is clear.

Theorem 3.1. ([11, Theorem 4], [8, Theorem 3.1}) Fiz an arbitrary k-linear
basis By of Ag ford=1,...,[D/2]. An element L = a1 X1+ ---+ap X, € A;
is a strong Lefschetz element of A = Q/AnngF if and only of F(ay, ... ,an) #
0 and

(Hessng)(al, ceehan) #0
ford=1,...,[D/2].

The proof is easy if we take the propositions in the previous section for
granted. Fix the identification [ ] : Ap = k by [w(X)] := w(X)F(x) for
any w(X) € Ap. Note that w(X)F(z) € k, because degw = degF' = D.
Since A is a Poincaré duality algebra, the necessary and sufficient condition
for L=a;X;+---+a,X, € A; to be a strong Lefschetz element is that the
bilinear pairing

AdXAd — AD = k
(&mn) +— LP2¢n — [LP-%%n)

is non-degenerate for d = 0, ... ,[D/2]. Therefore L is a Lefschetz element if
and only if the matrix

(LP-240{® (X)a{? (X)F(2))y

has nonzero determinant. For a homogeneous polynomial G(z1,... ,z,) €
k(xi,...,zn) of degree d, we have the formula

(CL1X1 + -4 aan)dG(acl, .. ,.'Iln) = d!G(al, e ,an),
SO
— d d d d
LP24a D (X) o (X)F(z) = (D — 2d)'a{? (X) &SP (X ) F(2)|oy.... zn)= (a1, 1am)-

This completes the proof of the theorem.
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4 Set of Lefschetz elements

In this section we discuss the set of Lefschetz elements for some simple ex-
amples of Gorenstein algebras with the strong Lefschetz property based on
Corollary 3.1.

Example 4.1. Let us consider the Gorenstein ring A = k[ X3, ... , X,,]/AnngF’
associated to the Fermat type polynomial

F = zn:as:‘ —n(n — l)sﬁxi,
i=1 i=1

where s € k is a parameter. One can check that A has the strong Lefschetz
property for any s € k by computation of Hessians. Let us see the explicit
condition for the Lefschetz element for n = 3. For the polynomial F' =
23 +y3 + 23 — 6s - zyz, A has the following structure:

Case s3 #£ 0,1, AXK[X,Y,Z]/(sX?+YZ,sY + XZ,sZ? + XY),
Cases =0, AEK[X,Y,Z]/(X?—Y3 X®— 2% XY,YZ XZ),
Case * =1, ASK[X,Y,Z]/(sX2+YZ,sY?+ XZ sZ*+ XY, XZ%YZ?).

The Hilbert function of A is Hilb(A) = (1, 3,3, 1) for all s € k. The condition
for L = aX + bY + cZ € A, to be a strong Lefschetz element is that

ad+ b3+ —6s-abc#0
and
s?a® + 5%b® + s%c® — (1 — 25%)abc # 0.

This means that the projectivization of the set of non-Lefschetz elements in
P(A;) = P? is the union of two elliptic curves intersectiong at each other’s
inflection points.

Example 4.2. In [7], the set of the Lefschetz elements for the coinvariant
algebra of the finite Coxeter group is determined except for type Hy. Let V' be
the standard reflection representation of the finite irreducible Coxeter group
W. Then W acts on the polynomial ring R = SymgV™* and the W-invariant
subalgebra R"Y is generated by the fundamental W-invariants fi,..., fr,
r = dim V. The coinvariant algebra Ry is defined as the quotient algebra
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R/(fi,..., fr). It is known that Ry is Gorenstein (see e.g. [10, Theorem
7.5.1]). When W is crystallographic, Rw is isomorphic to the cohomology
ring of the corresponding flag variety. In [7], it was shown that the set of
Lefschetz elements in V* = (Rw); is the complement of the union of the
reflection hyperplanes. For crystallographic case, their argument is based
on the ampleness criterion for the R-divisors on the flag variety, so it is
applicable only when the field k of coefficients is the field R of real numbers.
Let us consider the case W = S3 and

Rw=R[X,Y,Z)/(X+Y + Z,XY +YZ + ZX,XY Z).

The algebra Ry is also given by Rw = R[X,Y,Z]/Ann A with A = (z —
y)(z — z)(y — 2). The degree one part (Rw); has a linear basis B; = {X,Y'}.
Then we have

HessW A = —4(z? + 192+ 2% —xy —yz — zx),
B,

which is a negative definite quadratic form. Hence the set of the Lefschetz
elements is given by

{(z,y,2) | A(z,y,2) # 0} C V*.

If we work in V¢, we have to take care of the condition z? + y? + 2% — zy —
yz — zzx # 0, too.

Remark 4.1. Recently, a purely algebraic proof of the strong Lefschetz
property for coinvariant algebras of finite Coxeter groups has been given
by McDaniel [6] except for types Eg and Hy.

Example 4.3. Let us consider the toric variety Xy associated to a fan ¥
of the lattice N = Z". We assume that Xy is compact and nonsingular.
Let (1) = {p1,... , px} be the set of 1-dimensional cones (rays) of ¥. Each
ray p € £(1) determines a torus invariant divisior D(p) on Xys. Denote by
n(p) € N the primitive generator of a ray p € 3(1). Let Q be a polynomial
ring in the variables X,, p € £(1). We defines the ideals I, J C Q by

= (Y (mn(p)X, | me M),
pEX(1)

and

J:= (X, - Xp, | p1,---,ps are distinct and do not generate a cone in X).
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Then the cohomology ring of Xy has the following structure:
H Xg)=Q/I+ J.

If we define a polynomial F(z) as the intersection number

k T
F(z) == (Z $kD(Pi)) )
=1
then we have a presentation of the cohomology ring of Xy, as follows:
H* (Xg) = Q/AIIIIQF.

I. (Hirzebruch surfece)
For an integer a, consider the complete fan of N = Zn; + Zny determined by
the rays

pP1 = R+TL1, P2 = R+7’L2, p3 = R+(—TL1 -+ 0477/2), P4 = R+(—n2).

The corresponding toric surface is the Hirzebruch surface F,, which has the
structure of a P!-bundle over P!:

Fo=P(O & O(a)) — P

The cohomology ring H*(F,) is generated by the classes of the fiber f :=
D(p;) and the section s := D(p;). We can see that the intersection form on
H?*(F,) is given by

f2=0,fs=1,5"=—a.

Then it is easy to see the following:

(i) The element of + Bs € H?(F,) is ample & a > af3 and 8 > 0.
(ii) The element o.f + Bs € H%(F,) is Lefschetz < § # 0 and 2a # af.
Though the classes of form a(f + as), @ > 0, belong to the boundary of the

ample cone, they are Lefschetz. In this example, we observe that points on
the wall of the ample cone may be the Lefschetz element.

II. (non-projective toric 3-fold.)
The simplest example of non-projective compact toric manifolds is due to
Miyake and Oda [9]. Let N = Zn + Zn, + Zng be the lattice of rank 3. We
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define a complete fan ¥ of N consisting of the following 3-dimensional cones
and their faces:

Riny + Ring + Ryns, Ryng + Ring +Ryni, Ryng+ Ryng+ Rins,
R.n; +Rynz + Ryns, Ryng +Ryn| +Rin;, Ring + Ryny+ Ryng,
Rins + Ryn, + Rynj, Ryng+ Rini +Ryny, Ryng+ Rynj + Ryn;,
Ring + Rin} + Rinj,

where
! ! /
Ng := —Np — Ny — N3, Ny 1= No + ny, Ny =Ny -+ N2, N3 ‘= TY + n3.

There exist no strictly upper convex Z-linear support functions, so the fan
gives an example of compact non-projective toric manifold Xs. Let us denote
by p; == Ryn;, ¢ = 0,1, 2,3, the rays of . The cohomology ring of X5 has
the presentation

H*(Xs) = C[Xo, X1, X2, X3]/AnnF,
where

F = (zoD(po) + x1D(p1) + 22D (p3) + 3D (p3))°
= _4:1;8 - x‘;’ - a:g - mg + 3z1x2T3.
Since the Hessian of F' is given by
Hess(F) = —1296z(z3 + 73 + 23 — 3z12223),

we can see that H*(Xyg) has the strong Lefschetz property, though Xy is
non-projective. The set of non-Lefschetz elements in H?(Xg, C) consists of
four hyperplanes and one cubic hypersurface.

5 Gorenstein algebras which do not have the
strong Lefschetz property

The result in Section 3 shows that a polynomial F' gives an example of
Gorenstein algebra which does not have the strong Lefschetz property if
one of the higher Hessians of F is identically zero. The polynomial F' =
Zou? + Tuv + 2202 is the simplest example whose Hessian vanishes, but no
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variables can be eliminated by a linear transformation of the variables (see
[11, Example 1]).

Here we give examples of forms F such that Hess F' # 0 and Hess® F =
0. By using these forms we can also give examples of Gorenstein algebras
A = Q/AnngF which do not satisfy the strong Lefschetz property.

Example 5.1. Let us consider the polynomial

n
F = E x?u"‘”vj € klu,v,zo, ... ,Zn)

=0

and the corresponding algebra A = Q/AnngF, where Q = k[U,V, Xo, ... , Xyn],
U=0/0u,V =09/0v and X; = 8/dx;. The Hessian of F with respect to the
basis U, V, Xy, ... , X, of degree one is expressed as follows:

Hess F' =

2 (o) "5 {(Z(n—y)(n j+ Dzjur7" 1v’)(Z](3+1)x2 noiyiTt)

-1
— v (Z j(n — j)x?u”"j—lvj_l)z} # 0.
j=1

On the other hand, we can see that the second Hessian is identically zero,
ie. Hess®F =0 in klu,v,xo, ... ,Z,]. This means that the algebra A does
not have the strong Lefschetz property.

Example 5.2. There exists an example of a polynomial F' of degree 5 with
5 variables such that Hess F' # 0 and Hess(® F = 0. Let us choose

F = 22u® + zyu®v 4+ y2uv® + 2203 € kfu, v, 2, v, 2].
Then
UV,X,Y,Ze A=k[U,V,X,Y,Z]/Anng F
are linearly independent. So we have
Hess F = 48uv® (u®z? + 8u'vz’y + 16uv?2%y® + 19uv®z?2?
+9u?v3zy® + 13uvizy2® + 2uviy? + 40°y?2?) # 0.

We also see that Hess® F' = 0, the algebra A does not have the weak Lefschetz
property.
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Example 5.3. The following example is due to Ikeda [5]. Let us choose

the polynomial F = w3zy + wz?z + y*2%. Then the corresponding algebra

A = @Q/AnngF has the Hilbert function (1,4,10,10,4,1). The Hessian is
given as follows:

Hess F' = 8(3w’zy? + 8wbz® — 27w z3y®2 + 27wy’
— 45w32%y%2?% — 54w?z?yS 23 + JwaTy2® + 27xyt2?).

In this case, we again have Hess® F.

Remark 5.1. It is still open whether the Artinian Gorenstein algebra with
dim A; = 3 has the strong (or weak) Lefschetz property.

References

[1] W. Bruns and J. Herzog, Cohen-Macauley rings, Cambridge Studies in
Advanced Mathematics, 39, Cambridge Univ. Press, Cambridge, 1993.

[2] A. V. Geramita, Inverse systems of fat points: Waring’s problem, secant
varieties of Veronese varieties and parameter spaces for Gorenstein ide-

als, in The Curves Seminar at Queen’s, Vol. X, Queen’s Papers in Pure
and Appl. Math., 102, Queen’s Univ., Kingston, ON, 1996, 2-114.

[3] A. V. Geramita, T. Harima, J. C. Migliore and Y. S. Shin, The Hilbert
function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872,
139 pp.

[4] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan 30
(1978), 179-213.

[5] H. Ikeda, Results on Dilworth and Rees numbers of Artinian local rings,
Japan J. Math. 22 (1996), no. 1, 147-158.

[6] C. R. McDaniel, The strong Lefschetz property for coinvariant rings of
finite reflection groups, math.AC/0909.4184.

[7] T. Maeno, Y. Numata and A. Wachi, Strong Lefschetz elements of the
coinvariant rings of finite Cozeter groups, preprint, math.RT/0809.3558.



8]

25

T. Maeno and J. Watanabe, Lefschetz elements of Artinian Gorenstein
algebras and Hessians of homogeneous polynomsials, math.CA /0903.3581
(to appear in Illinois J. Math.)

T. Oda, Lectures on torus embeddings and applications (Based on joint
work with Katsuya Miyake), Tata Inst. of Fund. Research 58, Springer-
Verlag, Berlin, Heidelberg, New York, 1978.

L. Smith, Polynomial Invariants of Finite Groups, Research Notes in
Mathematics Vol. 6, A K Peters Ltd., 1995.

J. Watanabe, A remark on the Hessian of homogeneous polynomsials, in
The Curves Seminar at Queen’s Volume XIII, Queen’s Papers in Pure
and Appl. Math., Vol. 119, 2000, 171-178.



