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LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL
WEIGHT CRYSTALS

JAE-HOON KWON

ABSTRACT. We describe the tensor product of two extremal weight crystals of type A4 oo
by constructing an explicit bijection between the connected components in the tensor
product and a set of quadruples of Littlewood-Richardson tableaux.

1. INTRODUCTION

Let gl be the infinite rank affine Lie algebra of type A, and U,(gl,,) its quantized
enveloping algebra. For an integral weight A, there exists an integrable U,(gl.)-module
called the extremal weight module with extremal weight A. The notion of extremal weight
modules introduced by Kashiwara [5] is a generalization of integrable highest weight and
lowest weight modules. An extremal weight module has a crystal base, which we call an
extremal weight crystal for short, and two extremal weight crystals are isomorphic if their
extremal weights are in the same Weyl group orbit.

Let & be the set of partitions. The Weyl group orbit of A is naturally in one-to-
one correspondence with a pair of partitions (u,v) € 9?2, where (u,0) (resp. (0,v))
corresponds to a dominant (resp. anti-dominant) weight. Let us denote by B,, the
extremal weight crystal with extremal weight corresponding to (u,v) € £22.

In [9], it is shown that the tensor product of two extremal weight crystals is isomorphic
to a finite disjoint union of extremal weight crystals and the Grothendieck ring associated
with the category of gl ,-crystals whose object is a finite union of extremal weight crystals,
is isomorphic to the Weyl algebra of infinite rank. Using this characterization, it is shown
that the multiplicity of B¢, in B,, ® B, - for (u,v), (o,7), ({,n) € P? is
(11) S alh gl

o,B,7€ 2
which is a sum of products of four Littlewood-Richardson coefficients.
The main purpose of this note is to construct an explicit crystal isomorphism

(1.2) Buw ®Bor = || || BeoxLRS, x LRA; x LR, x LR,
$meL? a,B,¥eP

which gives a bijective proof of (1.1). Here LRZV denotes the set of Littlewood-Richardson
tableaux of shape A\/u with content v for A, u, v € 2. We remark that the decomposition
of B, ®B,,- is given in [9] by generalizing the insertion algorithm of Stembridge’s rational
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tableaux [13, 14] for gl,, but the associated recording tableaux which parameterize the
connected components in B, , ® B, , do not imply (1.1) directly.

The multiplicity (1.1) has another representation theoretical interpretation, that is, it
coincides with a generalization of Littlewood-Richardson coefficients introduced in [2],
whose positivity is equivalent to the existence of a long exact sequence of 6 finite abelian
p-groups with types o, (, i, 7,n,v. The author would like to thank Alexander Yong for
pointing out this connection.

This note is organized as follows. In Section 2, we recall briefly the notion of crystals
and a combinatorial realization of B, ,. In Section 3, we review some combinatorics of
Littlewood-Richardson tableaux and an insertion algorithm for B, ,. Finally, in Section

4, we construct the isomorphism (1.2).

2. EXTREMAL WEIGHT CRYSTALS

2.1. Let gl,, denote the Lie algebra of complex matrices (a;;); jen With finitely many
non-zero entries. Let E;; be the elementary matrix with 1 at the i-th row and the j-th
column and zero elsewhere. Then { E;; |4, > 1} is a linear basis of gl,,.

Let h = @,., CE;; be the Cartan subalgebra of gl,, and (-,:) the natural pairing
on h* x b. Let TIV = {hi = Eii — Eit1,+1|% > 1} be the set of simple coroots and
IT={o; =¢€ —e€41]|t > 1} the set of simple roots of gl ,, where ¢; € h* is determined
by (&, Ej;) = 8.

Let P = @,., Ze¢; be the weight lattice of gl., and Py = {A € P|(A,h;) 20 (1> 1)}
the set of dominant integral weights. The map A = (Mi)iz1 = wa = D ,5p A€ gives a
bijection between & and P,, where &2 denotes the set of partitions. B

For ¢ > 1, let r; be the simple reflection given by r;(A) = A — (A, h;)oy; for A € h*.
Let W be the Weyl group of gl.,, that is, the subgroup of GL(h*) generated by r; for
i > 1. Let P/W be the set of W-orbits in P. For A = .., Aie; € P, let 4 and v be the
partitions determined by { A;|A; > 0} and { —A; |A; < 0~}, respectively. Then the map
WA — (u,v) is a bijection from P/W to 422

2.2. Let us recall briefly the notion of crystals based on [6]. A gl,,-crystal is a set B
together with the maps wt : B — P, €;,p; : B — Z U {—00} and &, fi: B— Bu{0}
(¢ € N) such that for b € B

(1) @i(b) = (wt(b), hi) + &:(D),

(2) i(&d) = &i(b) — 1, pi(€:d) = wi(b) + 1, wt(€b) = wt(b) + o if &b # 0,

(3) &i(fib) = &(b) + 1, @s(fib) = ps(b) — 1, wt(fib) = wt(b) — i if fib # O,

(4) fib =1 if and only if b = &' for b,V € B,

(5) &b = fib =0 if p;(b) = —oo,
where 0 is a formal symbol and —co is the smallest element in Z U {—oco} such that

—00+n=—o0 forall n € Z.
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A crystal B is an N-colored oriented graph where b % ¥ if and only if & = ﬁb for
b,/ € B and i > 1. We say that B is connected if it is connected as a graph and regular
if &;(b) = max{k|e*b # 0} and ;(b) = max{k|f*b#£ 0} for b€ B and i > 1.

The dual crystal BY of B is defined to be the set {b"|b € B} with

wt(bY) = —wt(d),
e:(bY) = pi(b), wi(b") = &i(b),
a0 = (fb) ) R0V =@,

for b€ B and i > 1. Here we assume that 0¥ = 0.
Let B; and B, be crystals. The tensor product of B, and B, is defined to be the set
B ® By ={b;®by|b; € B; (1 =1,2) } with

wt(by ® by) = wt(by) + wt(ba),
61(()1 (39 bg) = max{ei(bl),ei(bg) - <Wt(b1), h,,;)},
(pi(b1 X b2) = max{‘Pi(bl) + (Wt(b2)’ h'i)’ (pi(bQ)}’

— ab@b,lflb ZEib,
AN 1~2 '<P(1) (b2)
b1®€ib2, if (p,(bl) <€-,;(b2),
~ fib ® ba, if @i(b1) > €i(by),
Filby @ bg) = flgiz ?90(1) €i(b2)
by ® fibz, if pi(b1) < €i(b2),

for by ® by € B; ® B, and ¢ > 1, where we assume that 0® by = b; ® 0 = 0. Then B; ® B,
is also a crystal.

A map ¢ : B, — B, is called an isomorphism of crystals if it is a bijection, preserves
wt, & and ¢; and commutes with &, f; (i > 1), where we assume that %(0) = 0.
In this case, we say that B; is isomorphic to By and write By ~ B,. For example,
(B1 ® By)V ~ By ® BY, where (b; ® b2)V is mapped to by ® by.

For b; € B; (i = 1,2), we say that b, is equivalent to by, and write b; = by if there
exists an isomorphism of crystals C(b;) — C(by) sending b; to by, where C(b;) denotes
the connected component of B; including b; (i = 1, 2).

2.3. We identify a partition with a Young diagram as usual (see [11]), where we enumer-
ate rows and columns from the top and the left, respectively. Let A be a linearly ordered
set. A tableau T obtained by filling a skew Young diagram A/u with entries in A is called
a semistandard tableau of shape \/p if the entries in each row are weakly increasing from
left to right, and the entries in each column are strictly increasing from top to bottom.
We denote by SST4(A\/u) the set of all semistandard tableaux of shape A/u with entries
in A (cf.[3, 11]).
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For T € SSTa(M\ /1), let w(T)eor (resp. w(T)row) denote the word obtained by reading
the entries of T column by column (resp. row by row) from right to left (resp. top to
bottom), and in each column (resp. row) from top to bottom (resp. right to left). For
a € A, we denote by (a — T) (resp. (T' < a)) the tableau obtained by the Schensted
column (resp. row) insertion (see for example [3, Appendix A.2]). For a finite word
w = wi...w, with letters in A, we let (w - T) = (w, — (---(wy — T)---)) and
(T —w)= (T < w)--) « w,). For semistandard tableaux S and T, we define
(T — S) (resp. (S «— T)) to be (W(T)cor — S) (resp. S — (W(T)row)™") where w*" is
the reverse word of w.

We denote by TV the tableau obtained from T by 180°-rotation and replacing each entry
t with t¥. Then TV is a semistandard tableau with entries in AY, where AY = {a"|a € A}
and a¥ < b¥ if and only if b < a for a,b € A. Here we use the convention (tV)V =t and
hence (TV)Y =T.

Let A be either N or NV with the following regular crystal structures

3

1__1__,2__2_+3__,...,

AN 3V 2, oV ERIN 1v’

where wt(k) = €; and wt(kY) = —e; for k£ > 1. Then the set of all finite words with
letters in A is a regular crystal, where we identify each word of length r with an element
inA®" =A®---®A (r times). Now, the injective image of SST4()\/u) in the set of finite
words under the map T" — w(T)col (0r W(T )row) together with {0} is invariant under &;, fi.
Hence SST4(A/p) is a regular crystal [8]. Also, the row or column insertion is compatible

with the crystal structure on tableaux in the following sense [10};
(a—->T)=TQ®a, (T—a)=axT,

fora € A and T € SST,x()), and hence (T — S) = ST, (S « T)=T®S for
S € S8STa(p).

24. For A € P, let B(A) be the crystal base of the extremal weight U,(gl.¢)-module
with extremal weight A. Then B(A) is a regular crystal, and B(A) ~ B(wA) for w € W.
Moreover, if A € P, (resp. —A € P;), then B(A) is isomorphic to the crystal base of
the irreducible highest (resp. lowest) weight U,(gl.o)-module with highest (resp. lowest)
weight A (see [5, 7] for detailed exposition of extremal weight modules and their crystal

bases).
Recall that for A\ € &

B(w)\) >~ SSTN()\), B(——w)‘) ~ B(w,\)v jad SSTNV ()\V),

where AV is the skew Young diagram obtained from A € £ by 180°-rotation, and SSTn())
is connected with a unique highest weight element H), where each i-th row is filled with
ifori>1[8].
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Now, for u,v € &2, we define B, to be the set of bitableaux (S, T') such that
(E1) S € SSTn(u) and T € SSTwv(vY),
(E2) for each k > 1,
s(k) +tk) <k
where s(k) is the number of entries in the left-most column of S no more than k,
and t(k) is the number of entries in the right-most column of T' no less than kV.

Since B,,, C SSTn(p) ® SSTnv(vY), we can apply &;, fi(i>1)on B, Then B, , U{0}

~

is stable under €&;, f; (¢ > 1) and hence a regular crystal. Moreover, we have the following
[9, Theorem 3.5].

Theorem 2.1. For u,v € &2,

(1) B, is connected,
(2) B, =~ B(A), where WA € P/W corresponds to (u,v) € F2.

3. INSERTION ALGORITHM

3.1. For \p,v € £, let LR;),, be the set of tableaux U in SSTn(A/p) such that for

12>1

(LR1) the number of i’s in U is v;,

(LR2) the number of i’s in w; . . . wg is no less than that of i+1'sinw; ... wyfor1 <k <7,
where W(U)col = Wy - . . W

We call LRI);V the set of Littlewood-Richardson tableauz of shape \/u with content v and

put ¢, = |LRf;,,| [11].

Suppose that A is a linearly ordered set. For S € SSTa(u) and T' € SSTa(v), let A be
the shape of (T' — S) and w(T)co = ws - - - wy. If w; is in the kth row of T and inserted
into (wy_; — (--- (w; — T))) to create a node in A\/pu, then let us fill the node with k. We
denote the resulting tableau in SSTn(A/u) by (T — S)g and call it the recording tableau
of (T — S). Then we have a bijection
(3.1) SSTa(u) x SSTa(v) <= | | SSTa(n) x LR},

re 2
where (S, T) corresponds to ((T" — S),(T — S)r) [15]. Moreover, if we assume that A

is either N or NV, then the above bijection commutes with & and f; (i > 1) (cf.[4, 10]),
where €; and f; act on the first component of SST4(\) % LRZ,,. Summarizing, we have

Proposition 3.1. Let u,v € & be given.
(1) The map sending SQ T to ((T' — S),(T — S)r) is an isomorphism of crystals

SSTw(p) ® SSTa(v) = | | SSTn()) x LR},
AEP
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(2) The map sending S T to ((S¥V — TV)V,(SY — TV)R) is an isomorphism of
crystals
SSTwv (1) ® SSThwv (V) = | | SSTav(AY) x LRS,,.
reZ
Remark 3.2. (1) Let U € SSTn(A\/u) be given. Then as a crystal element, U € LRI);,, if
and only if U = H,,.
(2) For U € LR;\“,, one may identify U with a unique T' € SSTn(v), say «(U), such
that the number of £’s in the i-th row of T is equal to the number of i’s in the k-th row

of A/u for 4,k > 1. Equivalently, H, ® «(U) = H, [12).

3.2. Suppose that A and B are two linearly ordered sets. Let U be a tableau of shape
A/up with entries in A U B, satisfying the following conditions;

(S1) if u,u’ € X are entries of U and u is northwest of «/, then u < v/,

(S82) in each column of U, entries in X increase strictly from top to bottom,
where X = A or B, and we say that u is northwest of u’ provided the row and column
indices of u are no more than those of v’. Suppose that a € A and b € B are two adjacent
entries in U such that a is placed above or to the left of b. Interchanging a and b is called
a switching if the resulting tableau still satisfies the conditions (S1) and (S2).

For § € §STx(p) and T € SSTx(A\/ 1), we denote by S*T be the tableau in SST 4,5(\)
obtained by gluing S and T". Let U be a tableau obtained from S*T by applying switching
procedures as far as possible. Then it is shown in [1, Theorems 2.2 and 3.1] that

(1) U=T"xS', where T" € SSTg(v) and S’ € SSTx()\/v) for some v,

(2) U is uniquely determined by S and T,

(3) when A=N, S’ € LR,’)# if and only if S = H,.
Suppose that A =N and S = H,. Put

iTy=17, jTr=S5"
Then the map T +— (5(T), j(T)r) gives a bijection [1]
(3.2) SSTs(Mp) <= | | SSTs(v) x LR},,.
veP

If B = N, then the map Q — j(Q)g restricts to a bijection from LRI);,, to LR .- Moreover,
if B is either N or NV, then we can check that 7" = j(T') and j(T")g is invariant under €;
and f; (i > 1). Hence we have the following.

Proposition 3.3. Suppose that B is either N or NV. For a skew Young diagram \/u, we
have an isomorphism of crystals
SSTs(Mp) > | | SSTs(v) x LR},
veP
where T is mapped to (§(T'), j(T)r).
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3.3. Let us review an insertion algorithm for extremal weight crystal elements [9].

3.3.1. Let u,v € & be given. For a € N and (S,T) € B,,, we define (a — (S,T)) in
the following way;

Suppose that S is empty and T is a single column tableau. Let (I”,a’) be the pair
obtained by the following process;

(1) If T contains aV, (a+1)V,...,(b—1)" but not b", then 7" is the tableau obtained
from T by replacing a¥, (a +1)V,...,(b— 1) with (a + 1)V, (a +2)¥,...,b", and
put a’ = b.

(2) If T does not contain aV, then leave T unchanged and put o' = a.

Now, we suppose that S and 7" are arbitrary.

(1) Apply the above process to the leftmost column of 7" with a.

(2) Repeat (1) with o’ and the next column to the right.

(3) Continue this process to the right-most column of T to get a tableau T " and a”.
(4) Define

(@—(5,7) = ((a"—9),T).

Then (a — (S,T)) € B,, for some o € & with |o/u| = 1. For a finite word w = w, ... wr
with letters in N, we let (w — (S, 7)) = (wr — (- (w1 — (5,T))--+))-

3.3.2. Fora € N and (S,T) € B,,., we define ((S,T) « a¥) to be the pair (5',7")
obtained in the following way;

(1) If the pair (S, (TV « a)V) satisfies the condition (E2) in Section 2.4, then put
S'=8and T = (TV « a)".
(2) Otherwise, choose the smallest k such that ay is bumped out of the k-th row in the
row insertion of a into TV and the insertion of a; into the (k + 1)-th row violates
the condition (E2) in Section 2.4.
(2-a) Stop the row insertion of a into TV when a; is bumped out and let 7" be the
resulting tableau after taking V.
(2-b) Remove ay in the left-most column of S, which necessarily exists, and then apply
the jeu de taquin (see for example [3, Section 1.2]) to obtain a tableau S'.

In this case, ((S,T) — a¥) € B,,, where either (1) /o] =1and 7 = v, or (2) 0 = p
and |7/v| = 1. For a finite word w = w; ... w, with letters in NV, we let ((5,T) « w) =

((-+-((S,T) = wy) ) — wy).

3.3.3. Let u,v,0,7 € & be given. For (S,T) € B,,, and (5',T") € B, , we define

(8, T) = (5, 7)) = (w(8)ot = (5, T)) = (T )ear)
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Then ((S",T") — (S,T)) € B¢, for some ({,n) € F2. Assume that w(S )cot = w1 ... W;s
and wW(7T")eol = Wey1 - .. Weys. For 1 <i< s+t let

(Sz' Tz) Wi ((wl - (S)T)))’ if1 <i<s,
’ (((8%,T°) = wer) -+ ) —wy, ifs+1<i<s+t,

and (S°,7°) = (S,T). We define
(8, T") = (S, T))r = (U, V),

where (U,V) is the pair of tableaux with entries in Z* = Z \ {0} determined by the
following process;

(1) U is of shape o and V is of shape .

(2) Let 1 <1 < s. If w; is inserted into (S, T%"!) to create a dot (or box) in the
k-th row of the shape of S*~!, then we fill the dot in o corresponding to w; with
k.

(3) Let s+1 < i< s+t Ifw is inserted into (S, T%"!) to create a dot in the k-th
row (from the bottom) of the shape of 7!, then we fill the dot in 7 corresponding
to w; with —k. If w; is inserted into (S, 7%!) to remove a dot in the k-th row
of the shape of S*~!, then we fill the corresponding dot in 7 with k.

We call ((S",T") — (S,T))y the recording tableau of ((S',T") — (S,T)). By [9, Theorem
4.10], we have the following.

Proposition 3.4. Under the above hypothesis, we have

(1) (8,T) = (5,7)) =(5,T) @ (5, T,

(2) (8", T") = (S,T))r € SSTn(0) x S5Tzx(T),

(3) the recording tableauzr are constant on the connected component of B,, ® Bg,
including (S, T) ® (S, T,

where the linear ordering on Z* is given by 1 <2 <3 <:--- < =3 < -2 < —1.

Example 3.5. Consider

2 3 4 5Y  5Y 3 3 4v
Sa T) = ) ) S/) T) = ) :

Since w(S )eol = 335 and w(T")ea = 4¥ 1V 3V, we have

(w(Sl)col - (S7T))= 5v

4v 2V

S W N
(@]
<
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and
2 3 3 4 5Y
(w(S)eas — (S7T))‘—‘7U(T’)col)= 3 5 , 6V 4v
4 4v 3V 1Y
Hence,
(3 3 3 4 5
(8T —(ST)=1 4 5 , 6v 4V |,
\ 6 4 3V 1V

(CR IR A ‘3>.

Remark 3.6. For (U, V) € SSTn(0) x SSTzx(7), an equivalent condition for (U, V) to
be a recording tableau, that is, (U, V) = ((S',T") — (S, T))g for some (S,T) € B, and
(S, T") € B,.-, can be found in [9, Section 4.3]. :

4. MAIN THEOREM

To prove our main theorem, let us first describe the decompositions of SSTav (V) ®
SSTn(p) and SSTn(p) @ SSTwv (V) for p,v € P.

Proposition 4.1. For u,v € &, we have an isomorphism of crystals
SSTh(v¥) ® SSTw(1) — B,
where T ® S is mapped to ((S,0) — (8,T)).

Proof. For T® S € SSTnv(vY) ® SSTn(u), it follows from Proposition 3.4 (2) that
(1) ((5,0) = (0,7)) € By,
(2) ((S,0) = (8, 7)) = (Hy, 0).

Therefore, we have a map
SSTav (V") ® SSTw(1) — By x { (H,,0)}
sending T ® S to (((S,0) — (8,7)),((S,0) — (8,T))g). Since the insertion algorithm is

reversible [9, Proposition 4.9], the above map is indeed a bijection and hence an isomor-
phism of crystals by Proposition 3.4 (1). O

Next, suppose that S ® T' € SSTn() ® SSTwv (V) is given. Let U>° (resp. U<?) be
the subtableau in ((@,T) — (S,0))y consisting of positive (resp. negative) entries. We
define

0(S®T) = (71 (U),5(5(U")r)R)
(see Remark 3.2 (2) and Section 3.2 (3.2)).
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Proposition 4.2. For p,v € &, we have an isomorphism of crystals

SSTn(u) ® SSTw (v¥) = | | Bor x LRY, x LRY,,
Ao, TESL

where S ® T is mapped to ((0,T) — (S5,0)),0(S7T)).

Proof. For S® T € SSTn(p) ® SSTwv (vY), suppose that ((0,T) — (S,0)) € B, for

some 0,7 € A,
First, note that U>® € SSTn(\) for some A C v. Then it is not difficult to check

that .'(U>%) € LR, (see Remark 3.2). Next, consider U<® € SSTz_,(v/)\). Then
(W(U<0)ea1)™ satisfies (LR1) with respect to 7 and (LR2), ignoring — sign in each letter.
Let L. be the tableau in SST%_,(7), where the i-th entry from the bottom in each column
is —12. Considering the Knuth equivalence on the set of words with letters in Z.¢ (cf.[3]),
we have j(U<%) = L, and j(U<%)r € LRY, by (3.2). So,we get j(j(U<°)r)r € LRY,.
Now, we have a map
SSTn(p) ® SSTw(v¥) — | | Bo» x LRE, x LRY,,
Ao, TEP
sending S®T to (((0,T) — (S,0)),6(S ® T)). Since the insertion algorithm is reversible
[9, Proposition 4.9], the above map is a bijection and therefore an isomorphism of crystals
by Proposition 3.4 (1) and (3). O

Now, we are in a position to state our main result in this note.

Theorem 4.3. For (u,v), (0,7) € 92, we have an isomorphism of crystals

Buv®Bor~ || || BenxLRS, xLRA, x LRG, x LR,
CmeF? afive®

Proof. Note that B, g = SSTn(u) and By, = SSTyv(vY). Then as a crystal, we have

3,11,1/ (29 BO’,T

>~ By, @ Buo ® Bor @ Boy (by Proposition 4.1)

~ I__' (Boy @ Boy ® Bryp) x LRL; x LR, (by Proposition 4.2)
a,B,v€P

~ || (Bow®Boy®Bap ® Bog) x LR, x LR,
o,B,yeP
| ] || Bon®BcoxLRS, x LRI, x LR¥; x LR, (by Proposition 3.1)
(¢meF? a,8,veP
~ || || BewxLRS, xLR%; xLR; x LR, (by (3.2)).
(¢meF? a,ByeP

R
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Corollary 4.4. The multiplicity of B¢ in By, @ Bor is given by
Z Cgac’éﬁcgvczw

o,B,7€ 2
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