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Holder continuity for some degenerate parabolic equation
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1. Hélder continuity for some degenerate parabolic equation

We consider the following degenerate parabolic equation of the porous medium type:
11 Ou—Au®=divf, t>0,z¢eR"?
(1.1 { u(0,z) = up(z) >0, xe€R”?

where a > 1 is a constant, f = f(¢,z) is a given R™-valued function, up = uo(x) is a given
non-negative initial datum and « = wu(¢,z) is a unknown function. It is well-known that a
classical solution of (1.1) does not generally exist even if ug is smooth and f = 0 (we will
introduce the explicit solution of (1.1) with f = 0 in the next section). For this reason, we
introduce the notion of weak solutions of (1.1).

Definition 1.1 (weak solutions). Let ug be non-negative function in L!(R™) N L*(R™) and let
f € L'((0, T) x R™). Then a function u : (0,00) x R® — [0, 00) is a weak solution of (1.1) if
there exists T° > 0 such that u satisfies the following three conditions:

(i) u(t,z) > 0 for almost all (¢,z) € (0,T) x R™;

(ii)) v € L*(0,T; L*(R") N L*(R™)) and Vu* € L?((0,T) x R™);
(iii) u satisfies (1.1) in the sense of distributions, i.e. for all ¢ € C*([0,T); C5(R™)),

/Rn u(t)p(t) d:z:—/m uop(0) dx+/0t /l;n udyp drda
+/0t/RnVu°‘.V¢d7'da:=—/o-t Rnf('r,m)'vqbd'rdx

for almostall0 <t < T.

The existence of the weak solutions of (1.1) is shown by Oleinik-Kalaginkov-CZou [12] and
J.-L. Lions [6] (cf. Otani [15]). Our first aim is to obtain the uniform Hélder continuity for
weak solutions of (1.1). We will discuss the application on this aim in the next section.

Caffarelli-Friedman [4] firstly showed the uniform Hélder continuity for weak solutions of
(1.1) with f = 0. Their proof essentially relies on the Aronson-Benilan estimate [2], that
is some pointwise estimate for the derivative of a solution derived from the comparison prin-
ciple. However, for the general external forces f, the Aronson-Benilan type estimate is not
generally known for (1.1). Furthermore, for an application, the comparison principle does not
generally hold for non-local cases, like the degenerate Keller-Segel system or the degenerate
drift-diffusion system. Therefore, it seems difficult to apply their method for (1.1).
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On the other hand, DiBenedetto-Friedman [5] (independently Wiegner [19], generalized by
Misawa [10]) considered the following p-Laplace evolution equation:

{Btv — div(|Vo|P2Vv) =0, t>0, z€R"

(1.2) v(0,z) = vo(z), =z € R™

For p > 2, they showed the Holder continuity for the gradient of solutions of (1.2). We remark
that their proof does not rely on the comparison principle. If n = 1, then v = |Vv| satisfies
(1.1) with f = 0 and o = p — 1. Therefore, they gave a different proof of the Holder continuity
for solutions of the porous medium equation. In fact, DiBenedetto-Friedman showed the Holder
continuity for solutions of (1.1) with f = 0 in any space dimension. They also studied (1.1)
with the general external forces f, however they only observed the Hélder continuity for (1.1)
if f € L°°(0,00; LP(R™)) with p > n and did not give a proof. We try to extend their results,
and we obtain Hélder estimates for the solutions of (1.1) with the external forces f belonging
to some larger class than L>(0, oo; L?(R™)).
Now, we introduce the weak L” spaces.

Definition 1.2 (weak L” spaces). Let 2 C R™ be a domain and let p > 2. Then a function f in
Q belongs to L2 (Q) if f € L () and

loc

mp. : /K

2 2

;= sup fldz < oo.
“f“L{’.,(Q) kCQ : compact lK'l_% I |

By the Holder inequality, the L” space is included by the weak L” space. In fact, the weak

L? space is strictly larger than the L” space. Indeed, |z|~7 is belonging to L?,(R™) but not
belonging to LP(R™).

Remark. For our purpose, we only consider for the case of p > 2. In general, one can define
the weak L? space for the case of p > 1 as the similar way.

Remark. For p > 2, it is known that the weak L” space and the Lorentz space L7 are same
spaces, where

LP(Q) := {f € Lioe(D) : | f T re0(ay = Sup MN|{z € Q:|f(z)| > A} < oo}.

More precisely, for f € L2 (§2), we obtain

p—1
1 I fllze @) < Ifllereo) < [ fllzace
p ) 4

(cf. Benilan-Brezis-Crandall [3]).

To state the main theorem, we give the following notation:

(1.3) Ap = sup || fllLeo(0,00;L8 (B, (a)))-
r<1,a€R"

where B,(a) is an open ball with radius r and center a.

Theorem 1.3 (Holder estimates for solutions of (1.1)). Let u be a bounded non-negative weak
solution of (1.1) and let n > 2 for simplicity. Assume A, < oo for some p > n, where A, is
given by (1.3). Then, there exist constants 0 < v < 1 and C > 0 depending only on n,a and p

such that

a (a-1) 1
(1.4) Ju?(t, ) — u(s,y)| < C(llullZeo((0,00)xR) + AP)(“unlz,:((O,oo)xR")lt —s|? + |z —y|")

for (t,7), (s,y) € (0,00) x R™.
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Remark. If o = 1, then the estimate (1.4) is well-known for the heat equation. Indeed, the
constants C' and -y are stable as @ — 1 in the sense that

lin} C(a) < oo and lin} v(a) € (0, 1].

Hence we can regard the estimates (1.4) as generalised Holder estimates for solutions of the
porous medium equation with the external force of divergence form.

2. Application for the Holder estimate
We consider the Keller-Segel system of degenerate type:

Owu — Au® +div(uVy) =0, t>0,ze€R?
2.1) —AYp+p=u t>0,z€eR"
u(0,2) = up(z) >0, =z e€R",

where n > 3. The notion of the weak solution of (2.1) is like as definition 1.1, where ¢y =
(—A + 1)7'u is the Bessel potential of « (Sugiyama [16], Sugiyama-Kunii [17] or Ogawa [13]
give more precise definition).

Sugiyama [16] and Sugiyama-Kunii [17] study the existence or nonexistence of the time
global weak solution of (2.1). We roughly summarize that (For more precise statement, we
refer to Sugiyama [16], Sugiyama-Kunii [17] and Ogawa [13])) if o < 2 — % and ug is enough
small in some sense, then there exists a time global weak decaying solution, namely the solution
goestozeroast — oo ifa < 2 — % but ug is not small, then the corresponding solution blows
up at a finite time; if & > 2 — 2, then for arbitrary uo, there exists a time global weak solution.
For the case of @ < 2— % and sufficiently small initial data, we consider the asymptotic stability
of the decaying solution u of (2.1). Since the solution is small as ¢ is large, the third term of
(2.1) seems small. Therefore, the solution should be close to a solution of (1.1) with f =0 as ¢
is enough large. Here we give the rigorous way of the preceding argument.

Definition 2.1 (the Barenblatt solution). For a > 1, let ¢ = n(a — 1) + 2. We define the
Barenblatt solution U as

n T a_'l ?._1—1
2.2 Ut,z) :=(1 t)y e V|{—m=), V) =A- 2) )
ey vea) = o iv(Ear) v = (a- S w)

where A > 0 is a constant satisfying ||U (0)||1 = ||uo||1 and (f)+ is the positive part of f.

The Barenblatt solution satisfies (1.1) with f = 0 in the sense of distributions. Since the
Barenblatt solution is not smooth, weak solutions of (1.1) are not generally smooth. We remark

that, if o = 1, then —2|,—; = —% and hence the decaying order of the Barenblatt solution is
same as the Gauss kernel. Therefore the Barenblatt solution is like as the Gauss kernel for (1.1)
with f = 0.

To study the asymptotic stability, the following forward self-similar transform plays the im-
portant role:

- T
 (1+4o0t)s’
u(s,y) = (1+ at) u(t, z), $(s,y) = (1+ at) (¢, z),

1
$=— log(1 + ot), Y
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where ¢ = n(a — 1) + 2. Then, (v, ¢) satisfies the following equation:
Osv — Ayw® = divy(yv — e “vVye), s>0,yeR",
(2.3) —e ®Ayp+op=v, s>0,y€eR"
v(0,y) = uo(y) 2 0,

where k = n(2 — a).
Luckhaus-Sugiyama [8] showed

(14 0t) 5 D|u(t) — U@E)|l, > 0 ast — oo

and the convergence rate in L? space for p > 1. However, for p = 1, their results gave no
information of the convergence rate in L! space. Ogawa [13] showed if a < 2 — 2 then

n
lu(t) = U@l < C(1 +ot)™>
and the algebraic convergence rate is shown. However, for the case of the critical exponent
a =2 — %, we did not obtain the convergence rate in L! space since the uniform Holder
continuity for corresponding solution v of (2.3) was not clear. Using Theorem 1.3, we obtain

the uniform Hélder continuity of v and hence we obtain the convergence rate for the solution of
(2.1) in L?! space for the case of the critical exponent.

Theorem 2.2 (asymptotic stability in L! space). Leta = 2 — % andn > 3. Let initial data ug be
enough small. Assume |z|Puy € L}(R™) for some 3 > n. Then there exist constants C,v > 0
such that

lu@) - U@l <CA +0t)™, t>0,
where the Barenblatt solution U satisfies ||U(0)|l1 = |luol|1-

Remark. If the Hélder exponent of v is more larger, then we can obtain the order parameter v
more larger.

Remark. The moment boundedness |z|°up € L!(R™) is the technical assumption. It seems
possible to obtain the convergence rate for § = 2.

The forward self-similar transform has the following important property:
n(1-1
@4 (1 +0t)70DJlu(®) = U lp@e) = llv(s) = Viiomp,

where U is the Barenblatt solution and V is the self-similar profile given by (2.2). Therefore,
once we obtain the convergence of the self-similar transform v to the self-similar profile V' in
L? space, then we obtain the asymptotic stability for the solution of (2.1) in L? space. From the
point of view, we obtain

lv(s) = V|1 £Ce™, s>0

for some constants C, v > 0.

Outline of proof of Theorem 2.2. We give an only formal argument. Multiplying (2.3) by
|y|#? and integrating over (0, T) x R", we obtain

sup / |y|ﬂvdy| < 00.
n 8

0<s<oo
By the smallness of the initial data, we have |[v|| Leo((0,00)xR") s || V@l Loo((0,00)xRm) < 00 and
hence

sup sup |lyv — e "vV s < 00.
r<1,a€R" 0<s<oo I ¢”LW(B,(0))
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Applying Theorem 1.3, we find the uniform Holder continuity of the rescaled solution v. There-
fore we obtain _

lullennn = O 30+7) ast — oo,
where || || zo,y (r) is the y-Holder semi-norm. The regularity of the solution is directly connected
to the explicit decay rate of the solution. Therefore, we obtain the convergence rate for the
solution of (2.1) in L! space for the case of the critical exponent. The authors will give more
details of the proof by another paper [14]. O

3. Proof of Theorem 1.3

In this section, the same letter C' gives the different constants. Before considering the Holder
continuity for the case of the degenerate type, we review the proof for the non-degenerate case
a = 1 with f = 0. To show the Holder continuity, the following weak Harnack inequality plays
the important role (Moser [11], Aronson-Serrin [1], Trudinger [18]):

3.1 < inf forT >0,r>0.
(3.1) llullL2((r,2myxB,) < C’(aT’iljl‘)pru or r

For p > 0 and (%o, o) € (0.00) x R™, we put an usual parabolic cylinder:

Qp = Qp(to, Zo) := (to — p*, to) X B,(zo).
Then, using the weak Harnack inequality (3.1), we obtain
oscu :=supu — infu < Cp”
Qp Qf) Qp - p

for some vy > 0 and hence we obtain the y-Holder continuous of the solution. However, for the
case of the degenerate type o > 1, the weak Harnack inequality does not generally hold. Indeed,
the Barenblatt solution has the compact support for all time hence the infimum of the Barenblatt
solution may vanish. Therefore, we should obtain the Holder continuity of the solution without
using the weak Harnack inequality.

3.1. The case of ¢ = 1. From now on, we replace u® by u and we consider the following
equation:

(3.2) dyus — Au = div f.

For the sake of understanding the argument clearly, we first consider the case of & = 1. Then
we obtain the following proposition:

Proposition 3.1 (cf. Wu-Yin-Wang [20]). Let u be a bounded solution of (3.2) with o = 1 and
let p > 0. Assume infg,u = 0. Then, forall0 < € < supg, u and 0 < 0o < 1, there exist
constants 0 < rg, 10 < 1 such that we obtain the following estimates:

e (lower bounds) Either if
|Q, N {u < e} < 6o|Qpl,

then
u>1n in anp;
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e (upper bounds) Otherwise, i.e.

1@, N {u < e}| > 60|Q,l,
then
u < (1—no)supu in Qryp.

P
Using Proposition 3.1, we obtain

3.3) oscu = supu — inf < (1 —mp) oscu.
Qrop Qrop rop Q»
For m € N and pg > 0, we put p,, = 79pm—1. Then using (3.3) inductively and considering
u — infg, ~u if we need, we obtain
oscu<(1—19) osc u<---< (1 ——no)"'%scu.
PQ

P m Pm—1

Let v > 0 be a positive number satisfying 1 — 7 < rJ. Then we have

N
oscu < (rg')7 oscu = (p_m_) osC U.
Qom Qro Po’/ Qeq

Considering the interpolation, we find
%%cu <Cp’, p>0

)

and hence we obtain the Hélder continuity of the solution.

3.2. The case of a > 1. Now, we apply the above argument for the case of @ > 1. For that
purpose, we introduce the following modified parabolic cylinder: for p, M > 0 and (¢o, zp) €
(0,00) x R™, we put

p?

T
l—a

Iy = Ipm(to) == (to — to), B, := B,(zp) and

QoM = Qp,m(to, o) := Ipm X By,

The modified parabolic cylinder is derived from the following invariant scaling for (3.2) with
zero external force:

s
M'-a
In other words, for the quasi-linear case, we should change the scaling if we control the value of
the solution. Using the modified parabolic cylinder, we obtain the following alternative lemma:

1
up(s, x) = Mu(t,x), t=

Lemma 3.2 (alternative lemma). There exist constants 0 < 0y, Mo, To < 1 and 69 > 0 depending
only on n, a, p such that for all p,w, M > 0 satisfying

(AD) P17 < b0l Fllzn, iz sy
(A2) supu < M <3supu
QoM Qo.M
and
(A3) §w < osc u < w,
4 T Qum

we obtain the following estimates:
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e (lower bounds) Either if
'Q,,,M N {u < mf u+ — H < 60|Qp,M],

then
U(t, x) Z anf u +770w fOI‘ (t’x) € Qmp,M;
"M

e (upper bounds) Otherwise, i.e.

'Q,,,M N {u < 1nf U+ — }l < 6ol QoM

then
u(t,z) < supu—now for (t,z) € QropM-

Qp,M

In either cases, we obtain

osc u= sup u— inf u < oscu— 1w < (1 —nw
rop, M Q"()PM QropM Qp,M

and hence we obtain the better oscillation estimates.

Remark. Among the assumptions (A1), (A2) and (A3), the most important assumption is (A2).
From the scaling argument, we would take M = SUPQ, », Us however this is impossible since
the modified parabolic cylinder depends on M. Nevertheless by the assumption (A2), we can
regard M as the supremum of u in Q, » and we obtain the lower bounds or the upper bounds
not depending on the value of the solution.

Using the alternative lemma repeatedly, we obtain the following lemma:

Lemma 3.3 (Iteration). Let pg > 0 be a number satisfying (Al). Then, there exist constants
0 < r1,m < 1depending only on n, o, p and a decreasing sequence { M, }55_, such that
{ osc u_<_(1—771)Q osc u,

pm.Mm Pm—1Mp_1
Pm = T1Pm-1
Jorallm € NU {0}.

By Lemma 3.3, we obtain the Hoélder continuity of the solution. Calculating the sequence
{M.}5v_o and using the assumption (A1), we have quantitative Holder estimates of the solution.

Now, we compare the iteration argument for the case of a = 1 with the argument for the
case of o > 1. For the case of a = 1, the diffusive coefficient is uniformly for the value of wu.
Therefore, a ratio of the radius to the square of the height of the parabolic cylinder is a constant
in the iteration argument. On the other hand, for the case of o > 1, the diffusive coefficient may
vanish. To obtain the oscillation estimates not depending on the value of u, we may change the
ratio of the radius to the square of the height of the parabolic cylinder (see figure 1).

3.3. Proof of the lower bounds. Now, we explain how to prove the alternative lemma (Lemma

3.2). In this report, we only consider the lower bounds of the solutions. We hereafter write
ut :=supu and p” := inf u.
Qp,M M

To show the lower bounds, the following Caccioppoli estimates play the important role:
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FIGURE 1. Iterating parabolic cylinders

Lemma 3.4 (Caccioppoli estimates for the negative part of solutions). Let n = n(t, z) be in
C>= (I, m; C§°(B,)) satisfing n(to — A—lé;, z) = 0 for all x € B,. Assume the inequality (A3).
Then for all p= < k < p~ + %, there exists a constant C > 0 depending only on a such that

(3.4) sup (u —k)2n? d:z:L + (uh)i-a //Q |V (u — k)_|*n? dtdz
oM

tEIp,M Bp

< C’{w // (u — k)_noyn dtdzx + (u,+)1‘é // (u — k)2 |Vn|? dtdx
Qo.M Qp, M

- -2
+ (1) ot sz /, 1B, N {u(t) < k}|! rdt},

”M

where (f)- is thectj negative part of f.
Proof. Consider the test function —(u — k)_7? in (3.2). Then

1 o) - (k - 5)%‘15 d¢ \n? dtdzx + V(u—k)_ - V{(u —k)_n*} dtdz
@ JJQpm Q.M

0
= / F-V{(u— k)_1?} dtdz.
Qp,M

By the integration by parts and the Young inequality, we have
1 (k) 1 2 1 2,2
(3.5) — sup / (/ (k—&)=" §d§)77 dz + —// |V(u — k)-|*n* dtdx
tEIp M 4 Qp.M

//C'?pu (/‘(u—k)’ (k—¢)a~%¢ d{) om?® dtdx + 3//(;"# (u — k)2 |Vn|? dtdz

+ 2// | 1% dtdz.
Qp,MN{u<k}

First, we estimate the 1st term of the left-hand side of (3.5). Since (A3)and k < u~ + 5 <
pt —oscq, , u+ % < put, we have

(u—k)- 1 1
/0 (k=€) ¢ de > (ut)E(u — k)2
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and hence

(3.6) 1 sup (u — k)*n? dz + l(;ﬁ)l_é // IV (u — k)_|*n? dtdz
2 4 Qo

X tel, m /B,

< l(lﬁ)l—% //Q,M (/(u_k)_(k —¢)al d§) Om? dtdx

+ 3(/1,+)1"' // (u — k)2 |Vn|® dtdz + 2(,u+)1"' // | f?n? dtdz.
pM

Qp,MN{u<k}

Now, we explain how to treat the external force f. By the definition of the weak L? space,

we have
i Prrde= [ a / 2 dz
Qp, mN{u<k} Ipm Bpn{u(t)<k}

< [ IO n1B 0 utt) < B} e

Io,m

and hence

3.7) 2ut)- / / \F12? dtde
Qp,mN{u<k}

-2
< 206V A o wziny [ 1Bo 0 {utt) < K} R s

pM

To estimate the first term of the right-hand side of (3.6), we consider the case of either p~ <
p, oru- > 2;1,"‘ In either cases, we obtain

1 (u—k)— 1 1 1 .
(3.8) (wh)i-= /0 (k—¢&)a¢de < (u*)'~= [(u‘ + %’) — (;r)z] (u— k)_
< Cla,n)w(u — k)_.
Substituting (3.7) and (3.8) for (3.6), we obtain (3.4).

Proof of Lemma 3.2 (the lower bounds). We consider the scale transform:
s = Ml‘ét, i(s,xz) = u(t,z), 7(s,z)=n(tz) and f(s,m) = f(t,z).
We rewrite the Caccioppoli estimates (3.4) as follows:

1__.
3.9 sup | (@a—k)27%de + L — (M ) / IV (& — k)_|%7 dsdx

tel, /B,

<C( a){ // (& — k)_9,7* dsdx + ~———— (“+)1—— // (@ — k)% |Vij|? dsdx

O i 11, \7
" %_IZT”f"L“UmL'&(Bp)) (/I |B, N {a(s) < k}|7¢ P)ds> },
P

where I, = I,(to) := (to — p?, tp).
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We take Yo, P+, q« > O as
. 2 2 2
w=1-2 1=2(1420) ma-2-2
p Q: n P D

We remark that = = + L = 9

Now, we apply the De Gxorgl Nash-Moser iteration. For i € N, we take p = p;, k = ki, 7 =
7i; satisfying 7; = 1 on Q,,,, and

1 1 1
ki = p~ +4w+2z+l pi—§p+21+1p’
2
1Qp n{@ < ki} o _ e, \*
vim Qe DU SB g Lo (f 1B () < kIFas) ",
P p pi
2 8 . 2 2 16 - 2%
V‘-‘ S S ) aﬁ'&S S .
IVl Pi — Pi+1 p ’ P} — Pl 3p?

Then, by using (A2) and (@ — k;)- < %, we rewrite (3.9) as

(@ — ki)—ﬁiII%N(IP‘.;Lz(Bp‘.))an(I,,'.;HI(BP‘))

2y
w?@ : = (1QI\ T e
< C(a)—%gll 22 + | fll o 1,12 ()@ ('7;1 Z; ™.

Using the LadyZenskaja inequality (cf. LadyZenskaja-Solonnikov-Ural’ceva, 7, Section 3 in
Chapter II (pp. 74)]) and the Holder inequality, we have

1@ — k:)-7llZ2q,,)
210
w3 i F Qol\ ™ 1420
< C(a, n)w*|Q,lY; +2{22 Y + Il oo rizzmon®” (Ip; ) Z;* }

and

(@ = ki) = 7hill e 1,510+ (Bo))

2y
1@l [ 2 : 1@\ 12
SC(aan)'pr 2% + 1 f | oo (a2 (B )W 2(|__,,I Zi "0

Since
2

- - - w
(@ — ko) -ill T2,y = 1@ = ki) -NT2qy,, ek 2 W'Qr’m’rl
and

w? lQpl

(@ — ki)~ TillZaw (1, 510+ (B, = (T — ki) X(a<kisn) |20 tpiiLoe (Bo)) = 7 5% 64 25 2 LoD

we obtain

g
i l+;2—- in T Q n —— 1420
Yit1 < C(a,n){Q‘“Yi *+ 221"f“2L°°(I,,;L£’.,(Bp))w (|p;|) "tz }
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and

Q) e
. L~ _ n 1+
Zip1 < C(a,n){z“’Yi + 221”f”i°°(1,,;1,5(3,,))w 2 (_pf‘) Z; " }

Using ;’;f < 1 and the Hé6lder inequality, we obtain

2
ZO S C(nvpa Q)}/O T

Let p* < w™!| f HZL (y:L%(By))" Then, by the well-known result for the recurcive inequality
(cf. LadyZenskaja-Solonnikov-Ural’ceva, [7, Lemma 5.7 in Chapter 1I (pp.96)]), there exists
0 < 0y = 6p(n,a,p,q) < 1 such that if Yy < 6, thenY; — 0 as 7 — o0, i.e.

Y oaa (s,7) € Qs.

u(s,z) > p~ + 1

O

Remark. In the proof of the lower bounds, we essentially consider the upper bounds of v_ =
(u — k)—. Then the function v_ satisfies

Sv_ — div(a(k — v_)*"'Vu_) = —div f.

The function v_ also satisfies the degenerate parabolic equation. To overcome this difficulty,
we take 6y sufficiently small.

On the other hand, to show the upper bounds of the solution. we consider the upper bounds
of vy := (u — k). Then the function v, satisfies

vy — div(a(vy + k)* " 'Vuy) = div f.

Therefore we can regard v, as a solution of the uniformly parabolic equations. To show the
upper bounds of v, we apply the Bernstein estimates, the Poincare inequality and the hole
filling argument for v,. These arguments are like as the arguments of the regularity theory for
solutions of the uniformly parabolic equations. The full detailed discussion will be published
elsewhere [9].
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