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1 Introduction

In the talk given by the first author, a model of phase segregation of the Allen-Cahn type
was presented [5]. This model leads to a system of two differential equations, one partial
the other ordinary, respectively interpreted as balances of microforces and microenergy.
The two unknowns are the order parameter entering the standard Allen-Cahn equation
and the chemical potential. This system ha.$s$ been extensively studied in [1]: the results
will be recalled in this presentation.

A notion of maximal solution to the o.d. $e.$ , parameterized on the order-parameter
field, is given. By substitution in the p.d. $e$ . of the so-obtained chemical potential field,
the latter equation takes the form of an Allen-Cahn equation for the order parameter,
with a memory term. Existence and uniqueness of global-in-time smooth solutions to
this modified Allen-Cahn equation can be shown along with a description of the relative
$\omega$-limit set.
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2 Setting of the problem

We deal with a system of evolution equations, given by the microforce balance and the
energy balance, respectively,

$\kappa\partial_{t}\rho-\Delta\rho+f’(\rho)=\mu$ (2.1)

and
$\partial_{t}(-\mu^{2}\rho)=\mu(\kappa(\partial_{t}\rho)^{2}+\overline{\sigma})$ (2.2)

in terms of the unknowns $\rho$ and $\mu$ . It is a nonlinear system consisting of a parabolic
PDE and a first-order-in-time ODE, to be solved for the order-parameter field $\rho$ and the
chemical potential field $\mu$ . In particular, $\rho=\rho(x, t)\in[0,1]$ can be interpreted a.s the
scaled volumetric density of one of the two pha.ses, $\kappa>0$ is a mobility coefficient, and $f$

denotes a double-well potential confined in $(0,1)$ and singular at endpoints. Moreover, in
(2.2) $\overline{\sigma}=\overline{\sigma}(x,$ $t$ represents a source term which is $a_{\iota}ssiimed$ to be a datum of the problem.
Formally, setting $\mu\equiv 0$ in (2.1) restitutes the standard Allen-Cahn equation (see [2, 3, 4]
for classes of related models).

System $(2.1)-(2.2)$ is complemented with the homogeneous Neumann condition

$\partial_{n}\rho=0$ on the body’s boundary (2.3)

(here $\partial_{n}$ denotes the outward normal derivative) and with the initial conditions

$\rho|_{t=0}=\rho_{0}$ bounded away from $0$ , $\mu|_{t=0}=\mu_{0}\geq 0$ . (2.4)

We point out that the quantity $\eta=-\mu^{2}\rho$ representing the microentropy cannot exceed
the level $0$ from below, and that the corresponding prescribed initial field

$\eta|_{t=0}=\eta_{0}=-\mu_{0}^{2}\rho_{0}$ (2.5)

is nonpositive-valued.

3 Solution strategy and summary of results

The aim is a mathematical investigation of problem $(2.1)-(2.4)$ . We try to discuss the
ODE first, then to solve the PDE. In order to carry out our strategy, we introduce a
change of variable to give (2.2) pliis (2.5) the form of a parametric initial-value problem.
We set

$\xi:=-\eta$ , $\xi_{0}:=-\eta_{0}$ , (3.1)
whence $\mu=\sqrt{\xi’\rho}$ and $\xi$ should satisfy

$\partial_{t}\xi+\frac{\kappa(\partial_{t}\rho)^{2}+\overline{\sigma}}{\sqrt{\rho}}\sqrt{\xi}=0$, $\xi|_{t=0}=\xi_{0}$ , (3.2)

that is, a Cauchy problem parameterized on the space variable $x$ and on the field $\rho(x, \cdot)$ .
The general form of equation (3.2) entails the Peano phenomenon and allows the existence
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of infinitely many solutions; among them, we pick a suitably defined maximal solution $\xi$

(or $\sqrt{\xi}$), having the desirable property to stay positive a.s long $a_{\wedge}s$ is possible. Next, we
transform (2.1) into

$\kappa\partial_{t}\rho-\Delta\rho+f’(\rho)-\sqrt{\xi}\frac{1}{\sqrt{\rho}}=0$ , (3.3)

that is, an Allen-Cahn equation for $\rho$ with the additional term $-\sqrt{\xi\prime\rho}$ . Note that the
factor $\sqrt{\xi}$ is implicitly defined in terms of $\rho$ a.s the maximal solution to (3.2). Then, (3.3)
may be viewed $a_{\wedge}s$ an integrodifferential equation. Existence, regularity and uniqueness
of the solution to (3.3) subject to the boundary condition (2.3) and the initial condition
(2.4) are proved by using a fixed-point argument, which takes advantage of the iterated
Contraction Mapping Principle. What is important for our procedure is the a pri.ori
uniform boundedness of $\partial_{t}\rho$ in the space-time domain; this is shown by applying standard
regularity arguments for parabolic equations.

Our analysis is also devoted to an investigation of the long-time behavior of the solu-
tion: it turns out that $\sqrt{\xi}$ uniquely converges to some fiunction $\varphi_{\infty}$ and any element $\rho_{\infty}$

of the $\omega$-limit set solves the stationary problem

$- \Delta\rho_{\infty}+f’(\rho_{\infty})-\varphi_{\infty}\frac{1}{\sqrt{\rho_{\infty}}}=0$, (3.4)

supplemented by suitable homogeneous Neumann boundary conditions.

4 Discussion of the model

Let $tlS$ start from the Allen-Cahn equation

$\kappa\partial_{t}\rho-\Delta\rho+f’(\rho)=0$ , (4.1)

which has been introduced to describe evolutionary processes in a two-phase material
body, including phase segregation: indeed, the order-parameter field $\rho$ may represent a
density of one of the two pha.ses and $f$ is usually a double-well potential playing in a fixed
range of significant values for the order paramenter, say $[0,1]$ . The derivation of (4.1)
proposed by Gurtin [3] is based on a balance of contact and distance microforces:

$div\xi+\pi+\gamma=0$ (4.2)

along with a dissipation inequality restricting the free-energy growth:

$\partial_{t}\psi\leq w$ , $w:=-\pi\partial_{t}\rho+\xi\cdot\nabla(\partial_{t}\rho)$ , (4.3)

where the distance microforce is split in an internal part $\pi$ and an external part $\gamma$ , the
vector $\xi$ denotes the microscopic stress, and $w$ specifies the (distance and contact) inter-
nal microworking. Similarly, in [2] the balance of microforces is stated under form of a
principle of virtual power for microscopic motions. The Coleman-Noll compatibility of
the constitutive choices

$\pi=\hat{\pi}(\rho, \nabla\rho, \partial_{t}\rho)$ , $\xi=\hat{\xi}(\rho, \nabla\rho, \partial_{t}\rho)$ ,

and $\psi=\hat{\psi}(\rho, \nabla\rho)=f(\rho)+\frac{1}{2}|\nabla\rho|^{2}$ (4.4)
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with the dissipation inequality (4.3) yields

$\hat{\pi}(\rho, \nabla\rho, \partial_{t}\rho)=-f’(\rho)-\hat{\kappa}(\rho, \nabla\rho, \partial_{t}\rho)\partial_{t}\rho$, $\hat{\xi}(\rho, \nabla\rho, \partial_{t}\rho)=\nabla\rho$ . (4.5)

Hence, the Allen-Cahn equation (4.1) follows for $\hat{\kappa}(\rho\cdot, \nabla\rho, \partial_{t}\rho)=\kappa$ and $\gamma\equiv 0$ .
In [5] the third author considered a modified version of Gurtin’s derivation, in which

inequality (4.3) is dropped and the microforce balance (4.2) is coupled both with the
microenergy balance

$\partial_{t}\epsilon=e+w$ , $e$
$:=-div\overline{h}+\overline{\sigma}$ , (4.6)

and the microentropy imbalance

$\partial_{t}\eta\geq-divh+\sigma$ , $h:=\mu\overline{h}$ , $\sigma:=\mu\overline{\sigma}$ . (4.7)

In this approach to phase-segregation modeling, it is postulated that the microentropy in-
flow $(h, \sigma)$ is proportional to the microenergy inflow $(\overline{h},\overline{\sigma})$ through the chemical potential
$\mu$ , a positive field. Consistently, the free energy is defined to be

$\psi:=\epsilon-\mu^{-1}\eta$ , (4.8)

with the chemical potential playing the same role $a_{\iota}s$ coldness in the deduction of the heat
equation. Just as absolute temperature turns out a macroscopic mea.sure of microscopic
agitation, its inverse- the coldness- measures microscopic quiet. Likewise, the chemical
potential can be seen as a macroscopic measure of microscopic organization. Combination
of $(4.6)-(4.8)$ yields

$\partial_{t}\psi\leq-\eta\partial_{t}(\mu^{-1})+\mu^{-1}\overline{h}\cdot\nabla\mu-\pi\partial_{t}\rho+\xi\cdot\nabla(\partial_{t}\rho)$ , (4.9)

an inequality that restricts constitutive choices: however, these can now be more general
than those in (4.4).

Now, assume that the constitutive mappings delivering $\pi,$ $\xi,\eta$ , and $\overline{h}$ depend on the
list $\rho,$ $\nabla\rho,$ $\partial_{t}\rho$ , and the chemical potential $\mu$ . Then choose

$\psi=\hat{\psi}(\rho, \nabla\rho, \mu)=-\mu\rho+f(\rho)+\frac{1}{2}|\nabla\rho|^{2}$ , (4.10)

and observe that compatibility with (4.9) implies

$\hat{\pi}(\rho, \nabla\rho, \partial_{t}\rho, \mu)=\mu-f’(\rho)-\hat{\kappa}(\rho, \nabla\rho, \partial_{t}\rho)\partial_{t}\rho$ , $\hat{\xi}(\rho, \nabla\rho, \partial_{t}\rho, \mu)=\nabla\rho$,

$\hat{\eta}(\rho, \nabla\rho, \partial_{t}\rho, \mu)=-\mu^{2}\rho$, $\hat{\overline{h}}(\rho, \nabla\rho, \partial_{t}\rho,\mu)\equiv 0$ . (4.11)

In view of (4.11) and under the additional constitutive assumptions that the mobility $\kappa$ is
a positive constant and the extemal distance microforce $\gamma$ is null, the microforce balance
(4.2) and the energy balance (4.6) become, respectively, (2.1) and (2.2).
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5 Precise statement of results

Here, we mainly refer to the system of equations in (3.3) and (3.2), which are derived
from (2.1) and (2.2) via the transformation (3.1). Let $\Omega$ be a smooth bounded domain
of $\mathbb{R}^{N}(N\geq 1)$ with boundary $\Gamma$ and take the space time domains $Q_{t}:=\Omega\cross[0, t)$ ,
$t\in(O, +\infty])$ . As to the coarse-grain free energy $f$ , we split it as

$0\leq f=f_{1}+f_{2}$ , where $f_{1},$ $f_{2}$ : $(0,1)arrow R$ are $C^{2}$-functions,
$f_{1}$ is convex, $f_{2}’$ is bounded, $1ini_{r\backslash 0}f’(r)=-\infty$ , and $\lim_{r\nearrow 1}f’(r)=+\infty$ .

Actually, a nice example for $f_{1}$ is

$f_{1}(r)=r\ln r+(1-r)\ln(1-r)$ for $r\in(O, 1)$ ,

while $f_{2}$ stands for a smooth perturbation of this singular convex part. For the energy
source a and the initial data $\rho_{0},$

$\xi_{0}$ we assume that

$\overline{\sigma}\in L^{2}(Q_{T})$ , $\rho_{0},$ $\xi_{0}\in L^{\infty}(\Omega)$ , $0<\rho_{0}<1$ and $\xi_{0}\geq 0$ a.e. in $\Omega$ .

and recall that the mobility $\kappa$ is a given positive constant.
Consider now the forward Cauchy problem (3.2). Clearly, $\xi$ must be nonnegative.

Thus, if we look for a strictly positive $\xi$ (for given $\rho>0$ and $\xi_{0}>0$), the Cauchy
problem (3.2) admits a unique local solution. On the contrary, uniqueness is no longer
guaranteed if we allow $\xi$ to be just nonnegative. On the other hand, every nonnegative
local solution can be extended to a global solution. Therefore, we select a (global) solution
to problem (3.2) according to the following maximality criterion:

$\sqrt{\xi(x,t)}=S11p\{w(x, t) : w\in@*($a $, \xi_{0}, \rho)\}$ for $(x, t)\in Q_{T}$ , where (5.1)
$@^{*}(\overline{\sigma}, \xi_{0}, \rho):=\{w\in W^{1,1}(0, T;L^{1}(\Omega)):w(O)=\sqrt{\xi_{0}}$ , $w\geq 0$ a.e. in $Q_{T}$ ,

$\partial_{t}w=-(\kappa(\partial_{t}\rho)^{2}+a)/(2\rho^{1/2})$ a.e. where $w>0\}$ .

Accordingly, the maximal $\xi$ satisfies:

$\sqrt{\xi(x,t)}=\sqrt{\xi_{0}(x)}-\int_{0}^{t}a^{*}(x, s)ds$ ,

where

$a^{*}(x, s):=\{\begin{array}{ll}\frac{\kappa|\partial_{t}\rho(x,s)|^{2}+\overline{\sigma}(x,s)}{2\sqrt{\rho(x,s)}} if \xi(x, s)>0,0 otherwise.\end{array}$

Then, if we replace $\mu$ by $\sqrt{\xi’\rho}$ in (2.1), we get (3.3). We supplement this equation
with the boundary and initial conditions for $\rho$ given by, respectively, (2.3) and the first
of (2.4). Of the so-obtained initial/boundary value problem, a variational formulation in
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the framework of the spaces $V$ $:=H^{1}(\Omega)$ and $H$ $:=L^{2}(\Omega)$ is:
look for $\rho\in H^{1}(0, T;H)\cap C^{0}([0, T];V)$ such that (5.2)

$\rho(0)=\rho_{0}$ , $0<\rho<1$ a.e. in $Q_{T}$ , $\frac{1}{\rho}+\frac{1}{1-\rho}\in L^{\infty}(Q_{T})$ ; (5.3)

$\kappa\int_{\Omega}\partial_{t}\rho(t)z+\int_{\Omega}\nabla\rho(t)\cdot\nabla z+\int_{\Omega}f’(\rho(t))z-\int_{\Omega}(\xi(t)’\rho(t))^{1\prime 2}z\cdot=0$

for a.a. $t\in(0, T)$ , for every $z\in V$ , and for $\xi$ given by (5.1). (5.4)

The initial-boundary value problem $(5.2)-(5.4)$ can be regarded a.s an essentially inte-
grodifferential Allen-Cahn equation in the sole unknown $\rho$ . We note, in particular, that
(5.4) has a well defined meaning, because $\xi^{1’ 2}\in L^{2}(Q_{T})$ and $\rho^{-1’ 2}\in L^{\infty}(Q_{T})$ (at least)
whenever $\rho$ satisfies (5.2) and $\overline{\sigma}\in L^{2}(Q_{T})$ .

Our first result concems existence and uniqueness of the solution.
Theorem 5.1 (Well-posedness). Under the already specified assumptions on the data
$f,\overline{\sigma},$

$\rho_{0},$ $\xi_{0}$ , if moreover

$\overline{\sigma}\in L^{\infty}(Q_{\infty})$ and $\overline{\sigma}^{-}\in L^{1}(0, \infty;L^{\infty}(\Omega))$ ; $\frac{1}{\rho_{0}}+\frac{1}{1-\rho_{0}}\in L^{\infty}(\Omega)$ ,

$\rho_{0}\in H^{2}(\Omega)$ , $\partial_{n}\rho_{0}=0$ on $\Gamma$ , and $\Delta\rho_{0}\in L^{\infty}(\Omega)$ ,
then, for every $T\in(0, +\infty)$ , problem $(5.2)-(5.4)$ has a unique solution. Furthermore,

$\rho\in L^{p}(0, T;W^{2,p}(\Omega))$ for every $p<+\infty$ ,
$\partial_{t}\rho\in L^{\infty}(Q_{T})$ , and $\xi\in L^{\infty}(Q_{T})$ . (5.5)

Finally, there exist constants $\rho_{*},$ $\rho^{*}\in(0,1)$ and $\xi^{*}\geq 0_{f}$ independent of $T$, such that
$\rho_{*}\leq\rho\leq\rho^{*}$ , $\xi\leq\xi^{*}$ $a.e$ . $in$ $Q_{T}$ . (5.6)

Our second result deals with the long-time behavior of the solution $\rho$ to problem
$(5.2)-(5.4)$ and ensures that the elements of the $\omega$-limit of every trajectory are steady
states. Let us describe the stationary problem associated to $(5.2)-(5.4)$ . We introduce
$\varphi_{\infty}$ : $\Omegaarrow[0, +\infty)$ defined by

$\varphi_{\infty}(x);=tarrow+\infty 1in1\sqrt{\xi(x,t)}$ for a.a. $x\in\Omega$ , where $\sqrt{\xi}$ is given by (5.1)

notice that the stationary problem reads:

find $\rho_{\infty}\in V$ such that $\rho_{*}\leq\rho_{\infty}\leq\rho^{*}$ a.e. in $\Omega$ and (5.7)

$\int_{\Omega}\nabla\rho_{\infty}\cdot\nabla z+\int_{\Omega}f’(\rho_{\infty})z-\int_{\Omega}\frac{\varphi_{\infty}}{\sqrt{\rho_{\infty}}}z=0$ for every $z\in V$ . (5.8)

Theorem 5.2 (Structure of $\omega$-limit). Under the same assumptions as in Theorem 5.1,
let $\rho$ be the unique global solution to problem $(5.2)-(5.4)$ . Then, the limit $\varphi_{\infty}(x)$ exists
for $a.a$ . $x\in\Omega$ and $\varphi_{\infty}\in L^{\infty}(\Omega)$ . Moreover, the $\omega$ -limit defined by

$\omega(\rho)$ $:=$ { $\rho^{\infty}\in H$ : $\rho^{\infty}=narrow\infty 1in1\rho(t_{n})$ strongly in $H$ for some $\{t_{n}\}\nearrow+\infty$} (5.9)

is non-empty, compact, and connected in the strong topology of H. Finally, $ever\tau/$ element
$\rho^{\infty}\in\omega(\rho)$ coincides with a solution $\rho_{\infty}$ to the $stationar\tau/$ problem $(5.7)-(5.8)$ .
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For the detailed proofs of Theorems 5.1 and 5.2, as well a.s for an informal discussion
of the employed techniques, we refer the reader to [1].
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